Skip to main content

Distributed Coloring Depending on the Chromatic Number or the Neighborhood Growth

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6796))

Abstract

We deterministically compute a Δ + 1 coloring in time O5c + 2·(Δ5)2/c/(Δ1)ε + (Δ1)ε + log* n) and O(Δ5c + 2·(Δ5)1/cε + Δε + (Δ5)dlogΔ5logn) for arbitrary constants d,ε and arbitrary constant integer c, where Δ i is defined as the maximal number of nodes within distance i for a node and Δ: = Δ1. Our greedy algorithm improves the state-of-the-art Δ + 1 coloring algorithms for a large class of graphs, e.g. graphs of moderate neighborhood growth. We also state and analyze a randomized coloring algorithm in terms of the chromatic number, the run time and the used colors. If \(\Delta \in \Omega(\log^{1+1/\log^* n} n)\) and \(\chi\in O(\Delta/\log^{1+1/\log^* n} n)\) then our algorithm executes in time O(logχ + log* n) with high probability. For graphs of polylogarithmic chromatic number the analysis reveals an exponential gap compared to the fastest Δ + 1 coloring algorithm running in time \(O(\log \Delta+\sqrt{\log n})\). The algorithm works without knowledge of χ and uses less than Δ colors, i.e., (1 − 1/O(χ))Δ with high probability. To the best of our knowledge this is the first distributed algorithm for (such) general graphs taking the chromatic number χ into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Chlamtac, E.: New approximation guarantee for chromatic number. In: Symp. on Theory of computing(STOC) (2006)

    Google Scholar 

  2. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse graphs using nash-williams decomposition. In: PODC (2008)

    Google Scholar 

  3. Barenboim, L., Elkin, M.: Distributed (δ + 1)-coloring in linear (in δ) time. In: Symp. on Theory of computing(STOC) (2009)

    Google Scholar 

  4. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time. In: Symp. on Principles of distributed computing(PODC) (2010)

    Google Scholar 

  5. Blum, A.: New approximation algorithms for graph coloring. Journal of the ACM 41, 470–516 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bollobas, B.: Chromatic nubmer, girth and maximal degree. Discrete Math. 24, 311–314 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grable, D.A., Panconesi, A.: Fast distributed algorithms for Brooks-Vizing colorings. J. Algorithms 37(1), 85–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent sets in sparse and bounded-degree graphs. In: STOC (1994)

    Google Scholar 

  9. Karchmer, M., Naor, J.: A fast parallel algorithm to color a graph with delta colors. J. Algorithms 9(1), 83–91 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kuhn, F.: Weak Graph Coloring: Distributed Algorithms and Applications. In: Symp. on Parallelism in Algorithms and Architectures, SPAA (2009)

    Google Scholar 

  11. Kuhn, F., Wattenhofer, R.: On the Complexity of Distributed Graph Coloring. In: Symp. on Principles of Distributed Computing (PODC) (2006)

    Google Scholar 

  12. Linial, N.: Locality in Distributed Graph Algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and network decomposition problems. In: Symp. on Theory of computing, STOC (1992)

    Google Scholar 

  14. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set Algorithm for Growth-Bounded Graphs. In: Symp. on Principles of Distributed Computing(PODC) (2008)

    Google Scholar 

  15. Schneider, J., Wattenhofer, R.: A New Technique For Distributed Symmetry Breaking. In: Symp. on Principles of Distributed Computing(PODC) (2010)

    Google Scholar 

  16. Schneider, J., Wattenhofer, R.: Distributed Coloring Depending on the Chromatic Number or the Neighborhood Growth. In: TIK Technical Report 335 (2011), ftp://ftp.tik.ee.ethz.ch/pub/publications/TIK-Report-335.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneider, J., Wattenhofer, R. (2011). Distributed Coloring Depending on the Chromatic Number or the Neighborhood Growth. In: Kosowski, A., Yamashita, M. (eds) Structural Information and Communication Complexity. SIROCCO 2011. Lecture Notes in Computer Science, vol 6796. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22212-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22212-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22211-5

  • Online ISBN: 978-3-642-22212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics