arXiv:1105.0392v1 [cs.CG] 2 May 2011

Tracking Moving Objects with Few Handovers

David Eppstein, Michael T. Goodrich, and Maarten Loffler

Dept. of Computer Science, Univ. of California, Irvine

Abstract. We study the online problem of assigning a moving point to a base-station region that
contains it. For instance, the moving object could represent a cellular phone and the base station could
represent the coverage zones of cell towers.

Our goal is to minimize the number of handovers that occur when the point moves outside its assigned
region and must be assigned to a new one. We study this problem in terms of a competitive analysis
measured as a function of A, the ply of the system of regions, that is, the maximum number of regions
that cover any single point.

In the offline version of this problem, when object motions are known in advance, a simple greedy
strategy suffices to determine an optimal assignment of objects to base stations, with as few handovers
as possible. For the online version of this problem for moving points in one dimension, we present
a deterministic algorithm that achieves a competitive ratio of O(logA) with respect to the optimal
algorithm, and we show that no better ratio is possible. For two or more dimensions, we present a
randomized online algorithm that achieves a competitive ratio of O(logA) with respect to the optimal
algorithm, and a deterministic algorithm that achieves a competitive ratio of O(A); again, we show that
no better ratio is possible.

1 Introduction

A common problem in wireless sensor networks involves the online tracking of moving objects [2,/6l/11}{14}
20L1261127]. Whenever a moving object leaves a region corresponding to its tracking sensor, a nearby sensor
must take over the job of tracking the object. Similar handovers are also used in cellular phone services
to track moving customers [22]. In both the sensor tracking and cellular phone applications, handovers
involve considerable overhead [11,(14,[20,122,127]], so we would like to minimize their number.

Geometrically, we can abstract the problem in terms of a set of n closed regions in R4, for a constant d,
which represent the sensors or cell towers. We assume that any pair of regions intersects at most a constant
number of times, as would be the case, say, if they were unit disks (a common geometric approximation
used for wireless sensors [2}/6L|11}/14,20L127]]). We also have one or more moving entities, which are repre-
sented as points traveling along 1-dimensional curves (which we do not assume to be smooth, algebraic, or
otherwise well-behaved, and which may not be known or predictable by our algorithms) with a time stamp
associated to each point on the curve (Figure).

We need to track the entities via regions that respectively contain them; hence, for each moment in time,
we must assign one of the regions to each entity, p, with the requirement that p is inside its assigned

Fig. 1. Example input

2 David Eppstein, Michael T. Goodrich, and Maarten Loffler

region at each moment in time. Finally, we want to minimize the number of times that we must change the
assignment of the region tracking an entity, so as to minimize the number of handovers.

We also consider a generalized version of this problem, where each point p is required to be assigned to
c regions at each moment in time. This generalization is motivated by the need for trilateration in cellular
networks and wireless sensor networks [15}24], where directional information from three or more sensors
is used to identify the coordinates of a moving point.

1.1 Related Work

There has been considerable previous work in the wireless sensor literature on mobile object tracking. So,
rather than providing a complete review of this area, let us simply highlight some of the most relevant work
from the wireless sensor literature.

Cao et al. [6] study the problem of modeling an object moving along a straight-line trajectory among
uniformly-distributed unit-disk sensors. Their analysis involves a probabilistic study of when tracking is
feasible if sensors enter their tracking states independently at random. Alaybeyoglu et al. [2] also study the
object tracking problem using uniformly-distributed unit disks to model sensors, with their focus on the
problem of identifying the tracking sensor with strongest signal in each case.

Zhou et al. [27] introduce the idea of using handovers to reduce energy in mobile object tracking problems
among wireless sensor networks. Pattem et al. [20] study energy-quality trade-offs for various strategies
of mobile object tracking, including one with explicit handovers. He and Hou [14] likewise study mobile
object tracking with respect to handover minimization, deriving probabilistic upper and lower bounds based
on distribution assumptions about the moving objects and wireless sensors. Ghica et al. [11] study the
problem of tracking an object among sensors modeled as unit disks so as to minimize handovers, using
probabilistic assumptions about the object’s future location while simplifying the tracking requirements to
discrete epochs of time.

The analysis tool with which we characterize the performance of our algorithms comes from research in
online algorithms, where problems are defined in terms of a sequence of decisions that must be made one
at a time, before knowing the sequence of future requests. Sleator and Tarjan [21]], introduce competitive
analysis, which has been used for a host of subsequent online algorithms (e.g., see [5]]). In competitive anal-
ysis, one analyzes an online algorithm by comparing its performance against that of an idealized adversary,
who can operate in an offline fashion, making his choices after seeing the entire sequence of items.

We are not aware of any previous work that applies competitive analysis to the problem of handover min-
imization. Nevertheless, this problem can be viewed from a computational geometry perspective as an
instantiation of the observer-builder framework of Cho et al. [7]], which itself is related to the incremental
motion model of Mount et al. [18]], the observer-tracker model of Yi and Zhang [26], and the well-studied
kinetic data structures framework [1,14,{12,|13]]. In terms of the observer-builder model, our problem has
an observer who watches the motion of the point(s) we wish to track and a builder who maintains the
assignment of tracking region(s) to the point(s). This assignment would define a set of Boolean certificates,
which become violated when a point leaves its currently-assigned tracking region. The observer would
notify the builder of any violation, and the builder would use information about the current and past states
of the point(s) to make a new assignment (and define an associated certificate). The goal, as in the previous
work by Cho et al. [7]], would be to minimize the number of interactions between the observer and builder,
as measured using competitive analysis. Whereas Cho et al. apply their model to the maintenance of net
trees for moving points, in our case the interactions to be minimized correspond to handovers, and our re-
sults supply the algorithms that would be needed to implement a builder for handover minimization. Yi and
Zhang [26] study a general online tracking problem, but with a different objective function than ours: when
applied to mobile object tracking, rather than optimizing the number of handovers, their scheme would aim
to minimize the distance between objects and the base-station region to which they are each assigned.

Several previous papers study overlap and connectivity problems for geometric regions, often in terms of
their ply, the maximum number of regions that cover any point. Guibas et al. [12]] study the maintenance

Tracking Moving Objects with Few Handovers 3

of connectivity information among moving unit disks in the kinetic data structure framework. Miller e?
al. [17] introduce the concept of ply and show how sets of disks with low ply possess small geometric
separators. Eppstein et al. [9,|10] study road network properties and algorithms using a model based on
sets of disks with low ply after outliers are removed. Van Leeuwen [23] studies the minimum vertex cover
problem for disk graphs, providing an asymptotic FPTAS for this problem on disk graphs of bounded ply.
Alon and Smorodinsky [3]] likewise study coloring problems for sets of disks with low ply.

Our problem can also be modeled as a metrical task system in which the sensor regions are represented as
states of the system, the cost of changing from state to state is uniform, and the cost of serving a request
is zero for a region that contains the request point and two for other regions. Known randomized online
algorithms for metrical task systems [16] would give a competitive ratio of O(logn) for our problem, not
as good as our O(logA) result, and known lower bounds for metrical task systems would not necessarily
apply to our problem.

1.2 New Results

In this paper, we study the problem of assigning moving points in the plane to containing base station
regions in an online setting and use the competitive analysis to characterize the performance of our algo-
rithms. Our optimization goal in these algorithms is to minimize the number of handovers that occur when
an object moves outside the range of its currently-assigned base station and must be assigned to a new base
station. We measure the competitive ratio of our algorithms as a function of A, the ply of the system of
base station regions, that is, the maximum number of such regions that cover any single point. When object
motions are known in advance, as in the offline version of the object traking problem, a simple greedy
strategy suffices to determine an optimal assignment of objects to base stations, with as few handovers
as possible. For the online problem, on the other hand, for moving points in one dimension, we present
a deterministic online algorithm that achieves a competitive ratio of O(logA), with respect to the offline
optimal algorithm, and we show that no better ratio is possible. For two or more dimensions, we present
a randomized algorithm that achieves a competitive ratio of O(logA), and a deterministic algorithm that
achieves a competitive ratio of O(A); again, we show that no better ratio is possible.

2 Problem Statement and Notation

Let 9 be a set of n regions in R?. These regions represent the areas that can be covered by a single sensor.
We assume that each region is a closed, connected subset of R¢ and that the boundaries of any two regions
intersect O(1) times — for instance, this is true when each region is bounded by a piecewise algebraic curve
in R? with bounded degree and a bounded number of pieces. With these assumptions, the arrangement of
the pieces has polynomial complexity O(n¢). The ply of Z is defined to be the maximum over R? of the
number of regions covering any point. We always assume that & is fixed and known in advance.

Let T be the trajectory of a moving point in RY. We assume that T is represented as a continuous and
piecewise algebraic function from [0,0) to R?, with a finite but possibly large number of pieces. We also
assume that each piece of T crosses each region boundary O(1) times and that it is possible to compute these
crossing points efficiently. We also assume that 7'([0,e0)) C UZ; that is, that the moving point is always
within range of at least one sensor; this assumption is not realistic, and we make it only for convenience
of exposition. Allowing the point to leave and re-enter C UZ would not change our results since the
handovers caused by these events would be the same for any online algorithm and therefore cannot affect
the competitive ratio.

As output, we wish to report a fracking sequence S: a sequence of pairs (;,D;) of a time 7; on the trajectory
(with 79 = 0) and a region D; € Z that covers the portion of the trajectory from time 7; to 7;;.;. We require
that for all i, 7; < 7;41. In addition, for all i, it must be the case that T([t;, T;+1]) C D;, and there should be
no v’ > 71 for which T([7;,7']) C D;; in other words, once a sensor begins tracking the moving point, it

4 David Eppstein, Michael T. Goodrich, and Maarten Loffler

(@ (b)

Fig. 2. An example of of four sensors and two trajectories, in the original setting (a) and the corresponding
interval representation (b).

continues tracking that point until it moves out of range and another sensor must take over. Our goal is to
minimize |S|, the number of pairs in the tracking sequence. We call this number of pairs the cost of S; we
are interested in finding tracking sequences of small cost.

Our algorithm may not know the trajectory 7 completely in advance. In the offline tracking problem, T is
given as input, and we must find the tracking sequence S that minimizes |S|; as we show, a simple greedy
algorithm accomplishes this task. In the online tracking problem, T is given as a sequence of updates, each
of which specifies a single piece in a piecewise algebraic decomposition of the trajectory 7. The algorithm
must maintain a tracking sequence S that covers the portion of T that is known so far, and after each
update it must extend S by adding additional pairs to it, without changing the pairs that have already been
included. As has become standard for situations such as this one in which an online algorithm must make
decisions without knowledge of the future, we measure the quality of an algorithm by its competitive ratio.
Specifically, if a deterministic online algorithm A produces tracking sequence S4 (7T') from trajectory T, and
the optimal tracking sequence is S*(T'), then the competitive ratio of A (for a given fixed set & of regions)

is
qup 2]
r |[§5(T)|
In the case of a randomized online algorithm, we measure the competitive ratio similarly, using the expected
cost of the tracking sequence it generates. In this case, the competitive ratio is

sy ST
s ()]

As a variation of this problem, stemming from trilateration problems in cellular phone network and sensor
network coverage, we also consider the problem of finding tracking sequences with coverage c. In this
setting, we need to report a set of ¢ tracking sequences Si,S3,...,S. for T that are mutually disjoint at
any point in time: if a region D appears for a time interval [7;, 7,11] in one sequence Sy and a time interval
[0j,0/+1] in some other sequence S;, we require that the intervals [7;, T;41] and [0}, 0j41] are disjoint. We
wish to minimize the total cost Y5, |S;| of a set of tracking sequences with coverage ¢, and in both the
offline and online versions of the problem.

3 Offline Tracking

Even though we focus on the case where the trajectories of the entities are not known in advance, we also
study the offline tracking problem. We will use some of the observations and algorithms from the offline
problem in our analysis of algorithms for the online problem.

As mentioned in Section 4, we may view the input as a sequence of events that describe when an entity
enters or leaves the region belonging to a sensor. In other words, we can translate the offline tracking
problem into a problem with one continuous dimension (time), where for each sensor we represent the set

Tracking Moving Objects with Few Handovers 5

Fig. 3. Greed is good!

of times during which the entity is inside or outside that sensor as a set of intervals in this time dimension.
Figure [2| shows an example of two different trajectories travelling in the same set of regions Z, and the
corresponding interval representations of these trajectories.

3.1 Greedy Algorithm for Offline c-coverage Tracking

We describe a greedy algorithm for the offline problem where T needs to be covered by c disjoint sensors
(trilateration) at any time. The original problem is a special case where ¢ = 1.

In the greedy algorithm, We start with the ¢ longest available segments at the start. Now, whenever we
reach the end of an interval at time 7, we consider the set of available intervals (intervals that contain T,
and are not currently in use by one of the other ¢ — 1 trackers), and always switch to the one that continues
for the longest time into the future. Figure 3(a)] shows a simple example for ¢ = 1.

Theorem 1. The greedy algorithm solves the offline tracking problem optimally, in polynomial time.

Proof. Consider an arbitrary solution. First, we may assume whenever a path enters an interval, it stays
there until the end of the interval. The only reason why it would leave is to make room for another path.
But in that case, we could switch the roles of these two paths, leading to a better solution. Similarly, if a
path reaches the end of an interval and does not jump to the longest available interval, this must be because
another path uses that interval in the future. But then we can just select it anyway, and when the other path
wants to select it, we send it instead to the place where our first path would have been at that time. See
Figure[3(b)l This gives another solution that is at least as good.

Assuming the input is given as a sequence of events, the greedy algorithm can be trivially implemented
in time quadratic in the length of this sequence (this can likely be improved). Since we assume that the
arrangement of the regions in & has polynomial complexity and each piece of the trajectory has a constant
number of intersections with the regions, the length of the event sequence is polynomial in 7, the number
of regions in &, and m, the number of pieces of T'. O

4 Online Tracking

We now move on to the dynamic setting. We assume that we are given the start locations of the trajectory,
and receive a sequence of updates extending the trajectory. From these updates we can easily generate
a sequence of events caused when the trajectory crosses into or out of a region. We will describe three
algorithms for different settings, which are all based on the following observations.

Let T be the (unknown) trajectory of our moving entity, and recall that 7(7) denotes the point in space
that the entity occupies at time 7. Let 7y be the starting time. We will define a sequence of times 7; as
follows. For any i, let p; = T(7;) be the location of the entity at time 7;, and let &; C & be the set of

6 David Eppstein, Michael T. Goodrich, and Maarten Loffler

Fig. 4. The set Z; of disks containing p;, and the point p;;; where the trajectory leaves the last disk of Z;.

regions that contain p;. For each D;; € %, let 7] ; be first the time after 7; that the entity leaves D;;. Now,
let 741 = max; 7/ ; be the moment that the entity leaves the last of the regions in Z; (note that it may have
re-entered some of the regions). Figure [] shows an example. Let 7; be the last assigned time (that is, the
entity does not leave all disks & before the the end of its trajectory).

Observation 2 Any tracking sequence S for trajectory T must have length at least k.

Proof. For any i, a solution must have a region of Z; at time ;. However, since by construction there is no
region that spans the entire time interval [7;, ;1 + €] (for any € > 0), there must be at least one handover
during this time, resulting in at least k — 1 handovers, and at least k regions. ad

4.1 Randomized Tracking with Logarithmic Competitive Ratio

With this terminology in place, we are now ready to describe our randomized algorithm. We begin by
computing Ty, po and % at the start of 7. We will keep track of a set of candidate regions &, which we
initialize to € = %, and select a random element from the candidate set as the first region to track the
entity. Whenever the trajectory leaves its currently assigned region, we compute the subset 6 C %; of all
regions that contain the whole trajectory from p; to the event point, and if % is not empty we select a new
region randomly from 4. When % becomes empty, we have found the next point p;; |, giving us a new
nonempty candidate set %. Intuitively, for each point p;, if the set of candidate regions containing p; is
ordered by their exit times, the selected regions form a random increasing subsequence of this ordering,
which has expected length O(logA), whereas the optimal algorithm incurs a cost of one for each point p;.
Refer to Algorithm|[I]for a more formal description of the algorithm.

Lemma 1. Algorithm prOduces a valid solution of expected length O(klogA).

Proof. By construction, we produce a new time stamp 7; as soon as the entity leaves all available sensors
that contain p;_;. This corresponds exactly to the times we switch sensors in the greedy algorithm of
Section 3] which by Theorem [I]yields an optimal solution.

Next, we prove that between 7; and ;1 the expected number of new regions is O(logA). Recall that, for
each D;; € Z;, we defined 7/; to be the first time after 7; that the entity leaves D;;. These numbers 7, ; form
a set of at most |Z;| numbers. At each call to pick_sensor, we select a random number from this set that
is larger than any number we chose before. The expected length of such a sequence is In|Z;| + O(1) =
O(logA). O

Combining Observation 2| and Lemrna we see that Algorithmhas a competitive ratio of O(logA).

Tracking Moving Objects with Few Handovers 7

Algorithm 1 Randomized online tracking algorithm.
We keep global variables i, ¢, and S.
Initialization:
1. seti=—1
2. call next_step(7)
3. call pick_sensor(7p)
Procedure next_step(7):
1. increment i

2. 8et7, =71
3. compute p; and D; (see Section@]for efficiency considerations)
4. set¥ =D;

Procedure pick_sensor(7):
1. take a random element C € ¥
2. append (7,C) to S
Handle event (7,D):
1. if the event is a region-enter-event, ignore it
2. if D € ¥ then
(a) set¥ =% \{D}.
(b) if € now is empty, then call next_step(7)
(c) if D is equal to the last region in S, then call pick_sensor(7)
When there are no more events, output S.

4.2 Deterministic Tracking with Linear Competitive Ratio

We now describe a deterministic variant of Algorithm [T} The only thing we change is that, instead of
selecting a random member of the set ¥ of candidate regions, we select an arbitrary element of this set.
Here we assume that € is represented in some deterministic way that we make no further assumptions
about. For example, if the elements in & are unit disks we might store them as a sorted list by the x-
coordinate of their center points. Algorithm [2]shows the pseudocode for the changed procedure.

Algorithm 2 Deterministic online tracking algorithm.

Procedure pick_sensor(7):
1. let C be the first element in €
2. append (7,C) to S

This strategy may seem rather naive, and indeed produces a competitive ratio that is exponentially larger
than that of the randomized strategy of the previous section. But we will see in Section [5] that this is
unavoidable, even for the specific case of unit disks.

Lemma 2. Algorithm|2|produces a valid solution of length O(kA).

Proof. Since the change in the algorithm does not influence the validity of the solution, the correctness of
the algorithm follows directly from Lemma |1} The length of a solution is clearly no more than kA, since
there are k steps and at each step there are at most A disks in ;. a
As before, combining Observation [2] and Lemma [2] we see that Algorithm [2] has a competitive ratio of
o(A).

4.3 Deterministic Tracking in One Dimension

In the 1-dimensional case, a better deterministic algorithm is possible. In this case, the regions of & can
only be connected intervals, due to our assumptions that they are closed connected subsets of R.

8 David Eppstein, Michael T. Goodrich, and Maarten Loffler

Fig. 5. A set of 8 intervals covering the current location of the entity (blue dot). A good interval is highlighted;
this interval has ¢; =3 <8/2 and r; =2 < 8/2.

Now, when we want to pick a new sensor, we have to choose between ¢ = |%’| intervals that all contain the
current position of the entity. For each interval C;, let ¢; be the number of intervals in €\ {C;} that contain
the left endpoint of C;, and let r; be the number of intervals in %\ {C;} that contain the left endpoint of C;.
We say that an interval C; is good if max(¢;,r;) < ¢/2. Our deterministic algorithm simply chooses a good
sensor at each step. Figure[3]illustrates this.

Algorithm 3 Deterministic online tracking algorithm for d = 1.

Procedure pick_sensor(T):

1. let L be the sequence of left end points of the intervals in &, sorted from left to right
let R be the sequence of right end points of the intervals in %, sorted from right to left
for each C € €, let ic be the highest index of C in either L or R
let C* be the sensor that has the lowest i
append (7,C*) to §

A e N

The new algorithm is described in Algorithm[3] As with our deterministic algorithm in higher dimensions,
the only change from Algorithm [T}is the implementation of the pick_sensor procedure.

Lemma 3. Algorithm[3|produces a valid solution of length O(klogA).

Proof. There always exists a good interval, by the pigeonhole principle, because there are at most (¢ —1)/2
intervals that are not good due to ¢; being too high and at most (¢ — 1)/2 intervals that are not good due
to r; being too high. Therefore the algorithm always succeeds in finding a good interval to choose. As in
the previous section, the change in the algorithm does not influence the validity of the solution, so the
correctness of the algorithm follows directly from LemmalT]

Each time Algorithm[3|performs a handover, it must be the case the trajectory has just crossed either the left
endpoint or the right endpoint of the interval it most recently selected. Therefore, within the time interval
from 7; to 7,1, the number of intervals in & goes down by at least a factor of two at each handover, and it
begins as at most A. Therefore, the number of handovers within this interval is at most log, A and the total
cost of the solution is at most klog, A. a

Combining Observation [2] and Lemma |3] we conclude that Algorithm [3| also has a competitive ratio of
O(logA).

4.4 Summary of Algorithms

Our input assumptions ensure that any trajectory can be transformed in polynomial time into a sequence of
events: trivially, for each piece in the piecewise description of the trajectory, we can determine the events
involving that piece in time O(n) (where n = |2|) and sort them in time O(nlogn).

Once this sequence is known, it is straightforward to maintain both the set of regions containing the current
endpoint of the trajectory, and the set % of candidate regions, in constant time per event. Additionally, each
event may cause our algorithms to select a new region, which may in each case be performed given the

Tracking Moving Objects with Few Handovers 9

ab cd

a ac abcd ac c

ad cb

Fig. 6. Four similar rhombi form a set of regions for which no stateless algorithm can be competitive.

set € in time O(|%¢’|) = O(A). Therefore, if there are m events in the sequence, the running time of our
algorithms (once the event sequence is known) is at most O(mA).

Additionally, geometric data structures (such as those for point location among fat objects [[19]) may be
of use in more quickly finding the sequence of events, or for more quickly selecting a region from %’; we
have not carefully analyzed these possibilities, as our focus is primarily on the competitive ratio of our
algorithms rather than on their running times.

We summarize these results in the following theorem:
Theorem 3. Given a set 9 of n connected regions in R%, and a trajectory T,

— there is a randomized strategy for the online tracking problem that achieves a competitive ratio of
O(logA); and

— there are deterministic strategies for the online tracking problem that achieve a competitive ratio of
O(logA) when d =1 or O(A) whend > 1.

Each of these strategies may be implemented in polynomial time.

5 Lower Bounds

We now provide several lower bounds on the best competitive ratio that any deterministic or randomized
algorithm can hope to achieve. Our lower bounds use only very simple regions in Z: similar rhombi, in
one case, unit disks in R? in a second case, and unit intervals in R in the third case. These bounds show
that our algorithms are optimal, even with strong additional assumptions about the shapes of the regions.

5.1 Lower Bounds on Stateless Algorithms

An algorithm is stateless if the next sensor that covers the moving point, when it moves out of range of
its current sensor, is a function only of its location and not of its previous state or its history of motion.
Because they do not need to store and retrieve as much information, stateless algorithms provide a very
enticing possibility for the solution of the online tracking problem, but as we show in this section, they
cannot provide a competitive solution.

Theorem 4. There exists a set 9 of four similar rhombi in R?, such that any stateless algorithm for the
online tracking problem has unbounded competitive ratio.

10 David Eppstein, Michael T. Goodrich, and Maarten Loffler

(@ (b)

Fig. 7. (a) A set of A disks whose centers are equally spaced on a circle. (b) The heart of the construction,
zoomed in. The yellow cell is inside all disks; the red cells are inside all but one disk.

Proof. The set 7 is shown in Figure[6] It consists of four rhombi a, b, ¢, and d; these rthombi partition the
plane into regions (labeled in the figure by the rhombi containing them) such that the common intersection
abcd of the rhombi is directly adjacent to regions labeled ab, ac, ad, bc, and cd.

Let G be a graph that has the four rhombi as its vertices, and the five pairs ab, ac, ad, bc, and cd as its
edges. Let A be a stateless algorithm for 2, and orient the edge xy of G from x to y if it is possible for
algorithm A to choose region y when it performs a handover for a trajectory that moves from region abcd
to region xy. If different trajectories would cause A to choose either x or y, orient edge xy arbitrarily.

Because G has four vertices and five edges, by the pigeonhole principle there must be some vertex x with
two outward-oriented edges xy and xz. There exists a trajectory T that repeatedly passes from region abcd to
xy, back to abcd, to xz, and back to abcd, such that on each repetition algorithm A performs two handovers,
from z to y and back to z. However, the optimal strategy for trajectory 7 is to cover the entire trajectory
with region x, performing no handovers. Therefore, algorithm A has unbounded competitive ratio. ad

5.2 Lower Bounds on Deterministic Algorithms

Next, we show that any deterministic algorithm in two or more dimensions must have a competitive ratio
of A or larger, matching our deterministic upper bound and exponentially worse than our randomized upper
bound. The lower bound construction consists of a set of A unit disks with their centers on a circle, all
containing a common point (Figure[7). The idea is that if the trajectory starts at this common point, it can
exit from any single disk, in particular, the one that a deterministic algorithm previously chose.

Theorem 5. There exists a set 9 of unit disks in R?, such that any deterministic algorithm for the online
tracking problem has competitive ratio at least A—1.

Proof. Let 2 be a set of A unit disks whose centers are equally spaced on a given circle C of slightly less
than unit radius, as in Figure[7(a)] Let the moving point to be tracked start at the point py at the center of C,
in the common interior of all disks. For each disk D; € 2, there exists a cell X; in the arrangement that is
interior to all disks in 2\ {D;}, but outside D; itself. Furthermore, this cell is directly adjacent to the center
cell. See Figure for an illustration.

Now, let A be any deterministic algorithm for the online tracking problem, and construct a sequence of
updates to trajectory 7 as follows. Initially, T consists only of the single point pg. At each step, let algorithm
A update its tracking sequence to cover the current trajectory, let D; be the final region in the tracking
sequence constructed by algorithm A, and then update the trajectory to include a path to X; and back to the
center.

Tracking Moving Objects with Few Handovers 11

P 3 |
) ry

Fig. 8. A set of A =8 intervals, and a tree of 8 different trajectories in R! (horizontal dimension).

Since X; is not covered by D;, algorithm A must increase the cost of its tracking sequence by at least one
after every update. That is, [S4(T)| > |T'|. However, in the optimal tracking sequence, every A—1 consecu-
tive updates can be covered by a single region D;, so $*(T) < |T'|/(A—1). Therefore, the competitive ratio
of A is atleast A—1. a

This construction generalizes to any d > 2.

5.3 Lower Bounds on Randomized Algorithms

The above lower bound construction uses the fact that the algorithm to solve the problem is determinis-
tic: an adversary constructs a tracking sequence by reacting to each decision made by the algorithm. For
a randomized algorithm, this is not allowed. Instead, the adversary must select an entire input sequence,
knowing the algorithm but not knowing the random choices to be made by the algorithm. Once this selec-
tion is made, we compare the quality of the solution produced by the randomized algorithm to the optimal
solution. By Yao’s principle [825]], finding a randomized lower bound in this model is equivalent to finding
a random distribution R on the set of possible update sequences such that, for every possible deterministic
algorithm A, the expected value of the competitive ratio of A on a sequence from R is high.

Our lower bound construction consists of A unit intervals that contain a common point, and a tree of A
different possible paths for the moving object to take, each of which leaves the intervals in a different
ordering, in a binary tree-like fashion. Half of the trajectories start by going to the left until they are outside
the right half of the intervals, the others start towards the right until they are outside the left half of the
intervals, and this recurses, as shown in Figure

More formally, let us assume for simplicity that A is a power of 2. Let & be a set of A distinct unit intervals
in R, containing a common point py. For any k € [1,A] we define point py to be a point outside the leftmost
k intervals but in the interior of the rest, and p_; to be a point outside the rightmost k intervals but in the
interior of the rest.

Now, for each j € [1,A], we construct a trajectory 7; with i = logA steps, as follows. We define an index
&(j,i) for all j € [1,A] and all i € [1,h] such that trajectory 7; is at point pe; ;) at step i. At step 0, all
trajectories start at £ (j,0) = 0. Then, at step i:

— all 7 with j mod 2h*’: < Zh*’:” move to the left to & (j,i) = min;; &(j,1) — 2", '
— all 7; with j mod 2= > 2"=i=1 move to the right to & (j,i) = max;; & (j,1) +2"".

Figure[8]shows .7 be the resulting set of these A trajectories in a tree representation.

Theorem 6. There exists a set 9 of unit intervals in R, for which any randomized algorithm to solve the
online tracking problem has competitive ratio Q(logA).

Proof. Let 2 and the set of trajectories .7 be as described above. Let R be a probability distribution over
the set of all possible trajectories that has a probability of 1/A to be any element of 7, and a probability
of 0 elsewhere.

12 David Eppstein, Michael T. Goodrich, and Maarten Loffler

T0 T F T F 7 FF T F T

Fig. 9. lllustration of the two type of event times when covering the entity with ¢ = 3 sensors at the same time.
The yellow paths indicate the optimal greedy solution. The times marked with 7; are the times at which we
start a new step in the algorithm. The times marked with F are times when a fixed interval ends. Note that at
time 7 none of the sensors in the greedy solution changes its interval.

Now, let A be any deterministic algorithm for the online tracking problem. At each level of the tree, each
region D; that algorithm A might have selected as the final region in its tracking sequence fails to cover
one of the two points that the moving point could move to next, and each of these points is selected with
probability 1/2, so algorithm A must extend its tracking sequence with probability 1/2, and its expected
cost on that level is 1/2. The number of levels is log, A, so the total expected cost of algorithm A is 1+
%logz A, whereas the optimal cost on the same trajectory is 1. Therefore the competitive ratio of algorithm
A on a random trajectory with distribution R is at least 1 + % log, A.

It follows by Yao’s principle that the same value 1+ % log, A is also a lower bound on the competitive ratio
of any randomized online tracking algorithm. a

Although the trajectories formed in this proof are short relative to the size of &, this is not an essential
feature of the proof: by concatenating multiple trajectories drawn from the same distribution, we can find
a random distribution on arbitrarily long trajectories leading to the same 1+ %long lower bound. This
construction generalizes to unit balls in any dimension d > 1 as well.

6 Trilateration

We now extend our online algorithms to the scenario where the moving entity needs to be covered by ¢
different sensors at all times. Obviously, this means we need to strengthen our assumptions on & and T
slightly: every point of 7[0,c0) should be inside at least ¢ regions of Z for this to be possible.

We analyze the online version of the problem, and provide the competitive ratio as a function of A and c.
As ¢ tends to A, we may expect the competitive ratio to improve, since in the extreme case we simply need
to use all available sensors and have no choice in the matter. Indeed, we show that a randomized algorithm
exists that has competitive ratio O(log(A —c)), and that again no better ratio is possible in this case.

6.1 Randomized Algorithm

The randomized algorithm with expected competitive ratio of logA for the simple version of the online
tracking problem can be extended to the case in which we want to track the entity with ¢ sensors. The reason
is that the greedy algorithm still works for the offline problem, as we proved in Theorem I} Interestingly,
the competitive ratio gets better as c increases: the algorithm can be adapted to achieve a competitive ratio
of O(log(A—c)), so when the required coverage is close to the ply this gives a constant competitive ratio.
The description gets slightly more complicated. We will now prove this theorem.

Theorem 7. There exists a randomized algorithm that solves the trilateration problem with a competitive
ratio of O(log(A—c)).

Tracking Moving Objects with Few Handovers 13

First, we describe the altered algorithm. Again, we construct a sequence of time stamps 7; with correspond-
ing location of the entity p; and set of disks &; that contain p;. Obviously, we need to assume |Z;| > c.
Now, as before, we maintain a set of candidates % that is initialized to %, and whenever the trajectory
exits a sensor region, we remove that region from % and replace it with a new random element from % that
is not currently used by another sensor. If there are not enough regions left in ¢ (that is, if || = ¢ — 1 after
removing the current sensor), we mark the current time as 7,41, and compute a new set of candidates (note
that the ¢ — 1 remaining old candidates will also be in the new set of candidates). This proceeds until we
mark 7; as the end of time.

Now, to analyze the performance of this algorithm, we will define an additional class of events. Just before
we reach a new time 7;, we mark all ¢ sensors currently in use (which must correspond to the current
candidate set %) as fixed. Whenever a fixed sensor reaches the end of its interval, we say we have an
F-event, and after the F-event we stop considering this sensor as being fixed. In particular, this means
that each new T; corresponds to an F-event, but there could be more F-events. Figure 0] shows the time
stamps and F'-events for a small example. If we define F; to be the number of F-events between 7; and 7;; 1,
including the former and excluding the latter, then 1 < F; < ¢ for all i. We also write m = Z?:o F

Now we will show that any solution needs Q(m) handovers, and that our algorithm produces a solution
with an expected number of O(mlog(A—c)) handovers.

Lemma 4. The optimal solution to the tracking problem uses © (m) handovers.

Proof. By Theorem(I|the greedy approach yields an optimal solution, so we only need to bound the number
of handovers in that solution.

First, we argue that each handover in the greedy solution coincides with an F-event. At the start, the
greedy algorithm assigns the ¢ longest available itervals, which all become fixed before they run out. By
construction, for any i there must be a set of exactly ¢ sensors that cover the whole interval [1;, Tiy1].
Whenever an F-event occurs in this interval and a new sensor has to be assigned, the greedy approach will
pick the longest available one, and there must be at least one available interval that extends beyond 741,
which means it will also become fixed before it runs out.

Not all F-events need to be used by the greedy solution however (as can be seen in Figure [9), so we will
now prove that at least half of them are, by charging the unused events to used ones. Suppose an F-event
is not used, and assume it occurs in the interval [7;, 7;y1). The fact that the sensor became fixed means its
interval started already at or before time 7;_;. Suppose there are f unused F-events in the time interval
[7i, Ti+1). Since there are only ¢ sensors that completely cover the time interval [7;_1, 7;], and f of them are
not used, there must have been f handovers in the time interval [7;_1, 7;], which by the previous argument
occured during F-events. a

Lemma 5. Our randomized solution to the online tracking problem produces a valid solution of expected
length O(mlog(A—c)).

Proof. There are F; F-events during the time interval [7;, 7;+1). When each of these events occurs, we
pick a random element from the set of candidates &, that is larger than any other random element we
chose so far. We know that ¢ < |Z;| < A. We also know that ¢ — F; sensors stay on their intervals during
this time, so the set of free candidates is in fact at most A —c + F;. This results in an expected number of
F;+log((A—c+F;)/(F;)) changes (because we first take F; random elements, and then a random increasing
sequence that starts larger than any of these numbers).

The expected total number of handovers is Y~_ (F; +log((A—c +F;)/(F;))), which in the worst case (oc-
curing when F; = 1 for all i) comes down to mlog(A —c). O

These two lemmas together imply the competitive ratio we claimed.

14 David Eppstein, Michael T. Goodrich, and Maarten Loffler
6.2 Lower Bound for the Randomized Case

We can extend the construction of Section[5.3|to the current situation, although we now require the regions
of 2 to be intervals of two different lengths. Note that when d > 1, this is no real restriction since we can
always position a set of unit disks in such a way that their intersections with a given line form intervals of
two different lengths.

We define a set of intervals &, consisting of A—c + 1 unit intervals that form the construction depicted in
Figure 8] and additionally ¢ — 1 intervals of length 2 that cover all A—c + 1 unit intervals.

Theorem 8. There exists a set 2 of intervals in R of two different lengths, for which any randomized
algorithm to solve the online tracking problem has competitive ratio Q(log(A—c)).

Proof. A solution of ¢ disjoint tracking sequences must at any time use at least one of the A—c+ 1 unit
intervals, since there are only ¢ — 1 other intervals. We may assume that there is one single sequence that
only uses unit intervals, since otherwise we could swap pieces of the sequences. But by Theorem [6] no
algorithm can produce such a sequence with less than Q(logh) expected handovers, if there are / unit
intervals in the construction. Since in our case 7 = A —c + 1, the result follows. O

Our other lower bounds can also be extended just as easily.

7 Conclusions

We studied the online problem of tracking a moving entity among sensors with a minimal number of han-
dovers, combining the kinetic data and online algorithms paradigms. We provided several algorithms with
optimal competitive ratios. Interestingly, randomized strategies are able to provably perform significantly
better than deterministic strategies, and arbitrarily better than stateless strategies (which form a very natural
and attractive class of algortihms in our application).

We are able to track multiple entities using the same algorithms, by simply treating them independently.
As a future direction of research, it would be interesting to study the situation where each sensor has a
maximum capacity C, and cannot track more than C different entities at the same time. Another possible
direction of research is to analyze and optimize the running times of our strategies for particular classes of
region shapes or trajectories, something we have made no attempt at.

References

1. P. K. Agarwal, J. Erickson, and L. J. Guibas. Kinetic BSPs for intersecting segments and disjoint triangles. In
Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pages 107-116, 1998.

2. A. Alaybeyoglu, K. Erciyes, A. Kantarci, and O. Dagdeviren. Tracking Fast Moving Targets in Wireless Sensor
Networks. IETE Technical Review, 27(1):46-53, 2010.

3. N. Alon and S. Smorodinsky. Conflict-free colorings of shallow discs. In Proc. 22nd Symp. on Computational
Geometry (SoCG), pages 41-43, New York, NY, USA, 2006. ACM.

4. J. Basch, L. J. Guibas, C. Silverstein, and L. Zhang. A practical evaluation of kinetic data structures. In Proc.
13th Annu. ACM Sympos. Comput. Geom., pages 388-390, 1997.

5. A.Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge University Press, New
York, NY, USA, 1998.

6. Q. Cao, T. Yan, J. Stankovic, and T. Abdelzaher. Analysis of Target Detection Performance for Wireless Sensor
Networks. In V. K. Prasanna, S. Iyengar, P. G. Spirakis, and M. Welsh, editors, Distributed Computing in Sensor
Systems (DCOSS), volume 3560 of LNCS, pages 276-292. Springer, 2005.

7. M. Cho, D. Mount, and E. Park. Maintaining Nets and Net Trees under Incremental Motion. In Y. Dong, D.-Z.
Du, and O. Ibarra, editors, Int. Symp. on Algorithms and Computation (ISAAC), volume 5878 of LNCS, pages
1134-1143. Springer, 2009.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Tracking Moving Objects with Few Handovers 15

. M. Chrobak, L. L. Larmore, C. Lund, and N. Reingold. A better lower bound on the competitive ratio of the

randomized 2-server problem. Inform. Process. Lett., 63(2):79-83, 1997.

. D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks through an algorithmic lens. In GIS '08:

Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information
systems, pages 1-10, New York, NY, USA, 2008. ACM.

D. Eppstein, M. T. Goodrich, and L. Trott. Going off-road: transversal complexity in road networks. In Proc.
17th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information Systems (ACM GIS), pages 23-32,
New York, NY, USA, 2009. ACM.

O. Ghica, G. Trajcevski, F. Zhou, R. Tamassia, and P. Scheuermann. Selecting Tracking Principals with Epoch
Awareness. In Proc. 18th ACM SIGSPATIAL Internat. Conf. on Advances in Geographic Information Systems
(ACM GIS), 2010.

L. Guibas, J. Hershberger, S. Suri, and L. Zhang. Kinetic Connectivity for Unit Disks. Discrete Comput. Geom.,
25(4):591-610, 2001.

L. J. Guibas. Kinetic data structures — a state of the art report. In P. K. Agarwal, L. E. Kavraki, and M. Mason,
editors, Proc. Workshop Algorithmic Found. Robot., pages 191-209. A. K. Peters, Wellesley, MA, 1998.

G. He and J. Hou. Tracking targets with quality in wireless sensor networks. In /3th IEEE Conf. on Network
Protocols (ICNP), pages 1-12, 2005.

M. Hellebrandt, R. Mathar, and M. Scheibenbogen. Estimating position and velocity of mobiles in a cellular
radio network. IEEE Transactions on Vehicular Technology, 46(1):65-71, 2002.

S. Irani and S. Seiden. Randomized algorithms for metrical task systems. Theor. Comput. Sci.,
194(1-2):163-182, 1998.

G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and nearest neighbor
graphs. J. ACM, 44:1-29, 1997.

D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. A computational framework for
incremental motion. In Proc. 20th Symp. on Computational Geometry (SoCG), pages 200-209, New York, NY,
USA, 2004. ACM.

M. Overmars and F. van der Stappen. Range Searching and Point Location among Fat Objects. J. Algorithms,
21(3):629-656, 1996.

S. Pattem, S. Poduri, and B. Krishnamachari. Energy-Quality Tradeoffs for Target Tracking in Wireless Sensor
Networks. In F. Zhao and L. Guibas, editors, Information Processing in Sensor Networks, volume 2634 of LNCS,
pages 553-553. Springer, 2003.

D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Commun. ACM,
28:202-208, 1985.

S. Tekinay and B. Jabbari. Handover and channel assignment in mobile cellular networks. /EEE
Communications Magazine, 29(11):42-46, 1991.

E. J. van Leeuwen. Better Approximation Schemes for Disk Graphs. In L. Arge and R. Freivalds, editors,
Scandinavian Workshop on Algorithm Theory (SWAT), volume 4059 of LNCS, pages 316-327. Springer, 2006.
Z. Yang and Y. Liu. Quality of Trilateration: Confidence-Based Iterative Localization. /IEEE Trans. on Parallel
and Distributed Systems, 21(5):631-640, 2010.

A. Yao. Probabilistic computations: Toward a unified measure of complexity. In 18th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 222-227, 1977.

K. Yi and Q. Zhang. Multi-dimensional online tracking. In Proc. of the 20th ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 1098-1107. SIAM, 2009.

F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration. IEEE Signal Processing
Magazine, 19(2):61-72, 2002.

	Tracking Moving Objects with Few Handovers

