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Abstract

A mixed graph is a graph with both directed and undirected edges. We present an
algorithm for deciding whether a given mixed graph on n vertices contains a feedback
vertex set (FVS) of size at most k, in time 2O(k)k!O(n4). This is the first fixed parameter
tractable algorithm for FVS that applies to both directed and undirected graphs.

Key words: fixed parameter tractable algorithms, feedback vertex set, mixed graph,
directed graph.

1 Introduction

For many algorithmic graph problems, the variant of the problem for directed graphs (di-
graphs) is strictly harder than the one for undirected graphs. In particular, replacing each
edge of an undirected graph by two arcs going in opposite directions yields a reduction from
undirected to directed graphs for most network design, routing, domination and independence
problems including Shortest Path, Longest Path and Dominating Set.

The Feedback Vertex Set problem is an exception to this pattern. A feedback vertex set
(FVS) of a (di)graph G is a vertex set S ⊆ V (G) such that G − S contains no cycles. In
the Feedback Vertex Set (FVS) problem we are given a (di)graph G and an integer k and
asked whether G has a feedback vertex set of size at most k. Indeed, if one replaces the
edges of an undirected graph G by arcs in both directions, then every feedback vertex set
of the resulting graph is a vertex cover of G and vice versa. Hence, this transformation can
not be used to reduce Feedback Vertex Set in undirected graphs to the same problem
in directed graphs, and other simple transformations do not seem possible either. Thus FVS
problems on undirected and directed graphs are different problems; one is not a generalization
of the other. This is reflected by the fact that the algorithms for the two problems differ
significantly across algorithmic paradigms, be it approximation [2, 1, 10], exact exponential
time algorithms [13, 14, 23] or parameterized algorithms [3, 7, 5, 6]. In this paper we bridge
the gap between the parameterized algorithms for Feedback Vertex Set by giving one
algorithm that works for both. More generally, we give the first algorithm for FVS in mixed
graphs, which are graphs that may contain both edges and arcs. Cycles in mixed graphs are
defined as expected: these may contain both edges and arcs, but all arcs should be in the
same direction (see Section 2 for precise definitions).

For a mixed graph G on n vertices and an integer k, our algorithm decides in time
2O(k)k! O(n4) whether G contains a FVS S with |S| ≤ k, and if so, returns one. Algorithms
of this type are called Fixed Parameter Tractable (FPT) algorithms. In general, the input for
a parameterized problem consists of an instance X and integer parameter k. An algorithm
for such a problem is an FPT algorithm if its time complexity is bounded by f(k) ·O (|X|c),
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where |X| denotes the input size of X, f(k) is an arbitrary computable function of k, and c
is a constant independent of k. The function f(k) is also called the parameter function of the
complexity, or of the algorithm. Since the first systematic studies on FPT algorithms in the
’90s (see e.g. [8]), this has become a very active area in algorithms. See [12, 20] for recent
introductions to the area.

Feedback Vertex Set is one of the classical graph problems and it was one of the
first problems to be identified as NP-hard [18]. The problem has found applications in many
areas, see e.g. [11, 6] for references, with one of the main applications in deadlock recovery
in databases and operating systems. Hence the problem has been extensively studied in
algorithms [2, 1, 10, 13, 14, 23, 25]. The parameterized complexity of Feedback Vertex
Set on undirected graphs was settled already in 1984 in a monograph by Melhorn [19]. Over
the last two decades we have seen a string of improved algorithms [3, 8, 9, 21, 17, 22, 15, 7, 5]
(in order of improving parameter function), and the current fastest FPT algorithm for the

problem has running time O
(

3.83kkn2
)

[4], where n denotes the number of vertices of the

input graph. On the other hand, the parameterized complexity of Feedback Vertex Set on
directed graphs was considered one of the most important open problems in Parameterized

Complexity for nearly twenty years, until an FPT algorithm with running time O
(

n44kk3k!
)

was given by Chen et al [6] in 2007. Interestingly, in [16], the permanent deadlock resolution
problem as it appears in the development of distributed database systems, is reduced to
feedback vertex set in mixed graphs. However, to the best of our knowledge, no algorithm
for FVS on mixed graphs has previously been described until now.

We now give an overview of the paper. We start by giving precise definitions in Section 2.
In Section 3 we give an sketch of the algorithm, and outline some the obstacles one needs
to overcome in order to design an FPT algorithm for FVS in mixed graphs. Our algorithm
has three main components: The frame of the algorithm is a standard iterative compression
approach described in Section 6. The core of our algorithm consists of two parts: the first
is a reduction from a variant of FVS to a multi-cut problem called Skew Separator. This
reduction, described in Section 4 is a non-trivial modification of the reduction employed for
FVS in directed graphs by Chen et al [6]. Our reduction only works on pre-conditioned
instances, we describe how to perform the necessary pre-conditioning in Section 5.

2 Preliminaries

We consider edge/arc labeled multi-graphs: formally, mixed graphs consist of a tuple G =
(V,E,A, ψ), where V is the vertex set, E is the edge set, and A is the arc set. The incidence
function ψ maps edges e ∈ E to sets {u, v} with u, v ∈ V , also denoted as uv = vu. Arcs
a ∈ A are mapped by ψ to tuples (u, v) with u, v ∈ V . In the remainder, we will often denote
mixed graphs simply by the tuple G = (V,E,A), and denote e = uv for edges e ∈ E with
ψ(e) = {u, v}, and a = (u, v) for arcs a ∈ A with ψ(a) = (u, v). Mixed graphs with A = ∅
will also denoted by G = (V,E). V (G), E(G) and A(G) denote the vertex, edge and arc set
respectively of the mixed graph G.

The operation of contracting an edge e = uv into a new vertex w consists of the following
operations: introduce a new vertex w, for every edge or arc with u or v as end vertex, replace
this end vertex by w, and delete u and v. Note that edge identities are preserved: ψ(e)
may for instance change from {x, u} to {x,w}, but e is still considered the same edge. Note
also that contractions may introduce parallel edges or arcs (pairs of edges or arcs e and f
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with ψ(e) = ψ(f)), and loops (edges e with ψ(e) = {w,w} or arcs a with ψ(a) = (w,w)).
Suppressing a vertex u that is incident with two edges uv and uw (v = w is allowed) means
deleting u (and the two incident edges) and adding an edge between v and w. We also allow
this operation to introduce parallel edges and loops.

For G = (V,E,A) and S ⊆ V or S ⊆ E ∪A, by G[S] we denote the subgraph induced by
S. In particular, G[E] is obtained by deleting all arcs and resulting isolated vertices. Deletion
of S is denoted by G − S. The out-degree d+(v) (in-degree d−(v)) of a vertex v ∈ V is the
number of arcs e ∈ A with ψ(e) = (v,w) (ψ(e) = (w, v)) for some w. If an arc (v,w) ((w, v))
exists, w is called an out-neighbor (in-neighbor) of v. Similarly, the edge degree d(v) is the
number of incident edges, and if vw ∈ E then w is an edge neighbor of v.

A walk of length l in a mixed graph G = (V,E,A) is a sequence v0, e1, v1, e2, . . . , el, vl
such that for all 1 ≤ i ≤ l, ei ∈ E ∪ A and ei = vi−1vi or ei = (vi−1, vi). This is also called
a (v0, vl)-walk. v0, vl are its end vertices, v1, . . . , vl−1 its internal vertices. A walk is a path
if all of its vertices are distinct. A walk v0, e1, v1, . . . , vl of length at least 1 is a cycle if the
vertices v0, . . . , vl−1 are distinct, v0 = vl, and all ei are distinct. (Note that this last condition
is only relevant for walks of length 2. Note also that if e is a loop on vertex u, then u, e, u is
also considered a cycle.) We will usually denote walks, paths and cycles just by their vertex
sequence v0, . . . , vl. In addition, we will sometimes encode paths and cycles by their edge/arc
set EP = {e1, . . . , el}.

3 Outline of the algorithm

In this section we give an informal overview of our algorithm, the details are given in the
following sections. Similar to many previous FVS algorithms [4, 5, 6, 7, 15], we will employ
the iterative compression technique introduced by Reed, Smith and Vetta [24]. Essentially,
this means that we start with a trivial subgraph of G and increase it one vertex at a time
until G is obtained, maintaining a FVS of size at most k + 1 throughout the computation.
Every time we add a vertex to the graph we perform a compression step. That is, given a
graph G′ with a FVS S of size k+1, the algorithm has to decide whether G′ has a FVS S′ of
size k. If the algorithm concludes that G′ has no FVS of size k, we can conclude that G does
not either, since G′ is a subgraph of G. In each compression step the algorithm loops over all
2k+1 possibilities for S ∩S′. For each choice of S′ ∩S we need to solve the following problem.
See Section 6 for a detailed description of the reduction from FVS to S-Disjoint FVS.

S-Disjoint FVS:
instance: A mixed graph G = (V,E,A) with a FVS S.
task: Find a FVS S′ of G with |S′| < |S| and S′ ∩S = ∅, or report that this does not exist.

A FVS S′ with |S′| < |S| and S′ ∩ S = ∅ is called a small S-disjoint FVS. Chen et al [6]
gave an algorithm for S-Disjoint FVS restricted to digraphs, which we will call S-Disjoint
Directed FVS. In Section 4 we show that with some care their algorithm can be extended to
solve the following generalization of the problem to mixed graphs. Let G be an undirected
graph with S ⊆ V (G). A vertex set S′ ⊆ V (G)\S is a multiway cut for S (in G) if there is
no (u, v)-path in G− S′ for any two distinct u, v ∈ S.

Feedback Vertex Set / Undirected Multiway Cut (FVS/UMC):
instance: A mixed graph G = (V,E,A) with a FVS S, and integer k.
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Figure 1: Graphs with a FVS S and small S-disjoint FVS S′, with many undirected S-paths.

task: Find a FVS S′ of G with |S′| ≤ k and S′ ∩ S = ∅, that is also a multiway cut for S in
G[E], or report that this does not exist.

A multiway cut S′ for G[E], S is also called an undirected multiway cut (UMC) for G,S.
The remaining question is: how can the FPT algorithm for FVS/UMC be used to solve
S-Disjoint FVS? Let G,S be an S-Disjoint FVS instance. Suppose there exists a small S-
Disjoint FVS S′ for the graph G. If we know which undirected paths between S-vertices do not
contain any S′-vertices, then these can be contracted, and S′ remains a FVS for the resulting
graph G∗. In addition, this gives a new vertex set S∗ consisting of the old S-vertices and the
vertices introduced by the contractions. This then yields an instance G∗, S∗ of FVS/UMC,
for which S′ is a solution. In Section 5 we prove this more formally. However, since we do
not know S′, it remains to find which undirected paths between S-vertices do not contain
S′-vertices. One approach would be to try all possible combinations, but the problem is that
the number of such paths may not be bounded by any function of k = |S|−1, see the example
in Figure 1 (a). (More complex examples with many paths exist, where the solution S′ is not
immediately obvious.) The example in Figure 1 (a) contains many vertices of degree 2, which
are simply reduced in nearly all fast undirected FVS algorithms [7, 25, 15, 4]. However in
our case we can easily add arcs to the example to prevent the use of (known) reduction rules,
see e.g. Figure 1 (b). Because there may be many such paths, and there are no easy ways to
reduce these, we will guess which paths do not contain S′-vertices in two stages: this way we
only have to consider 2O(k) possibilities, which is shown in Section 5.

4 An algorithm for FVS/UMC: reduction to Skew Separator

Let G be a digraph and S = s1, . . . , sl and T = t1, . . . , tl be mutually disjoint vertex sequences
such that all si ∈ V (G) have in-degree 0 and all ti ∈ V (G) have out-degree 0. A subset
C ⊆ V (G) disjoint from {s1, . . . , sl, t1, . . . , tl} is called a skew separator if for all i ≥ j, there
is no (si, tj)-path in G − C. An FPT algorithm to solve the Skew Separator problem
defined below is given as a subroutine in the algorithm for Directed Feedback Vertex
Set by Chen et al [6].

Skew Separator (SS):
instance: A digraph G, vertex sequences S = s1, . . . , sl and T = t1, . . . , tl where all si ∈
V (G) have in-degree 0 and all ti ∈ V (G) have out-degree 0, and an integer k.
task: Find a skew separator C of size at most k, or report that this does not exist.

Theorem 1 (Chen et al [6]) The Skew Separator problem on instances G,S,T , k with n =
|V (G)| can be solved in time 4kk ·O(n3).
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We will use this to give an algorithm for FVS/UMC, by extending the way SS is used
in [6] to give an algorithm for S-Disjoint Directed FVS. Let G, S, k be an instance of
FVS/UMC, with |S| = l. We define the relation ≺ on V (G)\S as follows: u ≺ v if and
only if there is a (v, u)-path in G − S but no (u, v)-path (and u 6= v). Observe that ≺ is
transitive and antisymmetric, and therefore a partial order on V (G)\S. A bijective function
σ : {1, . . . , l} → S is called a numbering of S. It is an arc-compatible numbering if there are
no arcs (σ(i), σ(j)) in G with i > j.

Construction For any numbering σ of S, the graph GSS(G,σ) is obtained fromG as follows:
For every i ∈ {1, . . . , l}: denote v = σ(i). let vw1, . . . , vwd be the edges incident with v,
ordered such that if wx ≺ wy then x < y. Since ≺ is a partial order, such an ordering exists
and is given by an arbitrary linear extension of ≺. Apply the following operations:

1. Add the vertices s1i , . . . , s
d+1
i and t1i , . . . , t

d+1
i .

2. For every arc (v, u) with u 6∈ S, add an arc (sd+1
i , u).

3. For every arc (u, v) with u 6∈ S, add an arc (u, t1i ).

4. For every edge vwj , add arcs (sji , wj) and (wj , t
j+1
i ).

5. Delete v.

After this is done for every v ∈ S, replace all remaining edges xy with two arcs (x, y) and
(y, x). This yields the digraph GSS(G,σ) and vertex sequences S = s11, . . . , s

d1+1
1 , s12, . . . , s

d2+1
2 ,

. . . . . . , sdl+1
l and T = t11, . . . , t

d1+1
1 , t12, . . . , t

d2+1
2 , . . . . . . , tdl+1

l , where di = d(σ(i)) is the edge
degree of σ(i). The integer k remains unchanged. GSS(G,σ),S,T , k is an instance for SS. The
following propositions are needed before we can prove a lemma on the relationship between
G,S and GSS(G,σ).

Proposition 2 Let G be an acyclic mixed graph. If G contains a (u, v)-path Puv and a
(v, u)-path Pvu, then Puv is an undirected path.

Proof: Suppose that Puv contains at least one arc. Let Puv = v0, e1, v1, e2, . . . , el−1, vl, with
all vi ∈ V and all ei ∈ E ∪A.

By induction one can show that if for some i, e1, . . . , ei−1 are also part of the path Pvu,
then these are all edges, and Pvu ends with the sub path vi−1, ei−1, . . . , v1, e1, v0. Therefore,
since Puv contains at least one arc, we can define i to be the smallest index such that ei
is not part of the path Pvu. Let j be the smallest index j ≥ i such that Pvu contains the
vertex vj (clearly such a j exists). Since Puv is a path, and Pvu ends with the the sub path
vi−1, ei−1, . . . , v1, e1, v0, it follows that vj appears before vi−1 in the sequence Pvu. So we can
consider the sub path of Puv from vi−1 to vj , and the sub path of Pvu from vj to vi−1. These
paths only share the vertices vi−1 and vj, so if one of them has length at least 2, combining
them would yield a cycle in G. If both have length 1, then combining them yields the walk
vi−1, ei, vi, f, vi−1, for some f ∈ E ∪ A. By choice of ei, we have ei 6= f , so this is again a
cycle in G, a contradiction. ✷

Proposition 3 Let C ⊆ V (G)\S be a FVS and UMC for the graph G = (V,E,A) and vertex
set S ⊆ V . Then a numbering σ of S exists such that for all 1 ≤ j < i ≤ |S|, there is no path
from σ(i) to σ(j) in G− C.
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Proof: Suppose that for some pair u, v ∈ S, G − C contains both a (u, v)-path Puv and a
(v, u)-path Pvu. Then Proposition 2 shows that Puv is undirected, which contradicts that C
is a UMC for G. So we can define the following relation AR on S: (u, v) ∈ AR if and only if
a (u, v)-walk exists in G−C. By the above argument, the digraph (S,AR) is acyclic (it is in
fact a partial order), so a numbering σ of S exists with the desired properties: This is given
by a topological ordering of the acyclic digraph (S,AR) / a linear extension of the partial
order (S,AR). ✷

Lemma 4 Let S be a FVS for a mixed graph G = (V,E,A), such that G[S] contains no edges
and G contains no cycles of length less than 3. Then C ⊆ V (G)\S is a FVS and UMC for G
and S if and only if there exists an arc-compatible numbering σ of S such that C is a skew
separator for GSS(G,σ),S,T , as constructed above.

Proof: Let C be a FVS and UMC for G,S. By Proposition 3, we can define a numbering
σ of S such that for all i > j, there is no path from σ(i) to σ(j) in G − C. Therefore, σ is
arc-compatible.

We now show that for this σ, C is a skew separator for GSS(G,σ),S,T . Let GSS =
GSS(G,σ). Suppose C is not a skew separator, so GSS−C contains a path P = sxi , v1, . . . , vl, t

y
j

with i > j, or with i = j and x ≥ y. Then P ′ = σ(i), v1, . . . , vl, σ(j) is (the vertex sequence
of) a walk in G − C; note that arcs of P may correspond to edges in P ′ but that the vertex
sequence still constitutes a walk. If i > j, then all vertices of the walk P ′ are different and
hence it is a (σ(i), σ(j))-path in G − C, contradicting the choice of σ. If i = j, then P ′ is a
closed walk in G − C of which all internal vertices are distinct. If P ′ has length at least 3,
then all edges/arcs of P ′ are distinct, so it is a cycle, again a contradiction. If P ′ has length
1, there is a loop incident with σ(i), contradicting the assumption that there are no cycles of
length less than 3. Finally suppose the walk P ′ has length 2, so P = sxi , v1, t

y
i . Since x ≥ y,

by the construction of GSS, this can only occur when x = d+1 or y = 1. Therefore G contains
an arc (σ(i), v1) or an arc (v1, σ(i)). It follows that distinct arcs/edges e and f can be chosen
such that P ′ = σ(i), e, v1, f, σ(i) is a cycle of length 2 in G, again a contradiction. Therefore,
C is a skew separator for GSS.

Let C be a skew separator for GSS = GSS(G,σ), for some arc-compatible numbering σ
of S. We prove that C is a FVS and UMC for G,S. Suppose G[E] − C contains a (u, v)-
path P = u, v1, . . . , vl, v with distinct u, v ∈ S, and no internal vertices in S. Let u = σ(i)
and v = σ(j). Since we assumed that G[S] contains no edges, P has length at least 2.
Since all edges not incident with S are replaced with arcs in both directions during the
construction of GSS, for some x, y this yields both a path sxi , v1, . . . , vl, t

y+1
j in GSS −C and a

path syj , vl, . . . , v1, t
x+1
i in GSS −C. One of these paths contradicts that C is a skew separator

(depending on whether i < j or j < i). This shows that C is a multiway cut for G[E] and S.
Next, suppose G − C contains a cycle K. Since S is a FVS for G, K contains at least

one vertex of S. If K contains at least two vertices of S, then K contains a path P from
σ(i) to σ(j) for some i > j, with no internal vertices in S. Let P = σ(i), v1, . . . , vl, σ(j).
P has length at least two, since σ is arc-compatible, and there are no edges in G[S]. Then
P ′ = sxi , v1, . . . , vl, t

y
j is a path in GSS − C for some x, y, contradicting that C is a skew

separator.
So now we may suppose thatK contains exactly one vertex of S, w.l.o.g. K = σ(i), v1, . . . , vl, σ(i).

Every cycle in G has length at least 3, so v1 6= vl. In the case that (σ(i), v1) ∈ A, K yields a
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path P = sd+1
i , v1, . . . , vl, t

y
i in GSS −C for some y ≤ d+ 1, a contradiction (here d = d(σ(i))

is the edge degree of σ(i)). On the other hand, if (vl, σ(i)) ∈ A, then K yields a path
P = sxi , v1, . . . , vl, t

1
i in GSS − C for some x ≥ 1, a contradiction. So finally suppose that

σ(i)v1 ∈ E and σ(i)vl ∈ E are both edges. Then K gives a path sxi , v1, . . . , vl, t
y+1
i in GSS −C

for some x, y. Since C is a skew separator, x ≤ y. Since v1 6= vl, x < y. Therefore vl 6≺ v1.
The cycle K shows that there is a (v1, vl)-path P in G − S. Then, by the definition of ≺,
there must also be a (vl, v1)-path in G − S. But this can only happen if P is an undirected
path (Proposition 2). This shows that by reversing the cycle K, we again obtain a cycle
σ(i), vl, vl−1, . . . , v1, σ(i) in G−C, and therefore a path syi , vl, vl−1, . . . , v1, t

x+1
i in GSS −C, a

contradiction (since x < y). This concludes all cases, so C is a FVS for G.
This concludes the proof that C is a FVS and UMC for G,S. ✷

Theorem 5 FVS/UMC on instances G,S, k with n = |V (G)|, k ≥ 1 and l = |S| can be
solved in time O(n3) · l! 4kk.

Proof: We may return ‘NO’ immediately if G[S] contains edges, or if G[S] contains cycles.
The latter holds in particular if G contains loops. So suppose none of this holds. Then if G
contains a cycle C of length 2, C must contain one S-vertex and one non-S-vertex v. Every
FVS/UMC solution contains v, so we may reduce the instance by deleting v and decreasing k
by one, to obtain an equivalent instance. Furthermore, if any vertex u /∈ S has an edge to at
least two distinct vertices in S then any undirected multiway cut for S must contain u. Hence
we may reduce the instance by deleting u and decreasing k by one. So we may now assume
w.l.o.g. that G contains no cycles of length less than 3 and no two vertices in S have edges to
the same vertex in V (G) \S. To find a FVS and UMC, we try all arc-compatible numberings
σ of S, and test whether GSS(G,σ) has a skew separator of size at most k. There are at most
l! such numberings. Return such a skew separator C if it is found for any arc-compatible
numbering σ, or ‘NO’ otherwise. By Lemma 4, this correctly solves FVS/UMC. Note that
GSS(G,σ) can be constructed in time O(n3). Since no two vertices in S have edges to the
same vertex in V (G) \ S, GSS(G,σ) has at most 3n vertices. Thus, for every choice of σ, the
complexity is bounded by O(n3) · 4kk (Theorem 1). ✷

5 An algorithm for S-Disjoint FVS: contracting paths

In this section we give an FPT algorithm for S-Disjoint FVS, by reducing it to FVS/UMC.
Throughout this section, let G = (V,E,A) be a mixed graph, and S be a FVS for G. For a
given mixed graph G = (V,E,A) and FVS S we define an undirected graph bb(G,S) (short
for backbone) together with a mapping PG(G,S) from the edges of bb(G,S) to edge sets
of G as follows. See also Figure 2. Start with G[E], and for all e ∈ E, set PG(e) = {e}.
First, iteratively delete all vertices of (edge) degree at most 1 that are not in S. Next,
iteratively suppress all degree 2 vertices that are not in S, until a graph is obtained in
which every non-S-vertex has degree at least 3. (Recall that suppressing vertices may yield
multi-edges.) Whenever a degree two vertex u with neighbors v and w is suppressed, we set
PG(vw) = PG(uv) ∪ PG(uw) for the new edge vw. This yields the undirected multi-graph
bb(G,S), and mapping PG(G,S).

Let bb = bb(G,S) and PG = PG(G,S). Since during the construction of bb, only non-
S-vertices are suppressed, the property that every cycle contains an S-vertex is maintained,
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: S′

: S

: S′′

bb(G,S), BrFVS, EFVS:

G[E], Br, S′:DFVS instance G,S, solution S′:

FVS/UMC instance G∗, S∗:

: Br

: S

: BrFVS

: EFVS

: bb(G,S)− BrFVS − EFVS

Delete and suppress degree ≤ 2

Delete arcs

: S∗

: Br

: S

: S′

: ENoFVS

Contract ENoFVS, delete BrFVS

Figure 2: The graphs and sets defined in Section 5.

so S is a FVS for bb(G,S). Non-S-vertices of G that are part of bb are called the branching
vertices of G (with respect to S), notated by Br(G,S). Let Br = Br(G,S).

Proposition 6 Let bb = bb(G,S), for a mixed graph G = (V,E,A). There exists a path
(cycle) P = v0, e1, v2, . . . , el, vl in G[E] with v0, vl ∈ S ∪ Br, and no other vertices in S ∪ Br,
if and only if there is a non-loop edge e = v0vl ∈ E(bb) (resp. a loop e ∈ E(bb) on v0 = vl),
with PG(e) = {e1, . . . , el}.

Proof: Consider the case where P is a path. The cycle case is similar. During the construction
of bb, none of the internal vertices of P will receive degree 1. So since they are not in
S ∪ Br = V (bb), they are all suppressed. Regardless of the order in which this happens, this
results in an edge e = v0vl ∈ E(bb) with PG(e) = {e1, . . . , el}.

Now we prove the other direction. A simple induction argument shows that at any time
during the construction of bb, for all (non-loop) edges e, the edge set PG(e) induces a path P
in G, where all internal vertices of P have been suppressed earlier. The statement follows. ✷

The paths P in G as in Proposition 6 (undirected paths with end vertices in S∪Br and no
internal vertices in S∪Br) are called connection paths of G (with respect to S). Proposition 6
will be used often (implicitly) in the proofs below, for instance as follows. Let S′ ⊆ V \S.
Define BrFVS = Br∩S′, and define EFVS ⊆ E(bb) to be those edges uv ∈ E(bb) with u, v 6∈ S′,
but where some edge in PG(uv) is incident with S′. Then we refer to the above proposition
to show that G[E] − S′ contains a cycle if and only if bb − BrFVS − EFVS contains a cycle.
(Observe also that two connection paths can not share internal vertices.)

Lemma 7 Let S be a FVS of a mixed graph G = (V,E,A) with k = |S| − 1, and let S′ be a
small S-disjoint FVS for G,S. Then G has at most 3k branching vertices with respect to S,
and G has at most 3k connection paths with no vertices in S′.

Proof: Let Br = Br(G,S), bb = bb(G,S), and PG = PG(G,S). Denote by EFVS⊆ E(bb)
the set of edges e for which the path PG(e) in G[E] has an internal vertex in S′, but no end
vertices in S′. Let BrFVS= Br ∩ S′.

8



Recall that bb − S contains no cycles. Therefore, it is possible to orient all edges of bb
such that every non-S-vertex has at most one in-neighbor (for every tree in the forest bb−S,
choose an arbitrary root, and orient all edges away from the root. Orient all other edges
towards S-vertices). In the rest of the proof, out-degrees, denoted by d+(v), will refer to such
an orientation of bb. Now, |V (bb)| = |Br| + |S|. Let GU = (VU , EU ) = bb − BrFVS − EFVS.
Since S′ is a FVS of G, GU contains no cycles (Proposition 6), so

|EU | ≤ |VU | − 1 = |Br|+ |S| − |BrFVS| − 1. (1)

Since vertices in Br have out-degree at least 2 we obtain: 2|Br\BrFVS| − |BrFVS| − |EFVS| ≤
∑

v∈Br\BrFVS
d+(v) − |BrFVS| − |EFVS| ≤ |EU |. The last inequality holds since every non-S

vertex, in particular every BrFVS-vertex, has in-degree at most 1. So deleting a BrFVS-vertex
removes at most one arc that counts towards the out-degree of another vertex. Substituting
Inequality 1 for |EU | then yields:

|Br| ≤ 2|BrFVS|+ |EFVS|+ |S| − 1. (2)

Since |BrFVS|+|EFVS| ≤ |S′|, the above inequality immediately yields |Br| ≤ 2|S′|+|S|−1 ≤ 3k,
proving the first statement of the lemma. Secondly, combining Inequality 1 with Inequality 2
yields that |EU | ≤ |Br|+ |S| − |BrFVS| − 1 ≤ |BrFVS|+ |EFVS|+2|S| − 2 ≤ |S′|+2|S| − 2 ≤ 3k.
Since there are |EU | connection paths without S′-vertices, this concludes the proof. ✷

Algorithm 1 shows the algorithm for solving S-Disjoint FVS. Recall that the ‘continue’
statement continues with the next iteration of the smallest enclosing for- (or while-) loop, so
it skips the remainder of the current iteration.

Algorithm 1 An algorithm for S-Disjoint FVS

INPUT: A mixed graph G = (V,E,A) with FVS S, and integer k = |S| − 1.
OUTPUT: a small S-disjoint FVS S′ for G,S, or ‘NO’ if this does not exist.
1. bb := bb(G,S), PG := PG(G,S) and Br := Br(G,S).
2. if |Br| > 3k then return ‘NO’
3. for all BrFVS ⊆ Br with |BrFVS| ≤ k:
4. k′ := k − |BrFVS|.
5. G′ := bb(G,S)− BrFVS.
6. if |E(G′)| > 3k + k′ then continue
7. for all EFVS ⊆ E(G′) with |EFVS| ≤ k′:
8. if G′ − EFVS contains a cycle then continue
9. ENoFVS := ∪e∈E(G′)\EFVS

PG(e)
10. G∗ := G− BrFVS, S

∗ := S.
11. while there is an edge uv ∈ E(G∗) ∩ENoFVS with v ∈ S∗:
12. Change G∗ by contracting e into a new vertex w
13. S∗ := (S∗\{u, v}) ∪ {w}
14. if G∗ contains no loops incident with S∗-vertices and

there is a FVS and UMC S′′ for G∗, S∗ with |S′′| ≤ k′, then
15. return S′ := S′′ ∪ BrFVS

16. return ‘NO’

Before analyzing the complexity of Algorithm 1, we first give variants of often used bounds
on sums of binomial coefficients. Proofs are included for completeness.

Proposition 8 For all c > 2,
∑k

i=0

(ck
i

)

< c−1
c−2

(ck
k

)

.
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Proof: For all i ≤ k,

(

ck

i− 1

)

/

(

ck

i

)

=
i!(ck − i)!

(i− 1)!(ck − i+ 1)!
=

i

ck − i+ 1
≤ i

(c− 1)i+ 1
<

1

c− 1
,

So we may write

k
∑

i=0

(

ck

i

)

<

(

ck

k

)

k
∑

i=0

(

1

c− 1

)k−i

<
1

1− 1
c−1

(

ck

k

)

=
c− 1

c− 2

(

ck

k

)

.

✷

Proposition 9 For all constants c > 1,
(ck
k

) ∈ O

(

(

cc

(c−1)c−1

)k
)

.

Proof: By Stirling’s approximation n! ∈ Θ(nne−n
√
n),

(

ck

k

)

∈ O

(

(ck)cke−ck
√
ck

((c− 1)k)(c−1)ke−(c−1)k
√

(c− 1)k kke−k
√
k

)

⊂

O

(

(ck)ck

((c− 1)k)(c−1)kkk

)

= O





(

cc

(c− 1)c−1

)k


 .

✷

Theorem 10 On an instance G = (V,E,A), S with n = |V | and k = |S| − 1, Algorithm 1

correctly solves S-Disjoint FVS in time O
(

k(k + 1)! 47.5k n3
)

.

Proof: We first show that the correct answer is returned. Let bb = bb(G,S), PG = PG(G,S)
and Br = Br(G,S). Consider the case that a set S′ = S′′ ∪ BrFVS is returned in Line 15. Let
BrFVS, EFVS and G′ = bb − BrFVS refer to these sets/graph as they are in the corresponding
iteration of the for-loops. Clearly, |S′| ≤ k′ + |BrFVS| = k, and S′ ∩ S = ∅. So to show
that S′ is a small S-disjoint FVS of G, it only remains to verify that it is a FVS for G. Let
ECONTR be the edges of G that are contracted to obtain G∗ (in Line 12), so ECONTR ⊆ ENoFVS,
with ENoFVS = ∪e∈E(G′)\EFVS

PG(e) (Line 9). All edges of ECONTR are part of connection
paths. Suppose G − S′ contains a cycle C, encoded by its edge and arc set (so C ⊆ E ∪A).
If C consists only of edges that are in ECONTR, then G′ − EFVS contains a cycle as well
(Proposition 6). But then the algorithm would have continued to the next for-loop iteration
in Line 8, a contradiction. So contracting all edges of C that are in ECONTR does not contract
C into a single vertex, but yields a cycle C ′ in G∗: note that C contains no vertices of BrFVS

so it does not matter that these vertices are deleted for the construction of G∗. Since C ′ also
contains no vertices of S′′ ⊆ S′, this contradicts that S′′ is a FVS of G∗. This concludes the
correctness proof in case a positive answer is returned.

Now suppose a small S-disjoint FVS S′ exists for G. We will show that then a positive
answer is returned (in Line 15). First, by Lemma 7, |Br| ≤ 3k, so Line 2 does not terminate by
returning ‘NO’. Let BrFVS = S′ ∩ Br. Consider the iteration of the first for-loop where BrFVS

is considered. Let EFVS be the edges of bb(G,S) that correspond to connection paths with
no end vertices in S′ but at least one internal vertex in S′. Then |EFVS|+ |BrFVS| ≤ |S′| ≤ k,
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so |EFVS| ≤ k′ = k − |BrFVS|. Let G′ = bb − BrFVS. All edges e ∈ E(G′)\EFVS correspond
to connection paths PG(e) with no vertices in S′, so by Lemma 7, |E(G′)\EFVS| ≤ 3k, and
therefore |E(G′)| ≤ 3k + k′. This shows that in Line 6 the algorithm will not continue to the
next for-loop iteration, and that therefore EFVS will be considered in the second for-loop. A
cycle in G′−EFVS would correspond to a cycle in G−S′ (Proposition 6), so the algorithm also
does not skip the remainder of the for-loop iteration in Line 8. Therefore, in Line 10–13, the
graph G∗ and vertex set S∗ is constructed from G by deleting BrFVS and contracting edges in
ENoFVS, which are part of connection paths and not incident with vertices in S′. We will now
argue that S′′ = S′\BrFVS is a FVS and UMC for G∗ and S∗, so a positive answer is returned
in Line 15. (Clearly, |S′′| ≤ k − |BrFVS| = k′.)

Firstly, S′ is a FVS for G, so S′′ = S′\BrFVS is a FVS for G − BrFVS. This shows that
when G∗ is constructed in Line 10, S′′ is a FVS for it. Contracting (undirected!) edges that
are not incident with S′′-vertices maintains this property, so after the while-loop in Line 11
has terminated, S′′ is still a FVS for G∗.

Secondly, we show that S′′ is a UMC for G∗. We prove that throughout the while-loop
(Line 11), the following invariant holds:

Property 1: For every undirected path P ⊆ E(G∗) with end vertices in S∗ and no vertices in
S′′, P ⊆ ENoFVS.

Every undirected path P between two S-vertices in G consists of a sequence P 1, . . . , P l of
connection paths. If P is a path in G−BrFVS, then all of these paths P i correspond to edges
of the graph G′ = bb − BrFVS as constructed in Line 5, i.e. P i = PG(e) for some e ∈ E(G′).
If P is not incident with vertices in S′′ = S′\BrFVS, then these paths P i correspond to edges
e ∈ E(G′)\EFVS. This proves that P ⊆ ENoFVS = ∪e∈E(G′)\EFVS

PG(e), so initially the property
holds. Next, observe that contracting an edge e ∈ ENoFVS incident with an S∗-vertex but not
with an S′′ vertex, and adding the resulting vertex to S∗ again (Line 13), does not destroy
the property. We conclude that, after the while-loop (Line 11) has terminated, there are no
undirected paths in G∗ between two S∗-vertices that contain no S′′-vertices. This shows that
S′′ is a UMC for the resulting G∗ and S∗.

We conclude that if a small S-disjoint FVS S′ exists, then in at least one of the iterations
of the for-loops, a positive answer will be returned in Line 15. This concludes the correctness
proof of the algorithm.

Now we will consider the complexity of the algorithm. First, consider the parameter
function. By Line 2, |Br| ≤ 3k, so the number of iterations of the first for-loop is at most

k
∑

i=0

(

3k

i

)

.

Here i = |BrFVS|. Let k′ = k − i. By Line 6, |E(G′)| ≤ 3k + k′ holds for G′ whenever the
second for-loop is entered, so there are at most

k′
∑

j=0

(

3k + k′

j

)

=
k−i
∑

j=0

(

4k − i

j

)

<
3

2

(

4k − i

k − i

)

choices of EFVS (Proposition 8). So we may bound the total number of iterations of the second
for-loop by

3

2

k
∑

i=0

(

3k

i

)(

4k − i

k − i

)

.
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At most once for every iteration, a FVS/UMC problem on the instance G∗, S∗, k′ is solved,
which can be done with parameter function |S∗|! · 4k′k′ (Theorem 5). Initially (Line 10),
|S∗| = |S| = k + 1. Throughout the while-loop, the size of S∗ does not increase. Therefore
the parameter function of Algorithm 1 is bounded by a constant times

k
∑

i=0

(

3k

i

)(

4k − i

k − i

)

(k + 1)!4k−i max{1, k − i} ≤

k(k + 1)!
k
∑

i=0

(3k)!

i!(3k − i)!

(4k − i)!

(k − i)!(3k)!
4k−i =

k(k + 1)!
k
∑

i=0

(

k

i

)(

4k − i

k

)

4k−i <

k(k + 1)!

(

4k

k

)

k
∑

i=0

(

k

i

)

4k−i ∈

O
(

k(k + 1)! 9.5k (1 + 4)k
)

= O
(

k(k + 1)! 47.5k
)

.

For the last line, we used Proposition 9, and 44

33 = 256
27 < 9.5.

Now we prove that the polynomial part of the complexity (the complexity for fixed k) can
be bounded by O(n3), where n = |V |. Let m = |E| + |A|. Although we allow multi-graphs,
w.l.o.g. we may assume m ∈ O(n2). Graphs are encoded with adjacency lists in such a way
that edges can be deleted in constant time, vertices v can be deleted in time O(dT (v)), and
edges uv can be contracted in time O(dT (u) + dT (v)), where dT (v) = d(v) + d+(v) + d−(v)
denotes the total number of arcs and edges incident with v. For most steps in the algorithm
(that we did not already attribute to the parameter function) it can now be verified that they
can be done in constant time or linear time O(n + m) ⊆ O(n2). (Lines 1, 5, 8, 9 and 10
require linear time.) Only Line 14 and the while-loop in Line 11 need further consideration.
If the while-loop of Line 11 is entered, then G′ −EFVS contains no cycles (Line 8). Therefore
G[ENoFVS] contains no cycles (Proposition 6), and thus the while-loop iterates at most n − 1
times. Each iteration requires at most time O(m), which gives a complexity of O(nm) ⊆
O(n3). Evaluating in Line 14 whether a FVS and UMC exists takes time O(n3) as well for

fixed k (Theorem 5). This proves that the total complexity is O
(

k(k + 1)! 47.5k n3
)

. ✷

6 An algorithm for FVS: iterative compression

We now show how the iterative compression technique gives an algorithm for FVS. This
is similar to many previous FVS algorithms [4, 5, 6, 7, 15], but we state the details for
completeness. Algorithm 2 shows how to solve the FVS Compression Problem: given a FVS
of size k + 1 for a mixed graph G, decide if there exists a FVS of size at most k, and if so,
return one.

Theorem 11 If S is a FVS of G = (V,E,A) with |S| = k + 1, then Algorithm 2 decides in

time O
(

(k + 1)!k247.5k n3
)

whether G admits a FVS of size at most k.

12



Algorithm 2 An algorithm for FVS compression

INPUT: A mixed graph G = (V,E,A) with a FVS S, k = |S| − 1.
OUTPUT: A FVS S′ of G with |S′| ≤ k, or ‘NO’ if this does not exist.

1. for all SDEL ⊆ S with |SDEL| ≥ 1:
2. SKEEP := S\SDEL, G

′ = G− SKEEP.
3. if G′ has an SDEL-Disjoint FVS SNEW with |SNEW| ≤ |SDEL| − 1 then
4. return SNEW ∪ SKEEP

5. return ‘NO’

Proof: First suppose that a set S′ = SNEW ∪ SKEEP is returned in Line 4. Then |S′| ≤
|SDEL|−1+ |SKEEP| = |S|−1 = k. If a cycle C of G contains an SKEEP-vertex, then it contains
an S′-vertex. Otherwise, it is a cycle of G′, and thus it contains a vertex in SNEW ⊆ S′. This
shows that S′ is a FVS of size at most k.

Now suppose that G contains a FVS S′ with |S′| ≤ k. Let SKEEP = S′ ∩ S, SDEL = S\S′

and SNEW = S′\S. Since SNEW = S′\SKEEP, SNEW is a FVS of G′ = G − SKEEP, of size at
most |SNEW| = |S′| − |SKEEP| ≤ k− |S\SDEL| = k− |S|+ |SDEL| = |SDEL| − 1. This shows that
in the iteration where SDEL is considered, a positive answer is returned. This concludes the
correctness proof.

Now we consider the complexity. If |SDEL| = j + 1, then deciding the condition in Line 3
takes time O

(

j(j + 1)! 47.5j n3
)

(Theorem 10). There are
∑k

j=0

(k+1
j+1

)

= k + 1 +
∑k

j=1

(k+1
j+1

)

choices of SDEL to consider in the for-loop. This yields a complexity in the order of

k
∑

j=1

(

k + 1

j + 1

)

j(j + 1)! 47.5j n3 = (k + 1)! n3
k
∑

j=1

j47.5j

(k − j)!
< (k + 1)!k247.5k n3.

✷

Theorem 12 In time O
(

(k + 1)!k247.5k n4
)

, it can be decided whether a mixed graph G =

(V,E,A) with |V | = n contains a FVS S with |S| ≤ k.

Proof: Let V = {v1, . . . , vn}, and for all 1 ≤ i ≤ n, let Gi = G[{v1, . . . , vi}]. Clearly, Gk

has a FVS of size at most k. In addition, for every k ≤ i ≤ n − 1, if S is a FVS for Gi

with |S| ≤ k, then S′ = S ∪ {vi+1} is a FVS for Gi+1 with |S′| ≤ k + 1. This shows that,
in order to decide whether G = Gn admits a FVS of size k, we only need to solve the FVS
Compression Problem at most n− k times, once for every k+1 ≤ i ≤ n. By Theorem 11, the

total complexity then becomes (n− k) ·O
(

(k + 1)!k247.5k n3
)

⊆
(

(k + 1)!k247.5k n4
)

. ✷

Remark: By abusing the O-notation, the complexity of our algorithm can also be bounded by

O
(

k! 47.5k n4
)

: Observe that by rounding less generously in the proof of Theorem 10, the

complexity of our FVS algorithm becomes O
(

(k + 1)!k247.41k n4
)

. Since k3 ∈ O
(

(1 + ǫ)k
)

holds for every ǫ > 0, this yields

O
(

(k + 1)!k247.41k n4
)

⊆ O
(

k!47.5k n4
)

.
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