Skip to main content

Improving the Optimal Bounds for Black Hole Search in Rings

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6796))

Abstract

In this paper we re-examine the well known problem of asynchronous black hole search in a ring. It is well known that at least 2 agents are needed and the total number of agents’ moves is at least Ω(n logn); solutions indeed exist that allow a team of two agents to locate the black hole with the asymptotically optimal cost of Θ(n logn) moves.

In this paper we first of all determine the exact move complexity of black hole search in an asynchronous ring. In fact, we prove that 3nlog3 n − O(n) moves are necessary. We then present a novel algorithm that allows two agents to locate the black hole with at most 3nlog3 n + O(n) moves, improving the existing upper bounds, and matching the lower bound up to the constant of proportionality. Finally we show how to modify the protocol so to achieve asymptotically optimal time complexity Θ(n), still with 3nlog3 n + O(n) moves; this improves upon all existing time-optimal protocols, which require O(n 2) moves. This protocol is the first that is optimal with respect to all three complexity measures: size (number of agents), cost (number of moves) and time; in particular, its cost and size complexities match the lower bounds up to the constant.

This work has been partially supported by NSERC Discovery program and by Dr. Flocchini’s University Research Chair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time optimal algorithms for black hole search in rings. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 58–71. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 320–332. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cooper, C., Klasing, R., Radzik, T.: Locating and repairing faults in a network with mobile agents. Theor. Comput. Sci. 411, 1638–1647 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Czyzowicz, J., Dobrev, S., Královic, R., Miklík, S., Pardubská, D.: Black hole search in directed graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Czyzowicz, J., Kowalski, D.R., Markou, E., Pelc, A.: Complexity of searching for a black hole. Fundamenta Informaticae 71(2-3), 229–242 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Czyzowicz, J., Kowalski, D.R., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Prob. & Comp. 16(4), 595–619 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dobrev, S., Flocchini, P., Královic, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black hole search in common interconnection networks. Networks 47(2), 61–71 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dobrev, S., Flocchini, P., Královic, R., Santoro, N.: Exploring an unknown graph to locate a black hole using tokens. In: 5th IFIP Int. Conference on Theoretical Computer Science (TCS), pp. 131–150 (2006)

    Google Scholar 

  10. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in arbitrary networks: Optimal mobile agents protocols. Distributed Computing 19(1), 1–19 (2006)

    Article  MATH  Google Scholar 

  11. Dobrev, S., Flocchini, P., Santoro, N.: Improved bounds for optimal black hole search with a network map. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 111–122. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Dobrev, S., Flocchini, P., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dobrev, S., Královic, R., Santoro, N., Shi, W.: Black hole search in asynchronous rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pebbles. Algorithmica (2011)

    Google Scholar 

  15. Flocchini, P., Kellett, M., Mason, P., Santoro, N.: Map construction and exploration by mobile agents scattered in a dangerous network. In: 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10 (2009)

    Google Scholar 

  16. Glaus, P.: Locating a black hole without the knowledge of incoming link. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 128–138. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary networks. Theoretical Computer Science 384(2-3), 201–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Approximation bounds for black hole search problems. Networks 52(4), 216–226 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kosowski, A., Navarra, A., Pinotti, C.M.: Synchronization helps robots to detect black holes in directed graphs. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 86–98. Springer, Heidelberg (2009)

    Google Scholar 

  20. Královic, R., Miklík, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Shi, W.: Black hole search with tokens in interconnected networks. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balamohan, B., Flocchini, P., Miri, A., Santoro, N. (2011). Improving the Optimal Bounds for Black Hole Search in Rings. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22212-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22211-5

  • Online ISBN: 978-3-642-22212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics