Skip to main content

Improving Smart Card Security Using Elliptic Curve Cryptography over Prime Field (F p )

  • Conference paper

Part of the book series: Studies in Computational Intelligence ((SCI,volume 368))

Abstract

This paper describes the use of Elliptic Curve Cryptography (ECC) over Prime Field (F p ) for encryption and digital signature of smart cards. The concepts of ECC over prime field (F p ) are described, followed by the experimental design of the smart card simulation. Finally, the results are compared against RSA algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xiaoyun, W., Yiqun, L.Y., Hongbo, Y.: Finding Collisions in the Full SHA-1, pp. 1–20 (2005)

    Google Scholar 

  2. Rankl, W., Effing, W.: Smart card handbook, 3rd edn. John Wiley and Sons Ltd., Springer, Baffins Lane, England (2002)

    Google Scholar 

  3. Vincent, O.R., Folorunso, O., Akinde, A.D.: Improving e-payment security using Elliptic Curve Cryptosystem. Electronic Commerce Research 10(1), 27–41 (2010)

    Article  MATH  Google Scholar 

  4. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. IT-22(6), 644–654 (1976)

    MathSciNet  Google Scholar 

  5. Koblitz, N.: Elliptic Curve Cryptosystem. Mathematics of computation 48, 203–209 (1989)

    Article  MathSciNet  Google Scholar 

  6. Hendry, M.: Smart Card Security and Applications, 2nd edn. Artech House, Boston (2001)

    Google Scholar 

  7. Bart, P.: A survey of recent developments in cryptographic algorithms for smart cards. Computer Networks 51(9), 2223–2233 (2007)

    Article  MATH  Google Scholar 

  8. Johan, B., Preneel, B., Rijmen, B.: Cryptography on smart cards. Computer Networks 36(4), 423–435 (2001)

    Article  Google Scholar 

  9. Vanstone, S.: Elliptic Curve Cryptosystem-The Answer to Strong, Fast Public-Key Cryptography for Securing Constrained Environments. Information Security Technical Report 2(2), 78–87 (1997)

    Article  MathSciNet  Google Scholar 

  10. Berta, I., Mann, Z.: Implementing Elliptic Curve Cryptography on PC and Smart Card. Periodical Polytechnic Serial El.Eng. 46(2), 47–73 (2002)

    Google Scholar 

  11. Johnson, D., Menezes, M., Vanstone, S.: The Elliptic Curve Digital Signature Algorithm (ECDSA), vol. 1, pp. 36–63. Springer, Heidelberg (2001)

    Google Scholar 

  12. Hitchcock, Y., Dawson, Y., Clark, A., Montague, P.: Implementing an efficient elliptic curve cryptosystem over GF (p) on a smart card. ANZIAM J. 44, C354–C377 (2003)

    MathSciNet  Google Scholar 

  13. Mahdavi, R., Saiadian, A.: Efficient scalar multiplications for elliptic curve cryptosystems using mixed coordinates strategy and direct computations. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 184–198. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  15. Dabholkar, A., Yow, K.C.: Efficient Implementation of Elliptic Curve Cryptography (ECC) for Personal Digital Assistants (PDAs). Wireless Personal Communications: an International Journal of Verlag New York 29, 233–246 (2004)

    Article  Google Scholar 

  16. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography, 1st edn. Springer and Francis Group (2006)

    Google Scholar 

  17. Chaves, R., Kuzmanov, G., Sousa, L., Vassiliadis, S.: Cost-Efficient SHA Hardware Accelerators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 16, 990–1008 (2008)

    Article  Google Scholar 

  18. Avanzi, R.M., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Taylor, Springer (2004)

    Google Scholar 

  19. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. The Standards for Efficient Cryptography Group (SECG), SEC 1: Elliptic Curve Cryptography, version 2.0 (2000), http://www.secg.org/index.php?action=secg,docs_secg

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abdurahmonov, T., Yeoh, ET., Hussain, H.M. (2011). Improving Smart Card Security Using Elliptic Curve Cryptography over Prime Field (F p ). In: Lee, R. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2011. Studies in Computational Intelligence, vol 368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22288-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22288-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22287-0

  • Online ISBN: 978-3-642-22288-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics