
Streaming and Dynamic Algorithms

for Minimum Enclosing Balls in High

Dimensions

by

Vinayak Pathak

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Vinayak Pathak 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

At SODA’10, Agarwal and Sharathkumar presented a streaming algorithm for approx-

imating the minimum enclosing ball of a set of points in d-dimensional Euclidean space.

Their algorithm requires one pass, uses O(d) space, and was shown to have approximation

factor at most (1 +
√

3)/2+ ≈ 1.3661. We prove that the same algorithm has approxi-

mation factor less than 1.22, which brings us much closer to a (1 +
√

2)/2 ≈ 1.207 lower

bound given by Agarwal and Sharathkumar.

We also apply this technique to the dynamic version of the minimum enclosing ball

problem (in the non-streaming setting). We give an O(dn)-space data structure that can

maintain a 1.22-approximate minimum enclosing ball in O(d log n) expected amortized

time per insertion/deletion.

Finally, we prove that a 1 + ε approximation to the problem can be found in 0.5+δ
ε

passes over the input, for an arbitrarily small constant δ, which is an improvement over

the previous result that used b2/εc passes.

v

Acknowledgements

I thank Prof Timothy Chan for being an excellent supervisor. It has been a great learning

experience.

vii

Table of Contents

List of Figures xi

1 Outline 1

2 Streaming algorithms 3

2.1 Examples . 4

2.1.1 Counting . 5

2.1.2 Missing number . 5

2.1.3 Number of distinct items . 5

2.1.4 General frequency moments . 7

2.2 Streaming algorithms for geometric problems 7

2.2.1 Core-sets . 7

2.2.2 Merge-and-reduce . 11

2.2.3 Doubling . 13

3 Minimum enclosing ball in streaming 17

3.1 Introduction . 17

ix

3.2 Core-set in high dimensions . 18

3.3 Coreset in high dimensions in streaming? 19

3.4 Agarwal and Sharathkumar’s algorithm . 19

3.5 An improved analysis . 21

3.5.1 Proof of factor 4/3 . 23

3.5.2 Proof of factor 16/13 . 24

3.5.3 Proof of factor 1.22 . 25

4 Dynamic MEB 29

4.1 Preliminaries . 29

4.2 A new dynamic algorithm . 31

5 Miscellaneous Results and Final Remarks 35

5.1 Multiple-pass streaming algorithms . 35

5.2 Open problems . 36

APPENDICES 39

A C code for proving a factor of 1.22 41

B Maple code for proving that doing better than 1.219 needs new ideas 47

References 49

x

List of Figures

3.1 Proof of Lemma 2 . 22

xi

Chapter 1

Outline

In this thesis, we study the problem of finding the ball of minimum radius that encloses a

given set of points in high dimensions. Our results are based around two different but not

unrelated themes—streaming algorithms and dynamic algorithms.

Streaming algorithms [22, 5] are algorithms where the input is provided in a stream.

The algorithm is allowed to examine it a small number of times (called passes) and do

some computation on it. In addition, the space available is restricted to be sublinear. This

is natural because with linear space available, the algorithm would just store all of the

input in its memory in one pass and thus the streaming model of computation would be

no different from the usual model. The performance of a streaming algorithm is usually

measured in terms of the space used. Also, since many problems are not solvable exactly

in this setting, another measure of performance is the approximation ratio.

Dynamic algorithms [14] are algorithms where the input is dynamic, i.e., objects can

be added to the input or deleted from it at any time. The task is to maintain a data

structure that supports insertions, deletions and some kind of queries over the input cur-

rently available. Here, the space available is not as restrictive as in the case of streaming

algorithms. The measures for the performance of a dynamic algorithm are the update and

query times achieved. Once again, if the problem at hand is not solvable exactly, then the

1

approximation ratio is also an important measure of performance.

For the case of streaming algorithms, we investigate the approximation ratio achieved

by an algorithm by Agarwal and Sharathkumar [4] that appeared in SODA’10. Their

paper claimed an approximation factor of at most 1+
√
3

2
< 1.3661. We prove that the

same algorithm achieves a much better factor of 1.22, which is much closer to the lower

bound of 1+
√
2

2
> 1.207, proved by Agarwal and Sharathkumar. The proof for the factor

1.22 is computer-assisted, i.e., we wrote a program in C to do some computation on a

large number of carefully chosen values of carefully chosen parameters. A proof of factor

< 1.2308 is also provided that does not need any computer assistance.

For the case of dynamic algorithms, we combine ideas from Agarwal and Sharathku-

mar’s paper with some previously known techniques to prove that the same approximation

ratio of ≈ 1.22 can be achieved in the dynamic setting too. No upper bound was known in

the literature before our result; however, a trivial factor-2 algorithm was easily achievable.

The main content of the thesis is derived from the paper I wrote with my supervisor

Timothy Chan, titled “Streaming and Dynamic Algorithms for Minimum Enclosing Balls

in High Dimensions,” which is to appear in Proc. 12th Algorithms and Data Structures

Symposium (WADS), 2011.

The thesis is organized as follows. In Chapter 2, we introduce the streaming model by

giving some motivation for why it is studied and then discuss a few examples of problems

from the literature. We also discuss the geometric problems that have been studied in

the streaming model and briefly discuss the techniques that are relevant for understanding

our results. In Chapter 3, we describe our first result, i.e., the better analysis of Agarwal

and Sharathkumar’s algorithm and in Chapter 4, we describe our result in the dynamic

settings. Finally, Chapter 5 mentions additional minor results and observations and also

discusses some future research directions. In the Appendix, we provide the C code that

was used for achieving factor 1.22.

2

Chapter 2

Streaming algorithms

Consider the task of earthquake prediction. According to the Wikipedia article [26],

Many phenomena are considered to be possible precursors of earthquakes, and

among those under investigation are seismicity, changes in the ionosphere, var-

ious types of electromagnetic indicators including infrared and radio waves,

radon emissions, and even unusual animal behavior.

For a phenomenon that is affected by so many factors, any serious prediction system

should probably have thousands of sensors placed all over the earth, under the surface of

the earth and even in outer space, in satellites revolving around the earth. These sensors

will generate massive amounts of data per second and will send them to our earthquake

prediction center. Our task will be to somehow process the plethora of data and detect

useful patterns in it so that we can predict the occurence of earthquakes with a sufficient

accuracy. In this situation where the stakes are so high, all responsibility will rest on the

shoulders of the system we have implemented at the prediction center and the computation

our computers are going to do on the data that arrives.

Because of the technological development in the last few centuries, such complexity has

become ubiquitous and that has forced us to look for smart ways to put a handle on the

3

data all around us. One way, of course, is to design faster and more efficient processors.

The other one is just to develop better algorithms for solving these problems. In fact, there

is evidence that the second method might be better. According to a report [1] written in

order to decide the US government’s policy towards funding scientific research, it was

observed that progress in algorithms has beaten Moore’s law. To quote from the report:

. . . a benchmark production planning model solved using linear programming

would have taken 82 years to solve in 1988, using the computers and the linear

programming algorithms of the day. Fifteen years later—in 2003—this same

model could be solved in roughly 1 minute, an improvement by a factor of

roughly 43 million. Of this, a factor of roughly 1,000 was due to increased

processor speed, whereas a factor of roughly 43,000 was due to improvements

in algorithms!

A streaming algorithm is a special kind of algorithm where we assume that the whole

input, just like in our example of the earthquake prediction, is being given in the form of a

stream. That is, we are not allowed random access to its bits and we have only o(n) memory

available with us, thus we cannot store the whole input in the memory. Researchers in

this area try to understand the kinds of problems that can be solved in such a restrictive

model, and if they cannot be solved exactly, the least amount of compromise in accuracy

that can be achieved. In addition to their practical usefulness, streaming algorithms have

led to the development of some very nice mathematical tools.

2.1 Examples

In this section, we discuss some simple examples of problems that have been studied in

the streaming model in order to get a rough idea of what can and cannot be achieved with

streaming algorithms. A more comprehensive discussion on streaming can, for instance,

be found in Muthukrishnan’s survey [22].

4

2.1.1 Counting

Given an unknown number of items, count the number of them.

Here, the space is measured in terms of the number of items, i.e., if the number of

items turns out to be n, then at no point should we have used space Ω(n). Obviously, with

logarithmic space, we can maintain the count. Thus this problem can be easily solved in

the streaming model. In fact, if we allow some probabilistic error, it can be solved [16]

with a good enough accuracy in O(log log n) space.

2.1.2 Missing number

Given n distinct integers in a stream from the set {1, . . . , n+ 1}, find out which one is the

missing number.

Obviously, with linear space, we can store all the numbers, sort them and then do a

linear scan from left to right to find out the missing one. But with sublinear space, the

trick [22] is to add the numbers we have seen till now and store their sum in a register.

Since the maximum sum possible is (n + 1)(n + 2)/2, it needs at most a logarithmic size

register to be stored. In the end, we just need to subtract the sum we have from the sum

of all numbers from 1 to n+ 1. This will give the missing number.

2.1.3 Number of distinct items

Given m items, each drawn from the universe U = {1, . . . , n + 1}, find the number of

distinct items.

This problem is trickier. At any given moment, when a new item arrives in the stream,

we need some way to decide whether we had already seen this item or not. The item could

have occured long ago or very recently. To retrieve this information, we may need to store

all the items we have seen till now, which is not allowed.

5

It is not difficult to see that this problem cannot be solved exactly and deterministically

using o(n) space. Suppose that we have solved a particular instance with m− 1 items. We

claim that an adversary can find out the subset of U we have received from the information

we have stored in our memory. To find out if we have received item i, the adversary can

give our algorithm item i as the next input of the stream and ask for the output again.

Item i is in the subset before this step if and only if the number of distinct items does not

increase. If we have enough information to identify the subset of U exactly, then we must

be using linear space. (This can be made more formal using a counting argument.)

If we are allowed to make some error with a low probability, however, it is possible to

solve this problem in the streaming model [17]. The intuition is as follows. Suppose you

have gone fishing to a nearby lake and there are roughly 10,000 fish in the lake belonging

to five different species. You also know that some of the species are rare, say, for example,

there are only five salmons in the whole lake. Now if each fish is equally likely to get caught

in your bait, catching a salmon is an indication that you have caught a large number of

fish.

Thus the trick is to divide the universe U into different disjoint subsets S0, . . . , Sk,

where k is o(n) such that the size of set Si decreases as we increase i. A subset corresponds

to a species from the example. Thus as i increases, the species becomes more rare. If we

can determine the set in which an item j ∈ U lies efficiently, we can use this information

to solve the problem. We just maintain the largest value of i such that we have seen an

item in the stream from the subset Si. The larger the value, the more number of items

we must have seen. One convenient subdivision of U we can use is the following. Let

Si contain all numbers from the set U that end in exactly i zeroes (when written in, say

binary). This would work, except that we need the items from U to come with a uniform

probability distribution over U . However, the adversary can easily fool us by giving many

items from Sk in the beginning of the stream. The solution is to pick a random permutation

of the n items and apply that to the input before feeding it to the algorithm. A random

permutation can be applied in the streaming model using techniques from the hashing

literature.

6

2.1.4 General frequency moments

The number of items and the number of distinct items are specific cases of a more general

property of any sequence of items drawn from a given universe. These properties are called

frequency moments.

Associate with each member xi of the universe U , a frequency value fi denoting the

number of times you have seen that member. Then, the kth frequency moment of the input

stream, denoted Fk, is defined as
∑n

i=1 f
k
i . We can see that the number of items is F1 and

the number of distinct items is F0. Alon et al. [6] studied these problems in their Gödel

prize winning paper and gave a streaming algorithm for finding F2 as well. They also

proved that for k ≥ 6, it’s not possible to find Fk. Later, Indyk et al. [20] gave streaming

algorithms for k = 3, 4 and 5 as well.

2.2 Streaming algorithms for geometric problems

Many problems on sets of numbers can be generalized to geometric problems about points

point in d-dimensional space. For example, one way to generalize one-dimensional prede-

cessor search is nearest neighbor search. Thus geometric problems arise quite naturally

and a lot of them have been studied in the streaming model. Examples include minimum

enclosing balls, minimum enclosing cylinders, minimum volume bounding box, minimum

spanning tree, minimum weight matching and orthogonal range searching [19, 7].

In the next few sections, we describe some general techniques and approaches used in

the literature for solving geometric problems in the streaming model. The discussion will

be helpful in understanding our result in Chapter 4.

2.2.1 Core-sets

Before being used in streaming, core-sets were a popular tool for developing approximation

algorithms for a wide range of geometric problems. Informally, a core-set of a given set P

7

of points with respect to an optimization problem is a subset of P of small size such that

the solution to the problem on the subset gives a good approximation to the solution on P .

If in addition, the core-set can be found with an efficient algorithm, it gives rise to a good

approximation algorithm. Since it has a small size, one can use an inefficient algorithm

for solving the optimization problem exactly on the core-set. By the definition of core-set,

this will be a good approximation to the solution on the original set.

ε-Approximations

For many counting problems, an ε-net or an ε-approximation can play a role similar to a

core-set, i.e., the solution of the problem on, say, the ε-approximation of the set can be a

good approximation to the solution on the original set. An example is orthogonal range

searching. Given a set P of n points in R2, we want to store them in a data structure in

such a way that given an axis-parallel rectangle, one can report the number of points lying

inside it with a good accuracy. There are many exact algorithms available for this problem,

but they all require at least linear space [15, 23]. However, using an ε-approximation, one

can solve this problem within an additive error using space depending only on the amount

of error.

ε-Approximations are a general concept introduced first by Vapnik and Chervonenkis

[24]. Consider a set S, and a set R ⊆ 2S of some of its subsets. The tuple X = (S,R) is

called a range space. Given P ⊆ S, an ε-approximation of P for the range space X is a

set Q ⊂ P , such that for any range r ∈ R,∣∣∣∣ |Q ∩ r||Q|
− |P ∩ r|
|P |

∣∣∣∣ ≤ ε.

Consider the range space where S consists of all points in the two-dimensional plane

and R consists of all subsets r such that there exists an axis-aligned rectangle that contains

only the points in r and nothing else. Given any n point subset P of S, if we could find an

ε-approximation Q for P with respect to the above range space, then the solution to the

8

range counting problem on Q would be a good approximation to the solution to the range

counting problem on P . In particular, for any rectangle r,∣∣∣∣ |P ||Q| |Q ∩ r| − |P ∩ r|
∣∣∣∣ ≤ εn.

By a standard theorem [24], for any range space with bounded VC-dimension, any

random sample of P of size O(1
ε2

log 1
ε
) is an ε-approximation with high probability. It

is well known that the range space formed by axis-aligned rectangles has a bounded VC-

dimension. Thus we can find an ε-approximation Q of P by just picking a random sample

of P .

This technique is useful for the streaming model as well because sampling in the stream-

ing model can be easily done by an online sampling method, such as the reservoir sampling

method of Vitter [25]. Thus ε-approximations give us a constant-space algorithm for solv-

ing this problem up to an additive error.

Unfortunately, ε-approximations are not useful for many non-counting problems such

as finding the width1 of a given set of points. Moreover, the approximation achieved in the

case of orthogonal range counting is also of a weak, additive kind.

To solve problems such as width, Agarwal et al. [3] came up with a general framework

called the ε-kernels.

ε-Kernels

Let Sd−1 denote the unit sphere centered at the origin in Rd. For a given set P of points,

we define the directional width of P in a direction u ∈ Sd−1 as

w(u, P) = max
p∈P
〈u, p〉 −min

p∈P
〈u, P 〉,

1We define width in the next section.

9

where 〈·, ·〉 is the standard inner product. For a given parameter ε, a subset Q ⊆ P is

called an ε-kernel of P if for all u ∈ Sd−1,

max
p∈P
〈u, p〉 −max

q∈Q
〈u, q〉 ≤ ε · w(u, P). (2.1)

If such a set Q exists and is of small size, then it will be useful for many problems.

Consider, for example, the problem of finding the width of a given set of points. The width

of a set P is defined as

width(P) = min
u∈Sd−1

w(u, P).

Clearly, width(P) ≥ width(Q) ≥ (1 − ε)width(P). Thus (1 + ε)width(Q) is a (1 + ε)-

factor approximation to width(P). Agarwal et al. [3, 2] proved that an ε-kernel gives a

(1 +O(ε))-factor approximation to numerous problems, including width, diameter, radius

of the minimum enclosing ball and the volume of the minimum bounding box. They also

gave an efficient algorithm for actually computing an ε-kernel of a given set of points.

The idea is simple. Assume without loss of generality that all points lie in the region

[−1, 1]d. Build a grid with each cell having a side length ε and pick one point of P arbitrarily

from each non-empty grid cell. Let this set be the ε-kernel Q. Since the total number of

grid cells is O(1/εd), the size of the resulting set will be bounded by O(1/εd). Of course, Q

approximates P in some sense. In particular, in any direction u, w(u,Q) ≥ w(u, P)−ε
√
d.

However, this does not give us an ε-kernel according to (2.1) because the error here is

additive as opposed to multiplicative. However, if we can ensure w(u, P) ≥ c for all

directions u, where c is a constant, then we can get a multiplicative error of 1 + ε for a

re-adjusted ε. This is guaranteed if P satisfies the conditions for being α-fat for some

constant α. A point set P is called α-fat if there exists a point p ∈ Rd and a hypercube

C̄ centered at the origin so that p + αC̄ ⊂conv(P) ⊂ p + C̄ where conv(P) denotes the

convex hull of P .

But what if the given point set is not α-fat to begin with? Agarwal et al. [2] showed

that any point set P can be converted into a point set P ′ that is α-fat by performing an

affine transformation f such that Q ⊂ P is an ε-kernel of P if and only if Q′ = f(Q) is

10

an ε-kernel of P ′ = f(P). The transformation is computed using a known approximation

algorithm for minium bounding box by Baraquet and Har-Peled [8] (See Section 4.1 for

more details). Thus to find an ε-kernel of P , we first make P α-fat and then use the grid

approach described above.

This gives us an ε-kernel of size O(1/εd). This can immediately be improved by making

the simple observation that the width along any direction is determined by the extreme

points in that direction. Thus we do not need to store one representative point from all non-

empty grid cells. We can just pick one representative point from the top-most non-empty

cell and one from the bottom-most non-empty cell for each column. This modification

gives us an ε-kernel of size O(1/εd−1). This bound was later improved by Chan [11] and

independently by Yu et al. [27] to O(1/ε(d−1)/2).

2.2.2 Merge-and-reduce

The algorithm described in the previous section for finding the ε-kernel of a set of points

suffers with one disadvantage—it does not work in the streaming model. Also, although we

had a streaming algorithm Section 2.2.1 for finding an ε-approximation of a set of points, it

was randomized. There do exist deterministic algorithms for finding the ε-approximation

but they do not work in streaming.

Both these issues can be fixed by applying the general technique of merge-and-reduce,

which has its origins in the work by Bentley and Saxe [9] (the “logarithmic method”) on

dynamic data structures2. The technique works specifically for problems where we have

some way of finding a “sketch” of small size of the input that approximates the original

input in a way that is relevant for the problem at hand. As long as the sketch satisfies

certain decomposability conditions, we can get a streaming algorithm for the same problem

by calling the sketch finding algorithm as a black box. In the following paragraphs, we will

demonstrate the method for the case of ε-kernels while keeping in mind that it is much

2As we will see later, dynamic data structures have much in common with the streaming model.

11

more general and applies to many other cases.

It is not difficult to verify that ε-kernels satisfy the following two properties:

1. If P2 is an ε-kernel of P1 and P3 is an δ-kernel of P2, then P3 is a (δ+ ε)-kernel of P1;

2. If Q1 is an ε-kernel of P1, and Q2 is an ε-kernel of P2, then Q1 ∪Q2 is an ε-kernel of

P1 ∪ P2.

Since we are dealing with the streaming model, suppose that we have only O(
√
n)

space. The way merge-and-reduce works is as follows.

Keep storing the stream in the memory until it is full. Once it is full, replace the O(
√
n)

points in it with their ε-kernel. The ε-kernel is of constant size and thus the memory is

almost empty now. Next, do the same with the new points. Let P1, P2, . . . , Pk be the

groups of O(
√
n) points each. There are in total O(

√
n) of these groups in the input. At

any point in the algorithm the memory will contain the following two things—the ε-kernels

of all the groups already seen, and the points received so far in the next group of O(
√
n)

points. Thus the memory will be full of ε-kernels once k reaches O(
√
n). But fortunately,

that will happen only when the whole stream has arrived. At this point, we just find the

union of the ε-kernel of all the Pi’s. Because of the decomposability properties mentioned

above, the result will be an ε-kernel for the original set of points for some re-adjusted ε.

We can reduce the memory requirement even further by increasing the number of

“levels” in our algorithm. The essential idea is to call the ε-kernel finding subroutine more

frequently. This will make us run out of memory before the whole stream is seen. When

that happens, we replace the ε-kernels stored in the memory with the ε-kernel of the union

of ε-kernels and continue. The best bound achievable this way on the size of memory is

polylogarithmic in n. Details can be found in [2].

However, with merge-and-reduce, we can reduce the space to only polylogarithmic in

terms of the input size. To improve the space bound even further, we need other techniques.

In particular, Chan [11] gave an algorithm for maintaining the ε-kernel in the streaming

12

model using only a constant amount of space. His techniques are closely related to the

paradigm of “doubling”, which we describe in the next section.

2.2.3 Doubling

The paradigm of doubling exploits the fact that the sum of the terms of a geometric series

is of the same order as the largest term. In this section, we demonstrate an application of

this by describing an algorithm for maintaining the minimum enclosing cylinder of a set of

points in Rd in the streaming model.

Approximate versions of this problem can be solved in low dimensions using ε-kernels.

Because of the existence of streaming algorithms for maintaining the kernel, the problem

can be approximately solved even in streaming as long as the dimension is low. However,

because of the exponential dependence of the size of the ε-kernel on d, these algorithms

are not suitable for high dimensions.

We first show how to get a constant factor approximation algorithm for the minimum

enclosing cylinder problem in high dimensions. Let o ∈ P be an arbitrary point in P and

let v ∈ P be the point farthest away from o. Assume that ov is the axis of the enclosing

cylinder and return the distance of the farthest point from ov as the radius. It can be

proved that this gives a factor-4 algorithm. In fact, something more general can be proved.

If for all points p ∈ P , the ratio ‖op‖/‖ov‖ is bounded by c from above, then we get an

approximation algorithm with a factor of 2(c+ 1). The reason is the following observation

taken from [11], which states that for any three points o, p and v,

d(p, ov) ≤ 2

(
‖op‖
‖ov‖

+ 1

)
rad({o, v, p}). (2.2)

Here, d(p, ov) is the perpendicular distance between the point p and the line ov and

rad(P) denotes the radius of the minimum enclosing cylinder of the set P . Since rad({o, v, p})
is a lower bound for rad(P), maxp∈P d(p, ov) is a good approximation to the radius of the

minimum enclosing cylinder.

13

Unfortunately, this algorithm requires two passes—first pass to pick o and v, and the

second pass to find maxp∈P d(p, ov). Doubling helps in doing both these things in just one

pass.

First, notice that instead of maintaining d(p, ov), one can maintain the maximum value

of wf of rad({o, p, v}) in the second pass and in the end, report the radius as 2
(
‖op‖
‖ov‖ + 1

)
wf .

To combine the two passes in one, the basic idea is the following. Let p1, p2, . . . , pn be

the stream. Assume in the beginning that p1p2 is an approximately correct axis, i.e.,

o = p1, v = p2 and for any point p ∈ P , ‖op‖/‖ov‖ < 2. Next, maintain the maximum

value of rad({o, p, v}) until it stops being the correct axis, i.e., you get a point pi so that

‖opi‖/‖ov‖ ≥ 2. In that case, change the axis to p1pi, i.e., set v = pi and continue.

If we never change v, the initial choice of the axis was already correct. If we do change

v, then let v1, v2, . . . , vf be the values that v attains over the course of the algorithm.

Observe that ‖ovi‖ ≥ 2‖ovi−1‖ for each i. For points that came after vf , we know that

d(p, ovf) ≤ 2
(
‖op‖
‖ovf‖

+ 1
)

rad({o, p, vf}) ≤ 6wf . For points that came between vf and vf−1,

d(p, ovf) could be large because during that time, ovf−1 was the assumed axis and not ovf .

However, it can be proved that it couldn’t have been too large when compared to wf . The

reason is as follows. Let p̂ be the projection of p on ovf−1. Then, from triangle inequality,

d(p, ovf) ≤ d(p, ovf−1) + d(p̂, ovf).

Also, since ‖ovf−1‖/‖ovf‖ ≤ 1/2,

d(vf−1, ovf) ≤ 2 · 3/2 · rad({o, vf−1, vf}) ≤ 3wf .

Using similarity of triangles, we get that ‖op̂‖/‖ovf−1‖ = d(p̂, ovf)/d(ˆvf−1, ovf). Combining

all these, we get

d(p, ovf) ≤ d(p, ovf−1) +
‖op‖
‖ovf−1‖

3wf .

We know a bound for d(p, ovf−1) because when we received p, the assumed axis was ovf−1.

In general, for each p that came between v1 and v2, d(p, ovf) will be different from d(p, ov1),

but not very different, the reason being that the error accumulated in step i is inversely

14

proportional to ‖ovi‖ and thus forms a geometric progression. Finally, after working out

the details, it can be shown that this gives an approximation algorithm with factor 18 for

the minimum enclosing cylinder problem.

15

Chapter 3

Minimum enclosing ball in streaming

3.1 Introduction

We now turn our focus to the main problem of the thesis—finding the minimum enclosing

ball of a given set of points.

Let P be a set of points in Rd. We use MEB(P) to denote the minimum enclosing ball

of the set P , i.e., the ball with the smallest radius that encloses all points in P . For a ball

B, we use r(B) and c(B) to denote its radius and center respectively. Let αB denote the

ball with center at c(B) and radius equal to αr(B).

A very simple factor-2 streaming algorithm for approximating the MEB works as fol-

lows. Let the first point be p0. Find the point p1 in P that is farthest away from p0. This

can be implemented by a one-pass streaming algorithm. Return the ball centered at p0 of

radius ‖p0p1‖. This ball clearly encloses P . The approximation factor is at most 2, since

the MEB of P must enclose p0 and p1, and any ball that encloses p and q must have radius

at least ‖p0p1‖/2.

One approach that leads to a factor of 1.5 is due to Chan and Zarabi-Zadeh [28]. The

algorithm maintains a ball and updates it when it sees a point that does not lie inside it.

17

The initial ball is the MEB of the first two points. Whenever a point arrives that does not

lie in the current ball, it replaces it with the MEB of the current ball and the new point.

In low dimensions, we can simply build an ε-kernel for the set of points in one pass

to obtain a (1 + ε)-factor approximation for finding the minimum enclosing ball for a re-

adjusted ε. However, when dimension is large, the ε-kernel technique is not applicable

since the size of the kernel increases exponentially with d. So what is the best we can do

in high dimensions? Can we get an approximation factor better than 1.5?

One idea to explore is the possibility of having coresets whose size does not increase

exponentially with d.

3.2 Core-set in high dimensions

A core-set, as described in Section 2.2.1, is a small subset of a given set of points such

that the solution to the problem at hand on the core-set approximates the solution to

the problem on the original set. Let us make the notion formal for the case of minimum

enclosing balls.

Definition 1. Given a set P of points in Rd, an ε-core-set of P is a subset Q ⊆ P such

that P ⊆ (1 + ε)MEB(Q).

Bădoiu and Clarkson [10] proved that it is indeed possible to get such a core-set for

minimum enclosing balls in high dimensions. In particular, given a set P of n points in Rd

and a constant ε > 0, there exists a subset Q ⊂ P such that |Q| depends only on ε and

P ⊂ (1 + ε)MEB(Q). Moreover, Q can be found efficiently.

The algorithm is iterative. We start with just the set Q0 containing one arbitrary point

p0 ∈ P . To update the core-set Qi after i iterations, find the point in P that is farthest

away from c(MEB(Qi)) and add that to Qi. Bădoiu and Clarkson proved that this gives a

18

(1 + ε)-core-set in O(1/ε) iterations. Since each iteration adds one extra point to the core-

set, the size of the final core-set must be O(1/ε). The running time for the above algorithm

is clearly polynomial in n. However, this algorithm does not work in the streaming model.

3.3 Coreset in high dimensions in streaming?

We saw earlier that a core-set finding algorithm can be converted to a core-set finding

algorithm in streaming as long as the core-set satisfies certain decomposability properties.

Unfortunately, the core-set from Definition 1 does not satisfy those properties. In partic-

ular, if Q1 is a core-set of P1 and Q2 is a core-set of P2, then it is not necessarily true that

Q1 ∪Q2 is a core-set of P1 ∪ P2. The following paragraph describes a counter-example.

Let P1 be many points along the circumference of a circle centered at the origin in

2-d and P2 be one point far away on the x-axis. Assume that ε is very small and thus

the MEB of the core-set is almost the same as the MEB of the whole set. Then a pair

of diametrically opposite points in P1 such that the line joining them is close to vertical

qualifies to be a core-set of P1. Also, a core-set of P2 is the point constituting P2 itself.

However, the MEB of the union of these two core-sets does not cover all points in P1 if P2

is far enough.

This shows that we cannot directly apply merge-and-reduce to the core-sets in high

dimensions.

3.4 Agarwal and Sharathkumar’s algorithm

At SODA’10, Agarwal and Sharathkumar [4] presented a streaming algorithm for approx-

imating the minimum enclosing ball of a set of points in d-dimensional Euclidean space.

Their algorithm requires one pass, uses O(d) space, and was shown to have approximation

factor at most (1 +
√

3)/2 < 1.3661, which was better than the trivial factor-2 algorithm

that we mentioned in Section 3.1.

19

Their algorithm borrows ideas from both the merge-and-reduce and the doubling paradigms.

It works as follows.

Let the first point in the input stream be its own core-set and call the core-set K1.

Next, as long as the new arriving points lie inside (1+ε)MEB(K1), do nothing. Otherwise,

if pi denotes the new point, call Bădoiu and Clarkson’s algorithm on the set K1∪{pi}. This

gives a new core-set K2. In general, maintain a sequence of core-sets K = 〈K1, . . . , Ku〉
and whenever a new point pi arrives such that it does not lie in (1 + ε)MEB(Kj) for any

j, call Bădoiu and Clarkson’s algorithm on the set
⋃u
j=1Kj ∪ {pi}.

The sequence K of core-sets is similar to the set of core-sets maintained in the merge-

and-reduce algorithm from Section 2.2.2 for computing the kernel in O(
√
n) space, except

for one important difference: the core-sets satisfy the property that a set Ki serves as

the core-set for the union of all sets Kj for j < i. However, this did not happen in

the merge-and-reduce algorithm. We will see later that this property of the core-sets is

useful for proving an upper bound on the approximation factor without requiring any

decomposability properties.

The algorithm is similar to doubling because at any given point, the algorithm maintains

a core-set for the points seen till now and updates this set when a new point arrives that

is not “served” by this core-set.

The only problem is that the size of the sequence K might become too large. To reduce

space, whenever a new call to the subroutine is made, the algorithm also removes some

of the previous Ki’s when r(MEB(Ki)) is smaller than O(ε)r(MEB(Ku)). Agarwal and

Sharathkumar proved that this removal process does not hurt the effectiveness of the data

structure.

To prove correctness of their algorithm, Agarwal and Sharathkumar showed that the

following invariants are maintained throughout the course of the algorithm, where Bi =

MEB(Ki):

(P1) For all i, r(Bi+1) ≥ (1 + Ω(ε2))r(Bi).

20

(P2) For all i < j, Ki ⊂ (1 + ε)Bj.

(P3) P ⊂
⋃u
i=1(1 + ε)Bi.

The sequence K of core-sets was called an ε-blurred ball cover in the paper. Property (P1)

ensures that the number of core-sets maintained at any time is u = O(log(1/ε)). Since each

core-set has size O(1/ε), the total space is O(d) for constant ε. Let B = MEB(
⋃u
i=1Bi)

(computable by brute force). Property (P3) ensures that (1 + ε)B encloses P . Using

property (P2), Agarwal and Sharathkumar proved that r(B) ≤ (1+
√
3

2
+ ε) r(MEB(P)),

thus giving a factor-1.366 algorithm for MEB in the streaming model.

3.5 An improved analysis

In this section, we show that in fact, the approximation factor for Agarwal and Sharathku-

mar’s algorithm is less than 1.22. The proof amounts to establishing the following (purely

geometric) theorem:

Theorem 1. Let K1, . . . , Ku be subsets of a point set P in Rd, with Bi = MEB(Ki), such

that r(Bi) is increasing over i and property (P2) is satisfied for a sufficiently small ε > 0.

Let B = MEB(
⋃u
i=1Bi). Then r(B) < (1.22 +O(ε)) r(MEB(P)).

We will prove Theorem 1 in the next few subsections. First we need the following well-

known fact, often used in the analysis of high-dimesional MEB algorithms (e.g. see [10]):

Lemma 1 (the “hemisphere property”). Let P be a set of points in Rd. There is no

hemisphere of MEB(P) that does not contain a point from P . In other words, assuming

the origin to be at the center of MEB(P), for any unit vector v, there exists a point p ∈ P
such that p lies on the boundary of MEB(P) and v · p ≤ 0.

We introduce a few notations. Without loss of generality, let r(B) = 1 and c(B) be the

origin. Let ui be the unit vector in the direction of the center of Bi and σij = ui · uj be

21

c cj

ci
p

B

(1 + ε)Bj

Bi

Figure 3.1: Proof of Lemma 2

the inner product between the vectors ui and uj. Let us also write r(Bi) simply as ri and

set ti = 1/(1− ri). Note that the ti ≥ 1 are increasing over i.

Lemma 2. For all i < j with ti ≤ tj < 10 such that Bi and Bj touch ∂B,

σij ≥
tj
ti
− tj + ti −O(ε).

Proof. Let c, ci, cj be the centers of the balls B,Bi, Bj respectively. Figure 3.5 shows the

projection of B, (1 + ε)Bi, Bj onto the plane formed by c, ci, cj. Let p be one of the points

where (1 + ε)Bj intersects Bi in this plane (let us assume for now that they intersect and

remove the assumption later). Applying the cosine law to the triangle cicjc, we get

‖cicj‖2 = ‖ccj‖2 + ‖cci‖2 − 2‖cci‖‖ccj‖σij. (3.1)

Next, we apply the hemisphere property to the ball Bi = MEB(Ki). Choosing v to be

the vector cj − ci, we deduce the existence of a point q ∈ Ki such that q lies on ∂Bi and

∠cjciq ≥ π/2. By property (P2) of the blurred ball cover, we know that q ∈ Ki ⊂ (1+ε)Bj.

Since ‖cip‖ = ‖ciq‖ and ‖cjp‖ ≥ ‖cjq‖, we have ∠cjcip ≥ ∠cjciq ≥ π/2. This means

‖cjp‖2 ≥ ‖cicj‖2 + ‖cip‖2. (3.2)

22

Substituting ‖cjp‖ = (1 + ε)rj, ‖cip‖ = ri, ‖ccj‖ = 1− rj, ‖cci‖ = 1− ri into (3.1) and

(3.2) and combining them, we get

(1 + ε)2r2j ≥ (1− rj)2 + (1− ri)2 − 2(1− ri)(1− rj)σij + r2i .

Letting si = 1− ri and sj = 1− rj and ti = 1/si and tj = 1/sj, we get

(1 + ε)2(1− 2sj + s2j) ≥ s2i + s2j − 2sisjσij + (1− 2si + s2i)

=⇒ 2sisjσij ≥ 2s2i − 2si + 2sj −O(ε)

=⇒ σij ≥ ti − tj + tj/ti −O(εtitj).

(The assumption ti ≤ tj < 10 allows us to rewrite O(εtitj) as O(ε).)

Now, in case when Bi and (1+ε)Bj do not intersect, Bi completely lies inside (1+ε)Bj.

Then we can choose p to be the point on the boundary of Bi such that ∠cjcip = π.

Thus inequality (3.2) will still be satisfied. Also, we will have ‖cjp‖ ≤ (1 + ε)rj, ‖cip‖ =

ri, ‖ccj‖ = 1− rj, ‖cci‖ = 1− ri. Thus the substitution step will also work.

3.5.1 Proof of factor 4/3

As a warm-up, in this subsection, we give a short proof of a weaker 4/3 upper bound on

the constant in Theorem 1.

Let Bi be the largest ball that touches ∂B. Since B is the minimum enclosing ball of⋃u
`=1B`, by applying the hemisphere property to B with v = ui there must exist another

ball Bj such that σij ≤ 0. Combining with Lemma 2, we get

ti
tj
− ti + tj ≤ O(ε) =⇒ ti ≥

tj −O(ε)

1− 1/tj
.

Since tj ≥ 1, the minimum value achievable by ti that satisfies the above inequality can be

easily found to be 4−O(ε) (attained when tj ≈ 2). This translates to a minimum value of

3/4−O(ε) for ri = 1− 1/ti. Since r(MEB(P)) ≥ ri and r(B) = 1, this proves a version of

Theorem 1 with the constant 4/3 +O(ε).

23

Remark : We have implicitly assumed that tj ≤ ti < 10 when applying Lemma 2, but this

is without loss of generality since ti ≥ 10 would imply ri > 0.99 giving an approximation

factor of ≈ 1.01.

3.5.2 Proof of factor 16/13

In attempting to find an example where the 4/3 bound might be tight, one could set ti = 4

and tj = 2, which implies σij ≈ 0 by Lemma 2, i.e., ui and uj are nearly orthogonal.

However, by the hemisphere property, B would not be defined by the 2 balls Bi, Bj alone.

This suggests that an improved bound may be possible by considering 3 balls instead of

just 2, as we will demonstrate next.

Let Bi be the largest ball that touches ∂B, and Bj be the smallest ball that touches

∂B. Let α ≥ 0 be a parameter to be set later. By applying the hemisphere property to B

with v = ui + αuj, there must exist a k such that Bk touches ∂B and uk · (ui + αuj) ≤ 0.

This means

σik + ασjk ≤ 0. (3.3)

Note that tj ≤ tk ≤ ti. By Lemma 2, we get

ti
tk
− ti + tk + α

(
tk
tj
− tk + tj

)
≤ O(ε)

=⇒ ti ≥
tk + α(tk/tj − tk + tj)−O(ε)

1− 1/tk
≥ tk + α(2

√
tk − tk)−O(ε)

1− 1/tk
.

The last step follows since the minimum of tk/x+x is achieved when x =
√
tk (e.g., by the

A.M.–G.M. inequality). The final expression from the last step is in one variable, and can

be minimized using standard techniques. Obviously, the minimum value depends on α. As

it turns out, the best bound is achieved when α = 4/3 and the minimum value is 16/3−O(ε)

(attained when tk ≈ 4). Thus, ti ≥ 16/3 − O(ε), implying ri = 1 − 1/ti ≥ 13/16 − O(ε)

and an upper bound of 16/13 +O(ε) in Theorem 1.

24

3.5.3 Proof of factor 1.22

For our final proof of Theorem 1, the essential idea is to consider 4 balls instead of 3.

As before, let Bi be the largest ball that touches ∂B, and Bj be the smallest ball that

touches ∂B. Choose a parameter α = α(tj) ≥ 0; unlike in the previous subsection, we find

that making α dependent on tj can help. By the hemisphere property, there must exist a

Bk that touches ∂B while satisfying (3.3): σik + ασjk ≤ 0. By applying the hemisphere

property once more with v = βui + γuj +uk, for every β, γ ≥ 0, there must exist a B` that

touches ∂B satisfying

βσi` + γσj` + σk` ≤ 0. (3.4)

We prove that with Lemma 2, these constraints force ti > 5.54546, implying ri =

1 − 1/ti > 0.8197 and the claimed 1.22 bound in Theorem 1. We need a noticeably more

intricate argument now, to cope with this more complicated system of inequalities. Our

strategy is to assume ti ≤ τ := 5.54546 and then prove a contradiction.

Note that 2 cases are possible: tj ≤ tk ≤ t` ≤ ti or tj ≤ t` ≤ tk ≤ ti. We first eliminate

the variable t` in (3.4). By (3.4), we have ∀β, γ ≥ 0:[
∃t` ∈ [tk, τ] : β

(
τ

t`
− τ + t`

)
+ γ

(
t`
tj
− t` + tj

)
+
t`
tk
− t` + tk ≤ O(ε)

]
∨[

∃t` ∈ [tj, tk] : β

(
τ

t`
− τ + t`

)
+ γ

(
t`
tj
− t` + tj

)
+
tk
t`
− tk + t` ≤ O(ε)

]
. (3.5)

Here, the first predicate represents the first case, where t` lies between tk and ti. The

second predicate represents the second case, where tl lies between tj and tk.

Observe that in each of the two cases, multiplying the left hand side by t` yields a

quadratic inequality in t` of the form at2` + bt` + c ≤ 0. (The O(ε) terms are negligible.)

In the first case,

a = β + γ/tj − γ + 1/tk − 1, b = −βτ + γtj + tk, and c = βτ. (3.6)

25

And in the second case,

a = β + γ/tj − γ + 1, b = −βτ + γtj − tk, and c = βτ + tk. (3.7)

The variable t` can then be eliminated by the following rule:

(∃x ∈ [x1, x2] : ax2 + bx+ c ≤ 0) iff

(ax21 + bx1 + c ≤ 0) ∨ (ax22 + bx2 + c ≤ 0)∨

[((a ≥ 0) ∧ (b2 ≥ 4ac) ∧ (2ax1 ≤ −b ≤ 2ax2))]. (3.8)

For β, we try two fine-tuned choices: (i) β = −γ(τ/tj − τ + tj) − (τ/tk − τ + tk) + O(ε)

(which is designed to make the above inequality tight at t` = τ), and (ii) a root β of the

equation b2 = 4ac where a, b, c are the coefficients of the first quadratic inequality in the

preceding paragraph (for fixed tj, tk, γ, this is a quadratic equation in β). As it turns out,

these two choices are sufficient to derive the contradiction at the end. Note that the reason

for choosing these two values is essentially based on the intuition that to be able to prove

a contradiction, one should try to make as many inequalities tight as possible.

Three variables γ, tj, tk still remain and the function α(tj) has yet to be specified. At

this point, it is best to switch to a numerical approach. We wrote a short C program (see

Appendix A) to perform the needed calculations. For γ, we try a finite number of choices,

from 0 to 1 in increments of 0.05, which are sufficient to derive the desired contradiction.

For (tj, tk), we divide the two-dimensional search space into grid cells of side length 0.0005.

For each grid cell that intersects {tk ≥ tj}, we lower-bound the coefficients of the above

quadratic inequalities over all (tj, tk) inside the cell, and attempt to obtain a contradiction

with (3.4) by the strategy discussed above. If we substitute the lower bounds on a, b and

c into the inequality at2` + bt` + c ≤ 0 and get that it is not satisfied for any t`, then that

means it is not satisfied for any t` at any point inside the grid cell. This is because of the

fact that t` is positive and therefore the value of at2` + bt` + c increases if any one of a, b or

c increases.

26

If we are not able to get a contradiction for the cell this way, we turn to (3.3), which

implies
τ

tk
− τ + tk + α

(
tk
tj
− tk + tj

)
≤ O(ε);

from this inequality, we can generate an interval of α values that guarantees a contradiction

in the (tj, tk) cell. We set α(tj) to any value in the intersection of all α-intervals generated

in the grid column of tj. After checking that the intersection is nonempty for each grid

column, the proof is complete.

Remarks : Our analysis of the system of inequalities derived from (3.3) and (3.4) is close

to tight, as an example shows that these inequalities cannot yield a constant better than

1.219 regardless of the choice of the function α(tj): Consider ti = 5.56621 and tj = 2. If

α < 1.15, pick tk = 2.67; otherwise, tk = 5.08. Now, pick 100 uniformly spaced points

from the interval [tj, tk] and the interval [tk, ti]. For each point, let t` be that value. This

gives one linear inequality in terms of β and γ. Thus we have 100 such inequalities in

total for the 100 different values of t`. We want to prove that for all β and γ, one of them

is satisfied. We can show this by proving the complement, i.e., there does not exist any

value for the pair (β, γ) for which the negation of all the inequalities are satisfied. This is

essentially equivalent to proving that a 100 constraint linear program is infeasible, which

we have verified using Maple (see Appendix B).

By choosing Bk and B` more carefully, one could add in the constraints σij ≤ 0,

σij ≤ σik, σij ≤ σi`, and σik +ασjk ≤ σi` +ασj`, though tj ≤ tk, t` is no longer guaranteed;

however, the system of inequalities becomes even harder to optimize, and we suspect that

any improvements would be very small. Likewise, an analysis involving 5 or more balls

does not seem to be worth the effort, until new ideas are found to simplify matters.

27

Chapter 4

Dynamic MEB

4.1 Preliminaries

In the dynamic setting, we allow points to be inserted and deleted. The task is to answer

queries regarding the current point set. For our case, we are concerned with maintaining

an approximate minimum enclosing ball of points in Rd.

Dynamic algorithms are related to streaming algorithms because a streaming algorithm

for a particular problem already gives a dynamic algorithm for the problem in the insertion-

only case. Incorporating deletions is often the difficult part.

However, there is a standard randomization trick that helps in making deletions easy. To

demonstrate the trick, we convert the simple factor-2 streaming algorithm from Section 3.1

into a factor-2 dynamic algorithm. In the preprocessing stage, pick any random point p0

from the point set P uniformly and arrange the rest of the points in a priority queue with

the key being the distance of the point from p0. Call p0 the “anchor point.” To insert

a new point, simply insert it into the priority queue. This takes time O(log n), where n

is the number of points. The MEB returned at any time is the ball centered at p0 and

having a radius equal to the maximum key. To delete a point, remove it from the priority

29

queue if the point being deleted is not the anchor point itself. Otherwise, rebuild the whole

data structure by picking a new random anchor point p and arranging the rest in a priority

queue. Since the choice of the anchor point is random, the probability with which it will be

deleted is 1/n. Therefore the expected cost of deletion is 1
n
O(n log n)+O(log n) = O(log n).

The space used is linear.

A similar randomization trick was used by Chan [12] to get a dynamic algorithm for

maintaining ε-kernels in low dimensions. To get a better ratio for high-dimensional min-

imum enclosing ball, we modify his algorithm in suitable ways. First, we outline his

algorithm.

The starting point is a simple constant-factor approximation algorithm for the minimum

bounding box [2, 8]. Pick a point p0 ∈ P . This is the first anchor point. Next, let p1

be the point farthest from p0 in P . In general, pick point pj to be the point farthest

from aff{p0, . . . , pj−1}, where aff S denotes the affine hull of a set S. The resulting anchor

points p0, . . . , pd form a core-set whose minimum bounding box approximates the minimum

bounding box of P to within O(1) factor. The factor can be reduced to 1 + ε by building

a grid along a coordinate system determined by the anchor points; the size of the core-set

increases to O(ε−d).

Now, to make this algorithm dynamic, the approach is to choose the anchor points

in some random way and then whenever an anchor point is deleted, rebuild the whole

data structure. Because of the randomness, the deleted point will be an anchor point

with only a low probability. Thus instead of choosing pj to be the point farthest from

aff{p0, . . . , pj−1}, we pick pj uniformly at random from the set Aj of α|P | farthest points

from aff{p0, . . . , pj−1} and discard Aj. Thus, after picking all the anchor points, we obtain a

set R =
⋃
j Aj of all discarded points. Since R is not “served” by the anchor points chosen,

we recurse on R. Since |R| is a fraction less than |P | if the constant α is sufficiently small,

this gives us a collection of O(log n) core-sets. The final core-set returned is the union of

all of them. Insertions can be incorporated in a standard way, analogous to the logarithmic

method by Bentley and Saxe [9].

30

The transition from Chan’s dynamic algorithm for ε-kernels to our dynamic algorithm

for minimum enclosing balls in high dimensions is similar to the transition from the merge-

and-reduce algorithm for maintaining ε-kernels in the streaming model to Agarwal and

Sharathkumar’s [4] streaming algorithm for minimum enclosing balls in high dimensions.

The problem with directly generalizing the merge-and-reduce algorithm to high dimensions

by replacing ε-kernels with Bădoiu and Clarkson’s core-sets is that their core-sets are

not decomposable. Agarwal and Sharathkumar fixed this issue by making the core-sets

“cumulative”, i.e., their algorithm makes sure that the ith core-set Ki is a core-set for

all Kj’s, j < i. Replacing the ε-kernels in Chan’s algorithm with Bădoiu and Clarkson’s

core-sets will not work for the same reason. We fix that by using essentially Agarwal and

Sharathkumar’s technique. The precise details are given in the following paragraphs.

4.2 A new dynamic algorithm

Let P be the set of points whose MEB we want to maintain.

To mimic Chan’s randomization trick in the preprocessing stage, we need to make

Bădoiu and Clarkson’s core-sets randomized in some sense (see Section 3.2 on Bădoiu

and Clarkson’s algorithm). The first point of the core-set is some arbitrarily chosen point

p0 ∈ P and the next one is now a point picked uniformly at random from the α|P | farthest

points from p in P and so on. Since the core-set thus formed will not “serve” the α|P |
farthest points, we collect all those discarded points into the set R and recurse on it. In

the end, we get a collection of core-sets from each level of recursion. Unfortunately, the

union of all these core-sets is not a core-set of the whole set because of the argument in

Section 3.3. Thus instead of recursing just on R, we recurse on the union of R and the

core-sets from all the previous levels of recursion as shown in Algorithm 1.

Let Pi be the point set on which we recurse at level i of the recursion. Thus the original

set is P0 and the final set is Pu where u is the number of levels in the recursion. For each

set Pi, we associate with it a subset Qi of Pi of size a constant fraction of the size of Pi. Let

31

Algorithm 1 P .preprocess()

if |P | < c log n then

KP ← P and return

end if

Q← P

p0 ← random point of P

for j = 1, . . . , d2/εe do

Aj ← the α|P | farthest points of Q from c(MEB({p0, . . . , pj−1}))
Q← Q− Aj
pj ← a random point of Aj

end for

KP ← {p0, . . . , pd2/εe} {an ε-core-set of Q by Bădoiu and Clarkson}
K̂R ← K̂P ∪KP {K̂P is a union of core-sets at earlier levels}
R← (P −Q) ∪ K̂P {remember to add earlier core-sets K̂P to the next level}
R.preprocess()

P .counter ← δ|P |

Algorithm 2 P .delete(p), where p ∈ P − K̂P

if |P | < c log n then

remove p from P , reset KP ← P , and return

end if

remove p from P

P .counter ← P .counter− 1

if P .counter = 0 or p ∈ KP then

P .preprocess() {rebuild all sets after current level}
end if

if p ∈ R then

R.delete(p)

end if

32

Algorithm 3 P .insert(p)

if |P | < c log n then

insert p into P , reset KP ← P , and return

end if

insert p into P

P .counter ← P .counter− 1

if P .counter = 0 then

P .preprocess() {rebuild all sets after current level}
end if

R.insert(p)

Ki be Bădoiu and Clarkson’s core-set for the set Qi. Note that Ku, being the base case,

is just the whole point set Pu. Also, the set of points in Pi that are not in Qi constitutes

Pi+1.

Let K = 〈K1, . . . , Ku〉 denote the sequence of core-sets Ki over all currently active point

sets P , arranged from the root level to the last level. Let Bi = MEB(Ki). Then property

(P3) is satisfied because of Bădoiu and Clarkson’s algorithm. The trick of inserting core-

sets at earlier levels to the current set ensures property (P2). We can then use Theorem 1

to infer that B = MEB(
⋃u
i=1Bi) is a 1.22-approximation to MEB(P) for a sufficiently

small ε.

To ensure that the algorithm is correct, we maintain properties (P2) and (P3) over

insertions and deletions. To ensure that the data structure is of linear size, we maintain

the following invariant: there are O(log n) levels in the data structure with the size of each

level at most a constant fraction of the size of the previous level, i.e., u = O(log n) and

|Pi| = O(n/c′i) for some constant c′.

For insertions, we add the point p to Pi at all levels, except, at level u, we also add it

to Ku and Qu. Thus a newly added point is served by the core-set Ku. For deletions, we

delete p from the level where p lies in Qi and all the levels above it. This makes sure that

33

(P2) and (P3) are maintained. However, if many updates are made at the same level, then

the second invariant may not hold true. Thus we use a counter at each level that counts

the number of updates made at that level and we rebuild the whole data structure starting

at that level if the counter reaches 0.

Also, instead of applying an exact algorithm to compute B, it is better to first compute

a (1+ε)-approximation B′i to MEB(Ki) for each i, and then return a (1+ε)-approximation

to MEB(
⋃u
i=1B

′
i). (Note that every Ki has size O(1/ε), except for the last set, which has

size O(log n).) The latter can be done by a known approximation algorithm of Kumar,

Mitchell, and Yildirim [21], which generalizes Bădoiu and Clarkson’s algorithm for sets of

balls. The time required is O(du) = O(d log n) (we ignore dependencies on ε from now

on). It can be checked that the proof of Theorem 1 still goes through with Bi replaced by

B′i, since the hemisphere property is still satisfied “approximately” for B′i.

Let K̂i = K1 ∪ . . . ∪ Ki. Note that for all i, |K̂i| ≤ O(u/ε). For |Pi| � u/ε, note

that |Pi+1| is a fraction less than |Pi| if we make the constants α and δ sufficiently small

(relative to ε). Thus, for c sufficiently large, u is bounded logarithmically in n.

The for loop in P .preprocess() takes O(dn) time for constant ε. Thus, the total prepro-

cessing time is bounded by a geometric series summing to O(dn). Space is O(dn) as well.

In the pseudocode for P .delete(), although the cost of the call to P .preprocess() is O(d|P |),
it can be shown [12] that the probability of deleting an anchor point p ∈ Ki is O(1/|P |) at

any fixed level. Excluding the cost of computing B, the analysis of the expected amortized

update time is essentially the same as in Chan’s paper [12] and yields O(d log n). (The

randomized analysis assumes that the update sequence is oblivious to the random choices

made by the algorithm.) We conclude:

Theorem 2. A factor-1.22 approximation of the MEB of points in Rd can be maintained

with an algorithm that takes preprocessing time O(dn log n), uses space O(dn), and takes

expected amortized time O(d log n) for the updates.

34

Chapter 5

Miscellaneous Results and Final

Remarks

5.1 Multiple-pass streaming algorithms

So far we have discussed the model of streaming where only one pass is allowed over the

input. It is interesting to consider more than one pass. For example, we saw in Section 2.2.3

that if we are allowed two passes, the minimum enclosing cylinder of a set of points in high

dimensions can be found within an approximation factor of 4; however, for one pass we

could get only a factor-18 algorithm1.

For minimum enclosing balls, Bădoiu and Clarkson’s algorithm for high-dimensional

core-sets can be viewed as a multiple-pass streaming algorithm. In particular, it finds

a (1 + ε) approximation to the minimum enclosing ball in O(1/ε) passes over the input

stream. A more careful analysis shows that
⌈
2
ε

⌉
passes are sufficient. In this section, we

show that this can be improved, i.e., it is possible to get an approximation factor of 1 + ε

with fewer passes.

1Chan improved the factor-18 to factor-5 using a more intricate algorithm.

35

Consider the following multi-pass streaming algorithm. Run Agarwal and Sharathku-

mar’s algorithm in the first pass. In the end, we will have the sequence K = 〈K1, . . . Ku〉
of core-sets. Next, delete all points from memory except for the points in Ku. Let x = tu

and re-initialize all ti’s. In the second pass, run the same algorithm again, but assume that

points in Ku have arrived before all other points in the stream.

To see why this gives a better approx. factor at the end of the second pass, we can

do another three-ball analysis similar to the one done in Section 3.5.2. If we use α = 1 in

(3.3), we get σik + ασjk ≤ O(δ), which gives ti/tk − ti + tk + tk/tj − tk + tj ≤ 0 (recalling

that Bi is the largest ball and Bj is the smallest)2. Since ti/tk and tk/tj are both at least

1, we get 2 − ti + tj ≤ O(δ), which finally gives us ti ≥ tj + 2 − O(δ). Thus, after each

pass, the value of ti increases by at least 2 − O(δ). The approximation factor is given by
1

1−1/ti . To get a factor of 1 + ε, we need ti to be ≈ 1
ε
. Thus, 0.5

ε
+O(δ) passes suffice.

Theorem 3. A (1 + ε)-factor approximation to the minimum enclosing ball of n points in

Rd can be obtained in 0.5+δ
ε

passes over the input, for an arbitrarily small constant δ > 0.

This can perhaps be improved by doing an analysis with more balls, which we leave as

an open problem.

5.2 Open problems

Of course, the main question that remains to be answered is to determine the best approx-

imation factor possible for minimum enclosing balls in high dimensions in the streaming

model. Agarwal and Sharathkumar gave a lower bound of (1 +
√

2)/2 ≈ 1.207. Although

our result reduces the gap between the upper and the lower bound, it does not completely

eliminate it. Agarwal and Sharathkumar also gave an example where their algorithm per-

forms strictly worse than the lower bound. Thus either the lower bound is not tight or we

need a new algorithm.

2We rename ε in Chapter 3 as δ

36

There are no lower bounds known if we allow more than one pass over the input. The

lower-bound proof technique by Agarwal and Sharathkumar already fails to work when we

allow two passes. As such, we do not know how far the algorithm from Section 5.1 is from

the optimum.

On the other hand, there are some lower bounds on the closely related problem of

linear programming in fixed dimensions. For example, Chan and Chen [13] proved that

for any fixed dimension, solving a linear program in p passes requires space Ω(n1/p) in

a restricted model where the only objects we are allowed to store are indices and points

from the input. Guha and McGregor [18] later proved the same bound for the general

computational model on the number of bits of space. However, these lower bounds are only

on the exact algorithms and provide a trade-off between the number of passes and space

required. No lower bound is known that provides trade-offs between the approximation

factor and the number of passes.

In the dynamic case, the best ratio achievable with a data structure that requires a

polylogarithmic update time and linear space is not known. Because of the lack of a lower

bound, even a (1 + ε)-factor algorithm is not ruled out.

37

APPENDICES

39

Appendix A

C code for proving a factor of 1.22

#include <stdio.h>

#include <math.h>

#define MAX(X,Y) (((X)>(Y))?(X):(Y))

//d is used for defining the grid size of (t_j, t_k).

//dd is used for the size of intervals used for gamma.

//Constants with ’min’ or ’max’ appended at the end

//are used to specify the range for the corresponding

//variables. Indeed, t_i is an upper bound for both

//t_j and t_k and 1 is a lower bound.

//For gamma, we try values between 0 and 1.

const double t_i = 5.54546,

d = 0.0005, dd = 0.05, delta = 1e-8,

t_j_min = 1.0, t_j_max = t_i, t_k_min = 1.0, t_k_max = t_j,

41

gamma_min = 0., gamma_max = 1.;

//t_j_m and t_k_m will denote rounded up values

//of t_j and t_k.

double t_j, t_k, t_j_m, t_k_m, gamma;

//This function checks whether there exists a value x

//between u and v such that the quadratic inequality

//a*x*x+b*x+c<=0 is satisfied. Returns 1 if the

//answer is yes, 0 otherwise. See (3.8).

int check_parabola(double a, double b, double c, double u, double v) {

return a*u*u+b*u+c <= 0 || a*v*v+b*v+c <= 0 ||

(a>=0 && b*b-4*a*c>=0 && 2*a*u+b<=0 && 2*a*v+b>=0);

}

//This function checks if (3.5) is satisfied

//for some value of t_l, given a particular value of beta

//and a particular value of gamma. It returns 1 if it’s satisfied,

//otherwise it returns 0. We use (3.6) and (3.7) and check_parabola().

int check(double beta) {

return (beta < 0) || (gamma < 0) ||

check_parabola(beta+gamma/t_j_m-gamma+1/t_k_m-1,

-beta*t_i+gamma*t_j+t_k,

beta*t_i, t_k, t_i) ||

check_parabola(beta+gamma/t_j_m-gamma+1,

-beta*t_i+gamma*t_j-t_k_m,

42

beta*t_i+t_k, t_j, t_k_m);

}

main()

{

double alpha_low, alpha_high, t_k_low, t_k_high;

//The next two for loops divide the space of (t_j, t_k)

//into a grid with side length d.

for (t_j = t_j_min; t_j < t_j_max; t_j+=d) {

alpha_low = 0; alpha_high = 1e8;

//As explained in Section 3.5.3, we need to get

//contradictions only for the case when t_k>=t_j.

//Thus, we start the for loop at t_k = t_j - d.

for (t_k = t_j-d; t_k < t_k_max; t_k+=d) {

//t_j_m and t_k_m are the rounded up values

//of t_j and t_k for the particular grid cell.

t_j_m = t_j+d; t_k_m = t_k+d;

int flag = 1;

//The variable flag maintains whether we have found

//a contradiction or not. If we haven’t found a

//contradiction, flag remains set to 1, else it

//becomes 0.

43

//First attempt at contradiction.

//Once we are in a particular grid cell for

//(t_j, t_k), we look at various values of gamma.

for (gamma = gamma_min; gamma <= gamma_max; gamma+=dd) {

//We first try the first fine-tuned value for beta.

//Note that we use the rounded up values of t_j and t_k

//at certain places to make sure that the statement

//we are trying to make holds for all values inside

//the grid cell.

flag = flag && check(MAX(-(gamma*(t_i/t_j_m-t_i+t_j)

+t_i/t_k_m-t_i+t_k),0) + delta);

//Next, we try the second fine-tuned value for beta.

//We solve the quadratic equation by finding the

//co-efficients of beta^2, beta and the constant term

//and then using the quadratic formula.

double a = t_i*t_i-4*t_i,

b = -2*t_i*(C*t_j+t_k)-4*t_i*(gamma/t_j_m-gamma+1/t_k_m-1),

c = (gamma*t_j+t_k)*(gamma*t_j+t_k);

if (b*b>4*a*c)

flag = flag && check((-b - sqrt(b*b-4*a*c))/(2*a) + delta);

}

//If there is still no contradiction, then we resort

44

//to the second method, i.e., find a suitable alpha(t_j).

//We do that by maintaining the range of values of

//alpha that gives a contradiction. The range is maintained

//using the variables alpha_low and alpha_high. In the end,

//there exists a suitable value of alpha if and only if

//alpha_low <= alpha_high.

if (flag) {

double x = -(t_i/t_k_m-t_i+t_k)/(t_k/t_j_m-t_k_m+t_j);

if (t_k/t_j_m-t_k_m+t_j >= 0 && x > alpha_low)

{ alpha_low = x; t_k_low = t_k; }

else if (t_k/t_j_m-t_k_m+t_j < 0 && x < alpha_high)

{ alpha_high = x; t_k_high = t_k; }

}

} // end t_k for loop

if (alpha_low > alpha_high)

printf("error: %f %f %f (%f %f)\n", t_j, t_k_low,

t_k_high, alpha_low, alpha_high);

} // end t_j for loop

}

The theorem in Section 3.5.3 follows from the fact that when we run this code, it does

not execute the printf statement in the end.

45

Appendix B

Maple code for proving that doing

better than 1.219 needs new ideas

See Remarks at the end of Section 3.5.3.

with(simplex):

n := 50;

t_i := 5.56621;

t_j := 2;

t_k := 2.67;

alpha := 1.15;

t_k/t_j-t_k+t_j; # this value should be positive

t_i/t_k-t_i+t_k+alpha*(t_k/t_j-t_k+t_j); # this value should be negative

minimize(beta, {

seq(beta*(t_i/t_l-t_i+t_l)

+gamma*(t_l/t_j-t_l+t_j)

+t_l/t_k-t_l+t_k >= 0,

t_l=t_k..t_i, (t_i-t_k)/n),

seq(beta*(t_i/t_l-t_i+t_l)

47

+gamma*(t_l/t_j-t_l+t_j)

+t_k/t_l-t_k+t_l >= 0,

t_l=t_j..t_k,

(t_k-t_j)/n),

beta >= 0, gamma >= 0 }); # check that this LP isinfeasible

t_k := 5.08;

t_k/t_j-t_k+t_j; # this value should be negative

t_i/t_k-t_i+t_k+alpha*(t_k/t_j-t_k+t_j); # this value should be negative

minimize(beta, {

seq(beta*(t_i/t_l-t_i+t_l)

+gamma*(t_l/t_j-t_l+t_j)

+t_l/t_k-t_l+t_k >= 0,

t_l=t_k..t_i,

(t_i-t_k)/n),

seq(beta*(t_i/t_l-t_i+t_l)

+gamma*(t_l/t_j-t_l+t_j)

+t_k/t_l-t_k+t_l >= 0,

t_l=t_j..t_k,

(t_k-t_j)/n),

beta >= 0, gamma >= 0 }); # check that this LP is infeasible

48

References

[1] Designing a digital future: Federally funded research and development in networking

and information technology, http://www.whitehouse.gov/sites/default/files/

microsites/ostp/pcast-nitrd-report-2010.pdf. Report to the President and

Congress, 2010.

[2] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating

extent measures of points. Journal of the ACM, 51:139–186, 2004.

[3] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric ap-

proximation via coresets. In Janos Pach and Emo Welzl, editors, Combinatorial and

Computational Geometry, MSRI, pages 1–30. Cambridge University Press, 2005.

[4] Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems

in high dimensions. In Proceedings of the 21st Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 1481–1489, 2010.

[5] Charu C Aggarwal. Data streams: models and algorithms. Advances in Database

Systems. Springer, New York, NY, 2007.

[6] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating

the frequency moments. Journal of Computer and System Sciences, 58(1):137 – 147,

1999.

49

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-nitrd-report-2010.pdf

[7] Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T. Goodrich.

Deterministic sampling and range counting in geometric data streams. ACM Trans.

Algorithms, 3, May 2007.

[8] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bound-

ing box of a point set in three dimensions. Journal of Algorithms, 38:91–109, 2001.

[9] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic

transformations. Journal of Algorithms, 1:301–358, 1980.

[10] Mihai Bădoiu and Kenneth L. Clarkson. Optimal core-sets for balls. Computational

Geometry Theory and Applications, 40:14–22, May 2008.

[11] Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed

dimensions. Comput. Geom. Theory Appl., 35:20–35, August 2006.

[12] Timothy M. Chan. Dynamic coresets. In Proceedings of the 24th Annual Symposium

on Computational Geometry, pages 1–9, 2008.

[13] Timothy M. Chan and Eric Y. Chen. Multi-pass geometric algorithms. Discrete and

Computational Geometry, 37:79–102, January 2007.

[14] Yi Chiang and Roberto Tamassia. Dynamic algorithms in computational geometry.

Technical report, 1991.

[15] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:

Algorithms and Applications. Springer., 3 edition, 2008.

[16] Philippe Flajolet. Approximate counting: A detailed analysis. BIT, 25:113–134, 1985.

[17] Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In Proceedings of the

24th IEEE Symposium on Foundations of Computer Science, pages 76 –82, 1983.

50

[18] Sudipto Guha and Andrew McGregor. Tight lower bounds for multi-pass stream

computation via pass elimination. In Proceedings of the 35th International Colloquium

on Automata, Languages and Programming, Part I, pages 760–772, 2008.

[19] Piotr Indyk. Better algorithms for high-dimensional proximity problems via asym-

metric embeddings. In Proceedings of 14th ACM-SIAM Symposium on Discrete Algo-

rithms, pages 539–545, 2003.

[20] Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments

of data streams. In Proceedings of the 37th ACM Symposium on Theory of Computing,

pages 202–208, 2005.

[21] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim. Approximating minimum enclosing

balls in high dimensions using core-sets. ACM Journal of Experimental Algorithmics,

8:1.1, 2003.

[22] Muthu Muthukrishnan. Data Streams: Algorithms and Applications, volume 1 of

Foundations and Trends in Theoretical Computer Science. Now Publishers Inc., 2005.

[23] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Intro-

duction. Springer., 1985.

[24] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability and its Applications,

16(2):264–280, 1971.

[25] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Transactions on Math-

ematical Software, 11:37–57, 1985.

[26] Wikipedia. Earthquake prediction — wikipedia, the free encyclopedia, 2011. [Online;

accessed 2-July-2011].

51

[27] Hai Yu, Pankaj Agarwal, Raghunath Poreddy, and Kasturi Varadarajan. Practical

methods for shape fitting and kinetic data structures using coresets. Algorithmica,

52:378–402, 2008.

[28] Hamid Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in

fixed dimensions. In Proceedings of 16th European Symposium on Algorithms, volume

5193 of Lect. Notes in Comput. Sci., pages 817–829. Springer-Verlag, 2008.

52

	List of Figures
	Outline
	Streaming algorithms
	Examples
	Counting
	Missing number
	Number of distinct items
	General frequency moments

	Streaming algorithms for geometric problems
	Core-sets
	Merge-and-reduce
	Doubling

	Minimum enclosing ball in streaming
	Introduction
	Core-set in high dimensions
	Coreset in high dimensions in streaming?
	Agarwal and Sharathkumar's algorithm
	An improved analysis
	Proof of factor 4/3
	Proof of factor 16/13
	Proof of factor 1.22

	Dynamic MEB
	Preliminaries
	A new dynamic algorithm

	Miscellaneous Results and Final Remarks
	Multiple-pass streaming algorithms
	Open problems

	APPENDICES
	C code for proving a factor of 1.22
	Maple code for proving that doing better than 1.219 needs new ideas
	References

