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Abstract. The space of positive definite matrices P(n) is a Riemannian mani-
fold with variable nonpositive curvature. It includes Euclidean space and hyper-
bolic space as submanifolds, and poses significant challenges for the design of
algorithms for data analysis. In this paper, we develop foundational geometric
structures and algorithms for analyzing collections of such matrices. A key tech-
nical contribution of this work is the use of horoballs, a natural generalization of
halfspaces for non-positively curved Riemannian manifolds. We propose gener-
alizations of the notion of a convex hull and a centerpoint and approximations of
these structures using horoballs and based on novel decompositions of P(n). This
leads to an algorithm for approximate hulls using a generalization of extents.

1 Introduction

Data analysis and Euclidean geometry have traditionally been strongly linked, by rep-
resenting data as points in a Euclidean space and comparing data using the Euclidean
distance. However, as models for data analysis grow more sophisticated, it is becoming
clearer that accurate modeling of data requires the use of non-Euclidean geometry and
the induced geodesic distances. This geometry might be as simple as a surface embed-
ded in a Euclidean space but in general may be represented as a Riemannian manifold
with variable curvature [4].

One such manifold is P(n), the manifold of real symmetric positive definite matri-
ces. There are many application areas where the basic objects of interest, rather than
points in Euclidean space, are elements of P(n). In diffusion tensor imaging [3], matri-
ces in P(3) model the flow of water at each voxel of a brain scan, and a goal is to clus-
ter these matrices into groups that capture common flow patterns along fiber tracts. In
mechanical engineering [11], stress tensors are modeled as elements of P(6), and iden-
tifying groups of similar tensors helps locate homogeneous regions in a material from
samples. Kernel matrices in machine learning are elements of P(n) [26], and motivated
by the problems of learning and approximating kernels for machine learning tasks, there
has been recent interest in studying the geometry of P(n) and related spaces [20, 7, 28].

In all these areas, a problem of great interest is the analysis [15, 16] of collections
of such matrices (finding central points, clustering, doing regression). It is important to
note that in all these examples, the Riemannian structure of P(n) is a crucial element
of the modelling process: merely treating the matrices as points in Rn2

and endowing
the space with the Euclidean distance1 does not capture the correct notion of distance
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or closeness that is meaningful in these applications [22, 21, 27, 25, 23]. For example,
if we want to interpolate between two matrices of similar volume (determinant), a line
between the two in Rn2

contains matrices of volume well outside the range of volumes
of the two matrices, but all matrices on a Riemannian geodesic have volume in the
range.

Performing data analysis in such spaces requires the standard geometric toolkit that
has proven successful for Euclidean data: methods for summarizing data sets (extents
and core sets), finding representatives (centerpoints), and even performing accurate
sampling (VC dimension estimates and ε-samples). In order to compute these objects,
we need appropriate generalizations of the equivalent concepts in Euclidean spaces.

Our Contributions. In this paper we initiate a study of geometric algorithms on P(n).
We develop appropriate generalizations of halfspaces and convex hulls and also prove
bounds on the VC-dimension of associated range spaces. We apply these results to the
problem of estimating approximate extents for collections of matrices in P(n), as well
as studying approximate center points for such collections. Our results indicate that
the horoball (a generalization of a halfspace) retains many, but not all, of the same
combinatorial and structural properties of halfspaces, and is therefore a crucial building
block for designing algorithms in this space.

1.1 Hulls and Convexity: From Rd to P(n)

P(n) is a good model space for algorithmic analysis. Like other Cartan-Hadamard (C-
H) manifolds [8], its metric balls under the geodesic distance are (geodesically) convex,
which is an important property2. P(n) has been extensively studied analytically, and
there are simple closed form expressions for geodesics, the geodesic distance and other
important constructs (see Section 2 for details). This is in contrast to other negatively-
curved spaces like the δ -hyperbolic spaces [17], where in general one must assume
some oracle to compute distances between points.

However, the variable curvature of P(n) poses significant challenges for the con-
struction of standard geometric primitives. A natural notion of a halfspace that is both
“flat” and “convex” seems elusive, and it is not even clear whether a finite description
of the geodesic convex hull of 3 points exists! To understand why this is the case, and
why generalizing convex hulls to P(n) is difficult, it is helpful to first understand the
key properties used to define these notions in Euclidean space. In general, we desire a
compact representation of the convex hull of a set of points. Call this property (C):

(C): Given a finite set of points X , the convex hull C(X) of X has a finite description
using simple convex objects.

Euclidean hulls. In Euclidean space, the “simple convex objects” are halfspaces,
which satisfy two properties:

(P1) The complement of a closed halfspace is an open halfspace; both are convex. Their
boundary, a hyperplane, is also convex.

2 Compare this with even simple positively curved manifolds like the n-dimensional sphere, in
which this is no longer true.



(P2) Generically, d hyperplanes intersect at a single point and n hyperplanes partition
Rd into Θ(nd) regions.

These two properties can be used to construct the convex hull (satisfying property
(C)) efficiently in two different ways. Painting Segments: Given a finite set X0 ⊂ Rd

we can paint segments between all x1,x2 ∈ X0; the union of these segments yields a set
X1. We can recursively apply this procedure d times to generate 〈X2, . . . ,Xd〉, where Xd
is the convex hull of X0 [5]. This is the convex combination of X0, and the boundary
is partitioned into a finite number of faces uniquely determined by painting segments
among d-point subsets of X0.

Intersection of Convex Families: The convex hull of X ⊂ Rd is the intersection of
all halfspaces which contain X ; we only need to consider the finite set of halfspaces
supported by d points. We can also define the convex hull of X as the intersection of
all balls which contain X . Again we only need to consider balls supported by d points;
fixing this incidence, let their radius grow to infinity so they become halfspaces in the
limit; see Figure 1(a).

Hyperbolic hulls. The first space we encounter as we move beyond Euclidean space
towards P(n) is the hyperbolic space Hd , which is a Riemannian manifold of constant
negative curvature. It is convenient to embed Hd in the unit ball of Rd using well-known
models, specifically the Klein model [8, I.6] of Hd in which geodesics are straight lines,
and the Poincaré model [8, I.6] of Hd in which metric balls are Euclidean balls and
geodesics are circular arcs normal to the boundary of the unit ball.

Since in the Klein model, geodesics are straight lines, the painting segments con-
struction yields a convex hull in the same way as in Euclidean space; see Figure 1(b).
Similarly, a hyperbolic halfspace can be written as the intersection of the unit ball with
a Euclidean halfspace, and so a finite description of the convex hull can be obtained via
the intersection of halfspaces; see Figure 1(c).

Hulls in P(n). Once we reach P(n), these concepts break down. There is no way, in
general, to construct a halfspace (convex, and whose complement is convex) supported
by d points; such an object is called a totally geodesic submanifold and might not pass
through any given set of d points. This rules out constructions via the intersection of
convex families. Constructing a hull via painting of segments also does not work; the

(a) (b) (c) (d)

Fig. 1. Illustration of different constructions of hulls in R2 (a) and H2 under the Klein
model (b,c) and Poincaré model (d). (a) Intersection of halfspaces, one halfspace as limit
of ball supported by 2 points. (b) Painting segments, X0 as circles, X1 as segments, and X2
shaded. (c) Intersection of hyperbolic-halfspaces, forming the convex hull. (d) Intersection
of horoballs, forming the ball hull.



resulting process may not terminate in a finite number of steps, and the resulting object
might be full-dimensional, and would not in general lend itself to a finite description.

There is however another way to approach the idea of halfspaces. Returning to Hd

and the Poincaré model, consider a ball fixed at a point whose radius is allowed to
grow to infinity. Such a ball is called a horoball, and is convex. In Euclidean space, this
construction yields a halfspace passing through the fixed point, but in a curved space,
the ball never completely “flattens” out in the sense of property (P1). Horoballs can be
described finitely by a point and a tangent vector (in the same way a Euclidean halfspace
can be described by a point and a normal). We can then describe the intersection of
all horoballs containing X , which we call the ball hull; it is convex and contains the
convex hull of X ; see Figure 1(d). In the rest of this paper, we will focus our attention
on horoballs and the ball hull.

1.2 Technical Overview

A key conceptual insight in this work is that the horoball acts functionally like a half-
space, and can be used as a replacement for halfspace in spaces (like P(n)) which do
not in general admit halfspaces that span arbitrary sets of points. As justification for
this insight, our main result is an algorithm for computing an approximate ball hull of
a set of points in P(n), where the approximation uses a generalized notion of extent de-
fined analogously to how (hyperplane) extent is defined in Rd . The construction itself
follows the rough outline of approximate extent constructions in Rd . In fact, we exploit
the fact that P(n) admits a decomposition into a collection of Euclidean subspaces, each
“indexed” by an element of SO(n), the group of n×n rotation matrices, and use a grid
construction to cover SO(n) with a net, followed by building convex hulls in each of
the (finitely many) Euclidean subspaces induced by the net and combining them. We
expect that this decomposition will be of independent interest.

We announce two other uses of horoballs, with details in the full version. We can
define range spaces of horoballs, and we analyze shatter dimension and VC-dimension
of P(2). We also use these results to study center points in P(n).

1.3 Related Work

The mathematics of Riemannian manifolds, Cartan-Hadamard manifolds, and P(n) is
well-understood; the book by Bridson and Haefliger [8] is an invaluable reference on
metric spaces of nonpositive curvature, and Bhatia [5] provides a detailed study of P(n)
in particular. However, there are very few algorithmic results for problems in these
spaces. To the best of our knowledge, the only prior work on algorithms for positive
definite space are the work by Moakher [22] on mean shapes in positive definite space,
the work by Fletcher and Joshi [15] on principal geodesic analysis in symmetric spaces,
the robust median algorithms of Fletcher et al [16] for general manifolds (including
P(n) and SO(n)), and the generic approximation technique of Arnaudon and Nielsen [2]
for the Riemannian 1-center.

Geometric algorithms in hyperbolic space are much more tractable. The Poincaré
and Klein models of hyperbolic space preserve different properties of Euclidean space,
and many algorithm carry over directly with no modifications. Leibon and Letscher [19]
were the first to study basic geometric primitives in general Riemannian manifolds,



constructing Voronoi diagrams and Delaunay triangulations for sufficiently dense point
sets in these spaces. Their work was subsequently improved by Dyer et al. [13]. Epp-
stein [14] described hierarchical clustering algorithms in hyperbolic space.

δ -hyperbolic spaces [17] (metric spaces that “look” negatively curved without nec-
essarily having a smooth notion of curvature) have also been studied. Krauthgamer
and Lee [18] studied the nearest neighbor problem for points in δ -hyperbolic space.
Chepoi et al [9, 10] advanced this line of research, providing algorithms for comput-
ing the diameter and minimum enclosing ball of collections of points in δ -hyperbolic
space. Work by Billera et al. [6] showed how to model the space of phylogenetic trees
as a specific CAT(0) space [8, II.1]; work by Owen and Provan investigated how to
efficiently compute geodesics in such a space [24].

2 Preliminaries
In this section we present the basic algebra and geometry needed to understand our
technical results without additional outside references. P(n) is the manifold consisting
of symmetric positive-definite real matrices. As a manifold, it has a Euclidean tangent
space TpP(n) at each point p, represented by the space of symmetric matrices S(n). A
point in the tangent space represents a vector tangent to a curve that passes through the
point p. The velocity of a particle moving along such a curve, for example, would be
represented by a vector in TpP(n) when it passes through p.

A geodesic through a point p is a special curve determined entirely by a tangent
vector A ∈ TpP(n). This relationship between the tangent space and the manifold is
realized by the exp map expp : S(n)→ P(n), defined as expp(A) = pep−1A, where eX

is just the matrix exponential. If c(t) is a geodesic with tangent A at c(0) = p, then
c(t) = expp(tA). For simplicity, we often assume that p = I so expI(A) = eA. The exp
map has a simple intuition: in Euclidean space, expp(u) = p+u; that is, we just move
from the point p to another point that is in the direction of u, ‖u‖ units away.

We can then measure distance between two points on the manifold by finding a
geodesic between them, solving for the unknown tangent vector, and measuring its
length. The exp map is invertible, and its inverse is the log map, logp : P(n)→ S(n),
given by logp(q) = p log(p−1q), where log is the inverse of the matrix exponential. P(n)
is also endowed with the special property that expp is invertible across the entire mani-
fold, letting us measure distance between any two points. Because P(n) is a Riemannian
manifold, TpP(n) has an inner product 〈A,B〉p = tr(p−1Ap−1B), and ‖A‖p =

√
〈A,A〉p.

The resulting metric is then D(p,q) = ‖ logp(q)‖ =
√

tr(log(p−1q)2). Usually we as-
sume that ‖A‖p = 1, meaning that a geodesic’s parameter t equals distance traveled.

As mentioned before, P(n) is a Riemannian manifold of non-positive curvature. Its
exp map is surjective, which enables us to talk about geodesics between any two points
on the manifold. Therefore we need not concern ourselves with a radius of convexity; a
convex subset of P(n) need not be bounded. Another important property of P(n) is that
it is symmetric. This means that there is always an isometry that moves a point p to a
point q without altering the metric properties of the manifold, offering the equivalent of
translation invariance. A good reference for the reader is [8, II.10].
Structure of P(2). Worth mentioning is the specific 3-dimensional manifold P(2),
which has a structure that we exploit frequently. P(2) is isometric to R×P(2)1, where



P(2)1 is the same as H2 with a factor of 1/
√

2 on the metric. P(2)1 is so named because
it represents the submanifold of P(2) containing all p.d. matrices of determinant 1.
Intuitively, we can think of this as a “stack” of hyperbolic spaces, leading us further
to a cylindrical representation of the space (see Figure 2). Decomposing a matrix p
as (r, p′) = er/2 · p′, we can represent the (log) determinant of p as r. Using a polar
representation, we can break p′ down further and realize the anisotropy, or ratio of
eigenvalues, as a radial coordinate. Since the eigenvectors form a rotation matrix, we
take the angle of this rotation (times 2) as the remaining coordinate.

2.1 Busemann Functions and Horoballs

In Rd , the convex hull of a finite set can be described by a finite number of hyperplanes
each supported by d points from the set. A hyperplane through a point may also be
thought of as the limiting case of a sphere whose center has been moved away to infinity
while a point at its surface remains fixed. This notion of “pulling away to infinity” can
be formalized: given a geodesic ray c(t) : R+→M on a Cartan-Hadamard manifold M,
a Busemann function bc : M→R is defined bc : p 7→ limt→∞ D(p,c(t))−t. An important
property of bc is that it is convex [8, II.8].

As an example, we can easily compute the Busemann function in Rn for a ray
c(t) = tu, where u is a unit vector. Since limt→∞

1
2t (‖p− tu‖+ t) = 1,

bc(p) = lim
t→∞

1
2t

(‖p− tu‖2− t2)=−〈p,u〉 .

A horoball Br(bc)⊂M is a sublevel set of bc; that is, Br(bc) is the set of all p ∈M
such that bc(p)≤ r (recall Figure 1). Since bc is convex, any sublevel set of it is convex,
and hence any horoball is convex. Continuing with the example of Euclidean space,
horoballs are simply halfspaces: all p ∈ Rd such that −〈p,u〉 ≤ r.

3 Ball Hulls

We now introduce our variant of the convex hull in P(n), which we call the ball hull.
For a subset X ⊂ P(n), the ball hull B(X) is the intersection of all horoballs that also
contain X :

B(X) =
⋂
bc,r

Br(bc), X ⊂ Br(bc).

Properties of the ball hull. Recall that the ball hull can be seen as an alternate
generalization of the Euclidean convex hull (i.e. via intersection of halfspaces) to P(n).
Furthermore, since it is the intersection of closed convex sets, it is itself guaranteed to be
closed and convex (and therefore C(X)⊆B(X)). We can also show that it shares critical
parts of its boundary with the convex hull (Theorem 1), but unfortunately, we cannot
represent it as a finite intersection of horoballs (Theorem 2). We state these theorems
here, and defer proofs to the full version.

Theorem 1. Every x ∈ X (X finite) on the boundary of B(X) is also on the boundary
of C(X) (i.e., X ∩∂B(X)⊆ X ∩∂C(X)).

Theorem 2. In general, the ball hull cannot be described as the intersection of a finite
set of horoballs.



3.1 The ε-Ball Hull

Theorem 2 indicates that we cannot maintain a finite representation of a ball hull. How-
ever, as we show in this section, we can maintain a finite-sized approximation to the ball
hull. Our approximation will be in terms of extents; intuitively, a set of horoballs ap-
proximates the ball hull if a geodesic traveling in any direction traverses approximately
the same distance inside the ball hull as it does inside the approximate hull.

horoextent

In Euclidean space, we can capture extent by measuring the dis-
tance between two parallel hyperplanes that sandwich the set. The
analogue to this construction in P(n) is the horoextent, the distance
along a geodesic between two opposing horoballs. Let c(t) = qetq−1A

be a geodesic, and X ⊂ P(n). The horoextent Ec(X) with respect to c
is defined as:

Ec(X) =
∣∣∣∣max

p∈X
bc+(p)+max

p∈X
bc−(p)

∣∣∣∣ ,
where bc+ is the Busemann function created when we follow c+(t) = c(t) to infinity as
normal, while bc− is the Busemann function created when we follow the geodesic point-
ing in the opposite direction, c−(t) = qetq−1(−A) = c(−t). Stated differently: bc+(p) =
limt→+∞(D(c(t), p)− t), and bc−(p) = limt→−∞(D(c(t), p)+ t). Observe that for any
c, Ec(X) = Ec(C(X)) = Ec(B(X)).

In Euclidean space, the distance between parallel planes is a constant. In general,
because of the effects of curvature, the distance between horoballs depends on the
geodesic used. For instance in P(n), horofunctions are nonlinear, so the distance be-
tween opposing horoballs is not constant. The width of the intersection of the opposing
horoballs is taken along the geodesic c, and a geodesic is described by a point q and a
direction A. We fix the point q so that we need only choose a uniform grid of directions
A for our approximation.

An intersection of horoballs is called an ε-ball hull with origin q (Bε,q(X)) if for
all geodesic rays c such that c(0) = q, |Ec(Bε,q(X))−Ec(X)| ≤ ε . For convenience,
we assume that I ∈ C(X) (this assumption will be removed in the full version), and our
origin q = I. Then we will refer to Bε,I(X) as just an ε-ball hull Bε(X).

We will use DX ≤ diam(X) = maxp,q∈X D(p,q) in our bounds; see the full version
for more precise definition, and note diam(X) is an intrinsic parameter of the data.

4 Constructing the ε-Ball Hull
Main result. In this section we construct a finite-sized ε-ball hull.

Theorem 3. Let Γn(ε,DX ) = (sinh(DX )/ε)n−1. For a set X ⊂ P(n) of size N (for con-
stant n), we can construct an ε-ball hull of size O(Γn(ε,DX ) · (DX/ε)(n−1)/2) in time
O(Γn(ε,DX ) · ((DX/ε)n−3/2 + N)). Furthermore, we can construct a coreset Y ⊂ X of
size O(Γn(ε,DX ) · (DX/ε)(n−1)/2) whose (ε/2)-ball hull is an ε-ball hull of X.

Proof overview. We make extensive use of a structural decomposition in our proof.
But first it will be helpful to define a flat. Let us define a subspace of a manifold as the
result of applying expp to each point of a subspace of the tangent space TpP(n). If the
resulting submanifold is isometric to a Euclidean space, then it is called a flat. A flat has
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log(·)
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Fig. 2. (a) P(2) as revolving door, (b) projection of X ⊂ P(2) onto det(x) = 1, (c) X ⊂ P(2),
(d) a flat in P(2), (e) flat of P(2) under log(·) map. Two horospheres drawn in views (b-d).

the important property of being convex (in general a subspace is not). One canonical
example of a flat is the subspace of positive sorted diagonal matrices.

P(n) can then be realized as the union of a set of n-dimensional flats, and the space
can be parameterized by a rotation matrix Q ∈ SO(n), one for each flat F . The inter-
section of these flats is the line of multiples of I. In P(2), we can picture these flats as
panes in a revolving door; see Figure 2(a).

We construct ε-ball hulls by discretizing P(n) in two steps. First, we show that
within a flat F (i.e., given a rotation Q ∈ SO(n)) we can find a finite set of minimal
horoballs exactly, or we can use ε-kernel machinery [1] to approximate this structure.
This is done by showing an equivalence between halfspaces in F and horoballs in P(n)
in Section 4.1. This result implies that computing all minimal horoballs with respect to
a rotation Q is equivalent to computing a convex hull in Euclidean space.

Second, we show that instead of searching over the entire space of rotations SO(n),
we can discretize it into a finite set of rotations such that when we calculate the horoballs
with respect to each of these rotations, the horoextents of the resulting ε-ball hull are
not too far from those of the ball hull. In order to do this, we prove a Lipschitz bound
for horofunctions (and hence horoextents) on the space of rotations.

Proving this theorem is quite technical. We first prove a Lipschitz bound in P(2),
where the space of rotations is a circle (as in Figure 2(b)). After providing a bound
in P(2) we decompose the distance between two rotations in SO(n) into bn/2c angles
defined by 2×2 submatrices in an n×n matrix. In this setting it is possible to apply the
P(2) Lipschitz bound bn/2c times to get the full bound. We present the proof for P(2)
in Section 4.2, and the generalization to P(n) in Section 4.3. Finally, we combine these
results in an algorithm in Section 4.4.

4.1 Decomposing P(n) into Flats

A critical operation associated with the decomposition (illustrated in Figure 2) is the
horospherical projection function πF : P(n)→ F that maps a point p ∈ P(n) to a point
πF(p) in a n-dimensional flat F . For each Busemann function bc there exists a flat F for
which it is invariant under the associated projection πF ; that is, bc(p) = bc(πF(p)) for
all p∈ P(n). Using πF for associated geodesic c(t) = etA where A∈ S(n), the Busemann
function bc : P(n)→ R can be written [8, II.10]

bc(p) =− tr(A log(πF(p))).
It is irrelevant which point is chosen for the origin of the geodesic ray, so we usually
assume that it is chosen in such a way that bc(I) = 0 in P(n).

In P(2) it is convenient to visualize Busemann functions through horospheres. We
can embed P(2) in R3 where the log of the determinant of elements grows along one



axis. The orthogonal planes contain a model of hyperbolic space called the Poincaré
disk that is modeled as a unit disk, with boundary at infinity represented by the unit
circle. Thus the entire space can be seen as a cylinder, as shown in Figure 2(c). Within
each cross section with constant determinant (Figure 2(b)), the horoballs are disks tan-
gent to the boundary at infinity. Within each flat F (Figure 2(d)) under a log(·) map
(Figure 2(e)) the horoballs are halfspaces. The full version provides a more technical
treatment of this decomposition and proofs of technical lemmas.

Rotation of Busemann functions. The following lemma describes how geodesics
(and horofunctions) are transformed by a rotation. In particular, this allows us to pick a
flat where computation of bc is convenient, and rotate the point set by Q to compute bc
instead of attempting computation of bc′ directly.

Lemma 1. For p ∈ P(n), rotation matrix Q, geodesics c(t) = etA and c′(t) = etQAQT
,

then bc′(p) = bc(QT pQ).
Projection to k-flat. We now establish an equivalence between horoballs and half-
spaces. That is, after we compute the projection of our point set, we can say that the
point set X lies inside a horoball Br(bc) if and only if its projection πF(X) lies inside a
halfspace Hr of F (recall that F is isometric to a Euclidean space under log).

Lemma 2. For any horoball Br(bc), there is a halfspace Hr ⊂ log(F)⊂ S(n) such that
log(πF(Br(bc))) = Hr.

Proof. If bc(p)≤ r, p ∈ P(n), and c(t) = etA, then − tr(A log(πF(p)))≤ r. Since πF(p)
is positive-definite, log(πF(p)) is symmetric. But tr((·)(·)) defines an inner product
on the Euclidean space of symmetric n× n matrices. Then the set of all Y such that
− tr(AY )≤ r defines a halfspace Hr whose boundary is perpendicular to A. Furthermore,
given a matrix ν such that b(ν pνT )≤ r (see the full version), we can compute νeY νT

for every Y ∈ Hr, so every such Y maps back to an element of Br(bc). ut

4.2 A Lipschitz bound in P(2)

To show our Lipschitz bound we analyze the deviation between two flats with similar
directions. Since any two flats F and F ′ are identified with rotations Q and Q′, we can
move a point from F to F ′ simply by applying the rotation QT Q′, and measure the angle
θ between the flats. If we consider a geodesic c⊂ F we can apply QT Q′ to c to get c′,
then for any point p ∈ P(n) we bound |bc(p)− bc′(p)| as a function of θ . Technical
proofs are in the full version.

Rotations in P(2). We start with some technical lemmas that describe the locus of
rotating points in P(2).

Lemma 3. Given a rotation matrix Q ∈ SO(2) corresponding to an angle of θ/2, Q
acts on a point p∈P(2) via QpQT as a rotation by θ about the (geodesic) axis etI = et I.

By Lemma 3, as we apply a rotation to p, it moves in a circle. Because any rotation
Q has determinant 1, det(QpQT ) = det(p). This leads to the following corollary:

Corollary 1. In P(2), the radius of the circle that p travels on is D(
√

det(p)I, p). Such
a circle lies entirely within a submanifold of constant determinant.



In fact, any submanifold P(2)r of points with determinant equal to some r ∈ R+

is isometric to any other such submanifold P(2)s for s ∈ R+. This is easily seen by
considering the distance function tr(log(p−1q)); the determinants of p and q will cancel.
We pick a natural representative of these submanifolds, P(2)1. This submanifold forms
a complete metric space of its own that has special structure:
Lemma 4. P(2)1 has constant sectional curvature −1/2.

To bound the error incurred by discretizing the space of directions, we need to un-
derstand the behavior of bc as a function of a rotation Q. We show that the derivative of
a geodesic is constant on P(n).
Lemma 5. For a geodesic ray c(t) = etA where ‖A‖= 1, then ‖∇bc‖= 1 at any point
p ∈ P(n).

Lipschitz condition on Busemann functions in P(2).

Theorem 4. Consider Q∈ SO(2) corresponding to θ/2, c(t) = etA, and c′(t) = etQT AQ.
Then for any p ∈ X

|bc(p)−bc′(p)| ≤ |θ | ·
√

2sinh
(

DX√
2

)
.

Proof. The derivative of a function f along a curve γ(t) has the form
〈
∇ f |γ(t),γ

′(t)
〉
,

and has greatest magnitude when the tangent vector γ ′(t) to the curve and the gra-
dient ∇ f |γ(t) are parallel. When this happens, the derivative reaches its maximum at
‖∇ f |γ(t)‖ · ‖γ ′(t)‖. Since ‖∇bc‖= 1 anywhere by Lemma 5, the derivative of bc along
γ at γ(t) is bounded by ‖γ ′(t)‖. We are interested in the case where γ(θ) is the circle
in P(2) defined by tracing Q(θ/2)pQ(θ/2)T for all −π < θ ≤ π . By Corollary 1, we
know that this circle has radius D(

√
det(p)I, p)≤D(I, p)≤DX and lies entirely within

a submanifold of constant determinant, which by Lemma 4 also has constant curvature
κ =−1/2. This implies that

‖γ ′(θ)‖=
1√−κ

sinh(
√−κ r) =

√
2sinh

(
D(
√

det(p)I, p)√
2

)
≤
√

2sinh
(

DX√
2

)
for any value of θ ∈ (−π,π] [8, I.6]. Then

|bc(p)−bc′(p)|= |bc(p)−bc(QT pQ)| ≤ |θ | ·
√

2sinh
(

DX√
2

)
. ut

4.3 Generalizing to P(n)

Now to generalize to P(n) we need to decompose the projection operation πF(·) and the
rotation matrix Q. We can compute πF recursively, and it turns out that this fact helps
us to break down the analysis of rotations. Since we can decompose any rotation into
a product of bn/2c 2× 2 rotation matrices, decomposing the computation of πF in a
similar manner lets us build a Lipschitz condition for P(n). The full version formalizes
rotation decompositions we use.
Theorem 5 (Lipschitz condition on Busemann functions in P(n)). Consider a set
X ⊂P(n), a rotation matrix Q∈ SO(n) corresponding to an angle θ/2, geodesics c(t) =
etA and c′(t) = etQAQT

. Then for any p ∈ X

|bc(p)−bc′(p)| ≤ |θ | ·
⌊n

2

⌋
·
√

2sinh
(

DX√
2

)
.



Proof. Every rotation Q may be decomposed into a product of rotations, relative to
some orthonormal basis B; that is, Q = B(Q1Q2 · · ·Qk−1Qk)BT where k = bn/2c and
Qi is a 2× 2 subblock rotation corresponding to an angle θi/2 with |θi| ≤ |θ |. Now
applying Lemma 1, we can factor out B: c′(t) = etQAQT

= etB(Q1···Qk)BT AB(QT
k ···QT

1 )BT
, and

let ĉ′(t) = et(Q1···Qk)Â(QT
k ···QT

1 ), where Â = BT AB. This means that bc′(p) = bĉ′(BT pB) =
bĉ′(p̂) for p̂ = BT pB. Also, since c(t) = etA = etBÂBT

, bc(p) = bĉ(p̂) for ĉ(t) = etÂ.
From this point we will omit the “hat” notation and just assume the change of basis.

Then |bc(p)−bc′(p)|=
∣∣∣∣ k

∑
i=1

(bi−1
c′ (p)−bi

c′(p))
∣∣∣∣≤ k

∑
i=1
|bi−1

c′ (p)−bi
c′(p)|,

where b0
c′(p) = bc(p) and bi

c′(p) is bc(p) with the first i rotations successively ap-
plied, so bi

c′(p) = bc(QT
i · · ·QT

1 pQ1 · · ·Qi). Then by Theorem 4 |bi−1
c′ (p)− bi

c′(p)| ≤
|θi| ·
√

2sinh
(

DX√
2

)
, and therefore, since for all i we have |θi| ≤ |θ |,

|bc(p)−bc′(p)| ≤
(

k

∑
i=1
|θi|
)
·
√

2sinh
(

DX√
2

)
≤ |θ | ·

⌊n
2

⌋
·
√

2sinh
(

DX√
2

)
. ut

4.4 Algorithm

For X ⊂ P(n) we can construct ε-ball hull as follows. We place a grid Gε on SO(n) so
that for any Q′ ∈ SO(n), there is another Q ∈ Gε such that the angle between Q and
Q′ is at most (ε/4)/(2bn/2c√2sinh(DX/

√
2)). For each Q ∈ Gε , we consider πF(X),

the projection of X into the associated n-flat F associated with Q. Within F , we build
an (ε/4DX )-kernel [1] KF of log(πF(X)), and return the horoball associated with the
hyperplane passing through each facet of C(KF) in F , using the transformation specified
in Lemma 2. (This step can be replaced with an exact convex hull of log(πF(X)).) This
produces a coreset of X for extents, K =

⋃
F KF for all F associated with a Q ∈ Gε .

To analyze this algorithm we can now consider any direction Q′ ∈ SO(n) and a
horofunction bc′ that lies in the associated flat F ′. There must be another direction Q ∈
Gε such that the angle between Q and Q′ is at most (ε/4)/(2bn/2c√2sinh(DX/

√
2)).

Let bc be the similar horofunction to bc′ , except it lies in the flat F associated with Q.
This ensures that for any point p ∈ X , we have |bc′(p)−bc(p)| ≤ ε/4. Also, for p ∈ X ,
there is a q ∈ KF such that bc(p)−bc(q)≤ (ε/4DX ) ·DX = ε/4. Thus bc′(p)−bc(q)≤
ε/2. Since Ec′(X) depends on two points in X , and each point p changes at most ε/2
from bc′(p) to bc(q), we can argue that |Ec′(X)−Ec(K)| ≤ ε . Since this holds for any
direction Q′ ∈ SO(n), the returned set of horoballs defines an ε-ball hull.

Let Γn(ε,DX ) = (sinh(DX )/ε)n−1. For constant n, the grid Gε is size O(Γn(ε,DX )).
In each flat, the (ε/4DX )-kernel is designed to have convex hull with O((ε/DX )(n−1)/2)
facets [1, 12], and can be computed in O(N +(DX/ε)n−3/2) time. Thus a ε-ball hull rep-
resented as the intersection of O(Γn(ε,DX ) · (DX/ε)(n−1)/2) horoballs can be computed
in O(Γn(ε,DX ) · ((DX/ε)n−3/2 +N)) time, proving Theorem 3.
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