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Abstract. We study the problem of locating a particularly dangerous
node, the so-called black hole in a synchronous anonymous ring network
with mobile agents. A black hole destroys all mobile agents visiting that
node without leaving any trace. Unlike most previous research on the
black hole search problem which employed a colocated team of agents,
we consider the more challenging scenario when the agents are identi-
cal and initially scattered within the network. Moreover, we solve the
problem with agents that have constant-sized memory and carry a con-
stant number of identical tokens, which can be placed at nodes of the
network. In contrast, the only known solutions for the case of scattered
agents searching for a black hole, use stronger models where the agents
have non-constant memory, can write messages in whiteboards located
at nodes or are allowed to mark both the edges and nodes of the network
with tokens.

We are interested in the minimum resources (number of agents and to-
kens) necessary for locating all links incident to the black hole. In fact, we
provide matching lower and upper bounds for the number of agents and
the number of tokens required for deterministic solutions to the black
hole search problem, in oriented or unoriented rings, using movable or
unmovable tokens.

1 Introduction

We consider the problem of exploration in unsafe networks which contain mali-
cious hosts of a highly harmful nature, called black holes. A black hole is a node
which contains a stationary process destroying all mobile agents visiting this
node, without leaving any trace [9]. In the Black Hole Search (BHS) problem
the goal for a team of agents is to locate the black hole within finite time, with
the additional constraint that at least one of the agents must remain alive. It is
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usually assumed that all the agents start from the same location and have dis-
tinct identities. In this paper, we do not make such an assumption and study the
problem for identical agents starting from distinct locations within the network.
We focus on minimizing the resources required to find the black hole.

The only way of locating a black hole is to have at least one agent visiting it.
However, since any agent visiting a black hole is destroyed without leaving any
trace, the location of the black hole must be deduced by some communication
mechanism employed by the agents. Four such mechanisms have been proposed
in the literature: a) the whiteboard model in which there is a whiteboard at
each node of the network where the agents can leave messages, b) the ‘pure’
token model where the agents carry tokens which they can leave at nodes, c) the
‘enhanced’ token model in which the agents can leave tokens at nodes or edges,
and d) the time-out mechanism (only for synchronous networks) in which one
agent explores a new node while another waits for it at a safe node.

The most powerful inter-agent communication mechanism is having white-
boards at all nodes. Since access to a whiteboard is provided in mutual exclusion,
this model could also provide the agents a symmetry-breaking mechanism: If the
agents start at the same node, they can get distinct identities and then the dis-
tinct agents can assign different labels to all nodes. Hence in this model, if the
agents are initially co-located, both the agents and the nodes can be assumed to
be non-anonymous without any loss of generality. The BHS problem has been
studied using whiteboards in asynchronous networks, with the objective of min-
imizing the number of agents required to locate the black hole. Note that in
asynchronous networks, it is not possible to answer the question of whether or
not a black hole exists in the network, since there is no bound on the time taken
by an agent to traverse an edge. Assuming the existence of (exactly one) black
hole, the minimum sized team of co-located agents that can locate the black hole
depends on the maximum degree A of a node in the network (unless the agents
have a complete map of the network). In any case, the prior knowledge of the
network size is essential to locate the black hole in finite time.

In the case of synchronous networks two co-located distinct agents can dis-
cover one black hole in any graph by using the time-out mechanism, without
the need of whiteboards or tokens. Furthermore it is possible to detect whether
a black hole actually exists or not in the network. Hence, with co-located dis-
tinct agents, the issue is not the feasibility but the time efficiency of black hole
search (see [3,5,15,16] for example). However when the agents are scattered in
the network (as in our case), the time-out mechanism is not sufficient to solve
the problem anymore.

Most of the previous results on black hole search used agents whose mem-
ory is at least logarithmic in the size of the network. This means that these
algorithms are not scalable to networks of arbitrary size. This paper considers
agents modeled as finite automata, i.e., having a constant number of states. This
means that these agents can not remember or count the nodes of the network
that they have explored. In this model, the agents cannot have prior knowledge
of the size of the network. For synchronous ring networks of arbitrary size, con-



taining exactly one black hole, we present deterministic algorithms for locating
the black hole using scattered agents each having constant-sized memory. We are
interested in minimizing both the number of agents and the number of tokens
required for solving the BHS problem.

We use the ‘pure’ token model. Note that the ‘pure’ token model can be
implemented with O(1)-bit whiteboards (assuming that only a constant number
of tokens may be placed on a node at the same time), while the ‘enhanced’
token model can be implemented with O(log A)-bit whiteboards. In the previous
results using the whiteboard model, the capacity of each whiteboard is always
assumed to be of at least 2(logn) bits, where n is the number of nodes of the
network. Unlike the whiteboard model, we do not require any mutual exclusion
mechanism at the nodes of the network. We distinguish movable tokens (which
can be picked up from a node and placed on another) from unmovable tokens
(which can not be picked up once they are placed on a node). For both types
of tokens, we provide matching upper and lower bounds on both the number of
agents and the number of tokens per agent, required for solving the black hole
search problem in synchronous rings.

Related Works: The exploration of an unknown graph by one or more mobile
agents is a classical problem initially formulated in 1951 by Shannon [18] and it
has been extensively studied since then. In unsafe networks containing a single
dangerous node (black hole), the problem of searching for it has been studied
in the asynchronous model using whiteboards and given that all agents initially
start at the same safe node (e.g., [6,8,9]). It has also been studied using ‘en-
hanced’ tokens in [7,10,19] and in the ‘pure’ token model in [13]. It has been
proved that the problem can be solved with a minimal number of agents per-
forming a polynomial number of moves. Notice that in an asynchronous network
the number of the nodes of the network must be known to the agents otherwise
the problem is unsolvable [9]. If the network topology is unknown, at least A+1
agents are needed, where A is the maximum node degree in the graph [8].

In asynchronous networks, with scattered agents (not initially located at the
same node), the problem has been investigated for arbitrary topologies [2, 14] in
the whiteboard model while in the ‘enhanced’ token model it has been studied
for rings [11,12] and for some interconnected networks [19].

The issue of efficient black hole search has been studied in synchronous net-
works without whiteboards or tokens (only using the time-out mechanism) in [3,
5,15, 16] under the condition that all distinct agents start at the same node.

The problem has also been studied for co-located agents in directed graphs
with whiteboards, both in the asynchronous [4] and synchronous cases [16]. A
different dangerous behavior is studied for co-located agents in [17], where the
authors consider a ring and assume black holes with Byzantine behavior, which
do not always destroy a visiting agent.

In all previous papers (apart from [13]) studying the Black Hole Search prob-
lem using tokens, the ‘enhanced’ token model is used. The weakest ‘pure’ token
model has only been used in [13] for co-located agents in asynchronous networks.



In all previous solutions to the problem using tokens, the agents are assumed to
have non-constant memory.

Our Contributions: Unlike previous studies on BHS, we consider the scenario
of anonymous (i.e., identical) agents that are initially scattered in an anony-
mous ring. We focus our attention on very simple mobile agents. The agents
have constant-size memory, they carry a constant number of identical tokens
which can be placed at nodes and, (apart from using the tokens), they can com-
municate with other agents only when they meet at the same node. We consider
four different scenarios depending on whether the tokens are movable or not, and
whether the agents agree on a common orientation. We present deterministic op-
timal algorithms and provide matching upper and lower bounds for the number
of agents and the number of tokens required for solving BHS (See Table 1 for
a summary of results). Surprisingly, the agreement on the ring orientation does
not influence the number of agents needed in the case of movable tokens but is
important in the case of unmovable tokens.

The lower bounds presented in this paper are very strong in the sense that
they do not allow any trade-off between the number of agents and the number
of tokens for solving the BHS problem. In particular we show that:

— Any constant number of agents, even having unlimited memory, cannot solve
the BHS problem with less tokens than depicted in all cases of Table 1.

— Any number of agents less than that depicted in all cases of Table 1 cannot
solve the BHS problem even if the agents are equipped with any constant
number of tokens and they have unlimited memory.

Meanwhile our algorithms match the lower bounds, are time-optimal and since
they do not require any knowledge of the size of the ring or the number of agents,
they work in any anonymous synchronous ring, for any number of anonymous
identical agents (respecting the minimal requirements of Table 1). Due to space
limitations, proofs and formal algorithms are omitted and can be found in the
full version of the paper [1].

Resources necessary
and sufficient

Tokens are| Ring is |# agents|# tokens|References in the paper
Movable |-2niented | 4 1 Theorem 1, 2 and 5
Unoriented
Unmovable Oriented 4 2 Theorem 1, 3 and 6
Unoriented 5 2 Theorem 1, 4 and 7

Table 1. Summary of results for BHS in synchronous rings



2 Our Model

Our model consists of an anonymous, synchronous ring network with & > 2 iden-
tical mobile agents that are initially located at distinct nodes called homebases.
Each mobile agent owns a constant number ¢ of identical tokens which can be
placed at any node visited by the agent. The tokens are indistinguishable. Any
token or agent at a given node is visible to all agents on the same node, but
not visible to agents on other nodes. The agents follow the same deterministic
algorithm and begin execution at the same time and being in the same initial
state. In all our protocols a node may contain at most two tokens at the same
time. At any node of the ring, the ports leading to the two incident edges are
distinguishable and locally labelled (e.g. as 1 and 2) and an agent arriving at a
node knows the port-label of the edge through which it arrived. In the special
case of an oriented ring, the ports are consistently labelled as Left and Right
(i.e., all ports going in the clockwise direction are labelled Left). In an unori-
ented ring, the local port-labeling at a node is arbitrary and each agent in its first
step chooses one direction as Left and in every subsequent step, it translates
the local port-labeling at a node into Left and Right according to its chosen
orientation.

In a single time unit, each mobile agent completes one step which consists
of the Look, Compute and Move stages (in this order). During the Look stage,
an agent obtains information about the configuration of the current node (i.e.,
agents, tokens present at the node) and its own configuration (i.e., the port
through which it arrived and the number of tokens it carries). During the Com-
pute stage, an agent can perform any number of computations (i.e., computations
are instantaneous in our model). During the Move stage, the agent may put or
pick up a token at the current node and then either move to an adjacent node or
remain at the current node. Since the agents are synchronous they perform each
stage of each step at the same time. We call a token mowvable if it can be put on
a node and picked up later by any mobile agent visiting the node. Otherwise we
call the token unmovable in the sense that, once released, it can occupy only the
node where it was released.

Formally we consider a mobile agent as a finite Moore automaton A =
(S, S0, X, A, 6, ¢), where S is a set of ¢ > 2 states among which there is a specified
state Sy called the initial state; X C D x C, x C4 is the set of possible configura-
tions an agent can see when it enters a node; A C D x {put,pick,no action} is
the set of possible actions by the agent; § : S x X — § is the transition function;
and ¢ : § — A is the output function. D = {left,right,none} is the set of
possible directions through which the agent arrives at or leaves a node (none
represents no move by the agent). C,, = {0,1}7 x {0, 1,2} is the set of possible
configurations at a node, consisting of a bit string that denotes for each possible
state whether there is an agent in that state, and an integer that denotes the
number of tokens at that node (in our protocols at most 2 tokens reside at a node
at any time). Finally, C4 = {1,2} x {0, 1} is the set of possible configurations of
an agent, i.e., its orientation and whether it carries any tokens or not.



Notice that all computations by the agents are independent of the size n of
the network and the number £ of agents. There is exactly one black hole in the
network. An agent can start from any node other than the black hole and no
two agents are initially colocated®. Once an agent detects a link to the black
hole, it marks the link permanently as dangerous (i.e., disables this link). We
require that at the end of a black hole search scheme, all links incident to the
black hole (and only those links) are marked dangerous and that there is at
least one surviving agent. Note that our definition of a successful BHS scheme is
slightly different from the original definition, since we consider finite state agents.
The time complexity of a BHS scheme is the number of time units needed for
completion of the scheme, assuming the worst-case location of the black hole
and the worst-case initial placement of the scattered agents.

3 Impossibility Results

We first show that one unmovable token does not suffice to solve the problem.
This result provides a lower bound on the number of tokens necessary for solving

BHS.

Theorem 1. For any constant k, there exists no algorithm that solves BHS in
all oriented rings containing one black hole and k or more scattered agents, when
each agent is provided with only one unmowvable token. The result holds even if
the agents have unlimited memory.

We prove the above theorem by showing that no two agents can gather at the
same node, either before or after placing their token. Further, if an agent puts
down its only token, all other surviving agents would put down their respective
tokens at the same time. An adversary could select the size of the ring and the
initial locations of the agents in such a way that the tokens released by the agents
are equidistant apart from each other, and thus the locations of the tokens does
not convey any information about the location of the black hole.

We now derive some lower bounds on the number of agents necessary to solve
the BHS problem.

Lemma 1. During any execution of any BHS algorithm, if a link to the black
hole is correctly marked, then at least one agent must have entered the black hole
through this link.

To solve the BHS problem in a ring, both links leading to the black hole need
to be marked as dangerous. Thus, we immediately arrive at the following result.

Theorem 2. Two mobile agents carrying any number of movable (or unmouv-
able) tokens each, cannot solve the BHS problem in an oriented ring, even if the
agents have unlimited memory.

3 Since there is no symmetry breaking mechanism at a node, two agents starting at
the same node and in the same state, would behave as a single (merged) agent.



When the tokens are unmovable, even three agents are not sufficient to solve
BHS. If there are exactly three agents each having ¢ tokens (for some constant
t), we can show that no two agents can meet before at least one of the three
agents has fallen into the black hole. The agent that falls into the black hole
may have left at most ¢ tokens in its path, but this is not sufficient to indicate
the exact location of the black hole since the agents may be initially located at
an arbitrarily large distance from the black hole. Thus, the two surviving agents
cannot identify both links incident to the black hole (they may identify at most
one of these links).

Theorem 3. Three mobile agents carrying a constant number of unmovable to-
kens each, cannot solve the BHS problem in an oriented ring, even if agents have
unlimited memory.

In unoriented rings, even four agents do not suffice to solve the BHS problem
with unmovable tokens. In fact we show a stronger result that it is not even
possible to identify just one of the links to the black hole, using four agents.
An adversary can construct a large unoriented ring of odd size with an axis of
symmetry such that there are two agents on each side of the axis and the black
hole lies on the axis. In this case, at least two agents may fall into the black hole
(one from each side), before any two agents meet. Due to the symmetry of the
resulting configuration, the two surviving agents would not be able to gather at
a node (and none of them could, by itself, identify any link to the black hole).
Thus, we have the following result:

Theorem 4. In an unoriented ring, four agents carrying any constant number
of unmowable tokens each, cannot correctly mark any link incident to the black
hole, even when the agents have unlimited memory.

4 A BHS Scheme with Movable Tokens

We first consider the case when the agents have movable tokens. If each agent
has a movable token it can perform a cautious walk [9]. The Cautious-Walk
procedure consists of the following actions: Put the token at the current node,
move one step in the specified direction, return to pick up the token, and again
move one step in the specified direction (carrying the token). After each invo-
cation of the Cautious Walk, the agent looks at the configuration of the current
node* and decides whether to continue performing Cautious Walk.

We show that only three agents are sufficient to solve BHS, when they have
one movable token each. Algorithm 1 achieves this, both for oriented and un-
oriented rings. The procedure Mark-Link permanently marks as dangerous the
specified link.

Theorem 5. Algorithm 1 solves the BHS problem in an unoriented ring with
k > 3 agents having constant memory and one movable token each.

4 Recall that only the tokens put on the node are counted, not the tokens carried by
the agent itself.



Algorithm 1: BHS-Ring-1

/* BHS in any ring using k > 3 agents having 1 movable token each */

repeat CautiousWalk (Left);

until current node has a token and no agent or next link is marked Dangerous;
Mark-Link (Left);

repeat CautiousWalk (Right);

until current node has a token and no agent or next link is marked Dangerous;
Mark-Link (Right);

5 BHS Schemes with Unmovable Tokens

For agents having only unmovable tokens, we use the technique of Paired Walk
(called Probing in [3]) for exploring new nodes. The procedure is executed by
two co-located agents with different roles and the same orientation. One of the
agents called the leader explores an unknown edge while the other agent, called
follower waits for the leader. If the other endpoint of the edge is safe, the leader
immediately returns to the previous node to inform the follower and then both
move to this new node. On the other hand, if the leader does not return in two
time steps, the follower knows that the next node is the black hole.

In order to use the Paired Walk technique, we need to gather two agents
at the same node and then break the symmetry between them, so that distinct
roles can be assigned to each of them. The basic idea of our algorithms is the
following. We first identify the two homebases that are closest to the black hole
(one on each side). These homebases are called gates. The gates divide the ring
into two segments: one segment contains the black hole (thus, is dangerous); the
other segment contains all other homebases (and is safe). Initially all agents are
in the safe part and an agent can move to the dangerous part only when it passes
through the gate node. We ensure that any agent reaching a gate node, waits for
a partner agent in order to perform the Paired Walk procedure. We now present
two BHS algorithms, one for oriented rings and the other for unoriented rings.

5.1 Oriented Rings

In an oriented ring, all agents may move in the same direction (i.e., Left). During
the first phase of the algorithm each agent places a token on its homebase, moves
left until the next homebase (i.e., next node with a token) and then returns to
its homebase to put down the second token. During this phase one agent will
fall into the black hole and there will be a unique homebase with a single token
(a “gate” node) and the other homebases will have two tokens each. However,
the agents may not complete this phase of the algorithm at the same time. Thus
during the algorithm, there may be multiple homebases that contain a single
token. Whenever an agent reaches a “single token” node, it waits for a partner
and then performs Paired Walk in the left direction. One of the agents of a pair
(the leader) eventually falls into the black hole and the other agent (the follower)



marks the edge leading to the black hole and returns to the gate node, waiting
for another partner. When another agent arrives at this node, these two agents
perform Paired Walk in the opposite direction to find the other incident link to
the black hole. The algorithm sketched below ensures that exactly one leader
agent falls into the black hole from each side while performing Paired Walk.

Algorithm BHS-Ring-2:
During the algorithm, an agent a performs the following actions.

1.

Agent a puts a token and moves left until the next node with a token (state
CHECK-LEFT) and then returns to its homebase v (state GO-BACK) and
puts its second token.

If there are no other agents at v, the agent moves left until it reaches a node
containing exactly one token (state ALONE) and then waits for other agents
arriving at this node (state WAITING).

Otherwise, if there is a WAITING (or ALONE) agent b at node v, the agents
a and b form a (LEADER, FOLLOWER) pair.

If an ALONE agent meets a WAITING agent (and there are no other agents),
they form a (LEADER, FOLLOWER) pair.

A LEADER agent performs Paired Walk until it falls into the black hole or
it sees a link marked dangerous. In the latter case it moves to the gate node
(state SEARCHER) and participates in Paired Walk in the other direction
(state RIGHT-FOLLOWER).

A FOLLOWER agent performs Paired Walk until the corresponding leader
falls into the black hole or they see a link marked dangerous. In the former
case, the agent (state RIGHT-LEADER) moves to the gate node and waits
for a partner to start Paired Walk in the other direction.

When a WAITING agent a meets a RIGHT-LEADER, agent a becomes a
RIGHT-FOLLOWER and participates in the Paired Walk.

The algorithm has some additional rules to ensure that no two LEADERS are
created at the same node at the same time. No agent becomes a LEADER
if there is already another LEADER at the same node (In this case, the
agent become a SEARCHER and eventually a RIGHT-FOLLOWER, when
it reaches the gate node).

When the algorithm BHS-Ring-2 is executed by four or more agents starting
from distinct locations, the following properties hold:

Exactly one CHECK-LEFT agent falls into the black hole.

There is at least one LEADER agent and each LEADER has exactly one
FOLLOWER.

No two LEADER agents are created at the same time on the same node and
thus, two LEADERs can not reach the black hole at the same time.

There is exactly one RIGHT-LEADER agent and it falls into the black hole
through the edge on the left side of the black hole.

An agent in any state other than CHECK-LEFT, LEADER, or RIGHT-
LEADER, never enters the black hole.



Theorem 6. Algorithm BHS-Ring-2 correctly solves the black hole search prob-
lem in any oriented ring with 4 or more agents having constant memory and
carrying two unmovable tokens each.

5.2 Unoriented Rings

For unoriented rings, we need at least 5 agents with two unmovable tokens each.
The algorithm for unoriented rings with unmovable tokens is similar to the one
for oriented rings, except that each agent chooses an orientation. When two
agents meet and one has to follow the other, we assume that the state of the
agent contains information about the orientation of the agent (i.e., the port at
the current node considered by the agent to be Left). Thus, when two agents
meet at a node, one agent (e.g. the Follower) can orient itself according to the
direction of the other agent (e.g. the Leader).

Algorithm BHS-Ring-3:

Each agent puts one token on its homebase, goes on its left until it sees another
token and then returns to its homebase. Now the agent goes on its right until
it sees a token and then returns again to the homebase. The agent now puts its
second token on its homebase. During this operation exactly two agents will fall
into the black hole. Each surviving agent walks to its left until it sees a node
with a single token. At this point the agent has to wait, since either there is a
black hole ahead, or u is the homebase of an agent b that has not returned yet
to put its second token.

It may happen that two agents arrive at node u at the same time from
opposite directions. In this case, both agents can wait until another agent arrives.
Note that in this case, the ring is safe on both directions until the next homebase
and thus, an agent b (whose homebase is u) would arrive within a finite time.
When agent b arrives, only one of the waiting agents (the one having the same
orientation as b) changes to state LEADER and pairs-up with agent b. A similar
case occurs when an agent a is waiting and two agents (both ALONE) arrive from
different directions. Among these two agents, the one having the same orientation
as agent a pairs up with agent a and starts the Paired Walk procedure.

As before there can be multiple leader-follower pairs performing Paired Walkin
different parts of the ring. Note that no two LEADERSs can be created at the
same node at the same time. Thus, two LEADERs may not enter into the black
hole at the same time from the same direction. After the first LEADER, enters
the black hole from one direction, the corresponding FOLLOWER agent marks
the link as a dangerous link and thus, no other agents enter the black hole from
the same direction.

We ensure that each LEADER agent has exactly one FOLLOWER agent.
When the LEADER agent falls into the black hole, the corresponding FOL-
LOWER agent becomes the RIGHT-LEADER. The objective of the RIGHT-
LEADER is to discover the other link incident to the black hole. The RIGHT-
LEADER agent moves to the other end of the ring until the node with one token.
Since we assume there are at least five agents, there must be either an unpaired



agent at one of the gates or, there must be another (LEADER, FOLLOWER)
pair that has already detected and marked the other link leading to the black
hole. If the RIGHT-LEADER does not find a RIGHT-FOLLOWER at the first
gate, it performs a slow walk to the other gate and returns again to the former
gate. During the slow walk, it moves at one-third the speed of any other agent
(i.e., waits two steps after each move). This ensures that it will meet another
agent in at least one of the two gates. These two agents now starts the Paired
Walk procedure in the other direction.
The following properties can be verified:

1. Exactly two agents fall into the black hole before placing their second token.

2. There is at least one LEADER and each LEADER has a corresponding
FOLLOWER.

3. There is either one or two RIGHT-LEADER agents (with opposite orienta-
tions).

4. At m)ost one LEADER or RIGHT-LEADER enters the black hole from each
direction.

5. An agent in any other state never enters the black hole after placing its
second token.

Due to the above properties, we know that at most 4 agents may fall into the
black hole. We now show that both links to the black hole are actually discovered
and marked as dangerous, during the algorithm.

Theorem 7. Algorithm BHS-Ring-3 correctly solves the black hole search prob-
lem in unoriented ring with 5 or more agents having constant memory and car-
rying two unmovable tokens each.

6 Conclusions

In this paper, we solved the scattered BHS problem using the optimal num-
ber of agents and the optimal number of tokens per agent, while requiring only
constant-size memory. Thus, all resources used by our algorithms are indepen-
dent of the size of the network. Further, all the algorithms presented in the paper
have a time complexity of O(n) steps, so, they are asymptotically time-optimal
for BHS in a ring. The results of this paper show that the constant memory lim-
itation has no influence on the resource requirements since the (matching) lower
bounds hold even if the agents have unlimited memory. It would be interesting
to investigate if similar tight results hold for BHS in other network topologies.
We would also like to investigate the difference between ‘pure’ and ‘enhanced’
token model in terms of the minimum resources necessary for black hole search
in higher degree networks.
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