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Abstract. In a witness rectangle graph (WRG) on vertex point set P
with respect to witness point set W in the plane, two points x, y in P are
adjacent whenever the open isothetic rectangle with x and y as opposite
corners contains at least one point in W . WRGs are representative of
a larger family of witness proximity graphs introduced in two previous
papers.
We study graph-theoretic properties of WRGs. We prove that any WRG
has at most two non-trivial connected components. We bound the di-
ameter of the non-trivial connected components of a WRG in both the
one-component and two-component cases. In the latter case, we prove
that a graph is representable as a WRG if and only if each component
is a connected co-interval graph, thereby providing a complete charac-
terization of WRGs of this type. We also completely characterize trees
drawable as WRGs. In addition, we prove that a WRG with no isolated
vertices has domination number at most four.
Moreover, we show that any combinatorial graph can be drawn as a WRG
using a combination of positive and negative witnesses.
Finally, we conclude with some related results on the number of points
required to stab all the rectangles defined by a set of n points.

1 Introduction

Proximity graphs have been widely used in situations in which there is a need of
expressing the fact that some objects in a given set—which are assigned to nodes
in the graph—are close, adjacent, or neighbors, according to some geometric,
physical, or conceptual criteria, which translates to edges being added to the
corresponding graph. In the geometric scenario the objects are often points
and the goal is to analyze the shape or the structure of the set of spatial data
they describe or represent. This situation arises in Computer Vision, Pattern
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Recognition, Geographic Information Systems, and Data Mining, among other
fields. The paper [31] is a survey from this viewpoint, and several related papers
appear in [44]. In most proximity graphs, given a point set P , the adjacency
between two points p, q ∈ P is decided by checking whether in their region of
influence there is no other point from P , besides p and q. One may say that
the presence of another point is considered an interference. There are many
variations, depending on the choice of the family of influence regions [16,31,34].

Given a combinatorial graph G = (V,E), a proximity drawing of G consists
of a choice of a point set P in the plane with |P | = |V |, for a given criterion
of neighborhood for points, such that the corresponding proximity graph on
P is isomorphic to G. This question belongs to the subject of graph drawing
problems, in which the emphasis is on geometrically representing graphs with
good readability properties and fulfilling some aesthetic criteria [9]. The main
issues are to characterize the graphs that admit a certain kind of representation,
and to design efficient algorithms for finding such a drawing, whenever possible.

Proximity drawings have been studied extensively and utilized widely [10,34].
However, this kind of representation is somehow limited and there have been
some attempts to expand the class, for example using weak proximity graphs [11].
Another recently introduced generalization is the concept of witness proximity
graphs [3,4], in which the adjacency of points in a given vertex set P is decided by
the presence or absence of points from a second point set W—the witnesses—in
their region of influence. This generalization includes the classic proximity graphs
as a particular case, and offers both a stronger tool for neighborhood description
and much more flexibility for graph representation purposes.

In the positive witness version, there is an adjacency when a witness point is
covered by the region of influence. In the negative witness version, two points
are neighbors when they admit a region of influence free of any witnesses. In
both cases the decision is based on the presence or absence of witnesses in the
regions of influence, and a combination of both types of witnesses may also be
considered; refer to Section 7. Observe that by taking W = P playing a negative
role, we recover the original proximity graphs; so this is a proper generalization.
Witness graphs were introduced in [3], where the focus is on the generalization of
Delaunay graphs. The witness version of Gabriel graphs was studied in [4], and a
thorough exploration of this set of problems is the main topic of the thesis [22].

In this paper, we consider a positive witness proximity graph related to
the rectangle-of-influence graph, the witness rectangle graph. The rectangle
of influence graph RIG(P ), also named the Delaunay graph of a point set in
the plane with respect to axis-parallel rectangles [14], is usually studied as
one of the basic proximity graphs [34, 35]. In RIG(P ), x, y ∈ P are adjacent
when the rectangle B(x, y) they define covers no third point from P ; B(x, y)
is the unique open isothetic rectangle with x and y at its opposite corners. In
other words, two points are adjacent to each other when they are rectangularly
visible [1, 33, 41]. Much effort has been devoted to the rectangle of influence
drawability problem [6, 24, 35, 39, 40, 42, 45]. The witness rectangle graph (WRG)
of vertex point set P (or, simply, vertices) with respect to witness point set W

2



(witnesses), denoted RG+(P,W ), is the graph with the vertex set P , in which
two points x, y ∈ P are adjacent when the rectangle B(x, y) contains at least one
point of W . The graph RG+(P,∅) has no edges. When W is sufficiently large
and appropriately distributed, RG+(P,W ) is complete. Ichino and Slansky’s [30]
mutual neighborhood graph is precisely the negative-witness version of the witness
rectangle graph. See further discussion in Section 6. We also note that a negative-
witness version of this graph with W = P would be precisely RIG(P ) discussed
above; in fact RG+(P, P ) is precisely the complement of RIG(P ). An example is
shown in Figure 1.

We show in this paper that the connected components of WRGs are geometric
examples of graphs with small diameter; these have been attracting attention in
the pure graph theory setting [15,27], and are far from being well understood,
even for diameter two [25,37,38]. We prove below that the maximum domination
number of a WRG with no isolated vertices is four, which we find interesting,
considering that the domination number of sufficiently large planar graphs of
diameter three is at most seven [21,28].

b

u v
a

c

d

b

a

c

d

Fig. 1. Left: A set of points P = {a, b, c, d} and a witness set W = {u, v}. Right: the
witness rectangle graph RG+(P,W ). In all our figures for WRGs solid dots denote
vertices and dots with a cross denote (positive) witnesses.

Besides some computational issues, such as the construction of RG+(P,W )
for given sets P and W in an output-sensitive manner, we study several graph-
theoretic properties of WRGs: (a) We completely characterize trees drawable as
WRGs (Theorem 2). (b) We argue that any WRG has zero, one, or two non-trivial
connected components (see the definition below and Theorem 3). (c) We prove
that the diameter of a single-component WRG is at most six, and that this bound
is tight in the worst case (Theorem 3 and subsequent discussion). (d) We prove
that the diameter of a (non-trivial) connected component of a two-component
WRG is at most three and this can be achieved in the worst case (Theorem 3).
(e) In the two-component case, we provide a complete characterization of graphs
representable as WRGs. Such graphs, disregarding isolated vertices, are precisely
disjoint unions of two connected co-interval graphs (Theorem 4). This last result
allows us to recognize in linear time if a combinatorial graph with two non-trivial
components can be drawn as a WRG, and to construct such a drawing if it exists.
(f) We prove that the maximum domination number of a WRG with no isolated
vertices is four.

In Section 6, we give a counterexample to a theorem of Ichino and Slansky
in [30]. In Section 7, we show that any combinatorial graph can be drawn as
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a WRG with positive and negative witnesses, using a quadratic number of
witnesses. Finally, in Section 8, we present some related results on stabbing
rectangles defined by a set of points with other points. They can be interpreted
as questions on “blocking” rectangular influences.

Terminology and notation. Throughout the paper, we will work with finite point
sets in the plane, in which no two points lie on the same vertical or the same
horizontal line.

Hereafter, for a graph G = (V,E) we write xy ∈ E or x ∼ y to indicate that
x, y ∈ V are adjacent in G, and generally use standard graph terminology as
in [13]. When we speak of a non-trivial connected component of a graph, we refer
to a connected component with at least one edge (and at least two vertices).

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets,
their join is the graph G1 +G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2) [46].

How to compute a witness rectangle graph. De Berg, Carlsson, and Overmars [12]
generalized the notion of dominance, in a way that is closely related to witness
rectangle graphs, by defining dominance pairs p, q of a set of points P , with
respect to a set O of so-called obstacle points. More precisely, p is said to dominate
q with respect to O if there is no point o ∈ O such that p dominates o and o
dominates q. Recall that p dominates q if and only if x(p) ≥ x(q), y(p) ≥ y(q),
and p 6= q.

They prove the following theorem:

Theorem 1 (De Berg, Carlsson, and Overmars [12]). All dominance pairs
in a set of points P with respect to a set of points O can be computed in time
O(n log n+ k), where n = |P |+ |O| and k is the number of answers.

Collecting all dominance pairs in a set of points P with respect to a set
of points W , and repeating the procedure after rotating the plane by 90◦, one
obtains the negative version of the witness rectangle graph. A simple modification
of their algorithm yields the positive version:

Corollary 1. Let P and W be two point sets in the plane. The witness rectangle
graph RG+(P,W ) with k edges can be computed in O(n log n+ k) time, where
n := max{|P |, |W |}.

2 Structure of Witness Rectangle Graphs

Let G := RG+(P,W ) be the witness rectangle graph of vertex set P with respect
to witness set W . We assume that the set of witnesses is minimal, in the sense
that removing any witness from W changes G. Put n := max{|P |, |W |} and let
E := E(G) be the edge set of G. We partition E into E+ and E− according
to the slope sign of the edges when drawn as segments. Slightly abusing the
terminology we refer to two edges of E+ (or two edges of E−) as having the same
slope and an edge of E+ and an edge of E− as having opposite slopes.

4



corner

bay

bay

corner

Recall that the open isothetic rectangle (or
box, for short) defined by two points p and q in
the plane is denoted B(p, q); for an edge e = pq
we also write B(e) instead of B(p, q). Every edge
e, say in E+, defines four regions as in the figure
on the right, that we call (open) corners and
(closed) bays.

Observation 1 Every x ∈ P inside a corner of an edge e is adjacent to at least
one endpoint of e.

Note that for any P , W , and P ′ ⊂ P , the graph RG+(P ′,W ) is an induced
subgraph of RG+(P,W ), so the class of graphs representable as WRGs is closed
under the operation of taking induced subgraphs.

Two edges are independent when they share no vertices and the subgraph
induced by their endpoints contains no third edge. Below we show that G cannot
contain three pairwise independent edges, which imposes severe constraints on
the graph structure of G.

Lemma 1. Two independent edges in E+ (respectively, E−) cannot cross or
share a witness. The line defined by their witnesses is of negative (respectively,
positive) slope.

Proof. Let the two edges be ab, cd ∈ E+, with x(a) < x(b) and x(c) < x(d). A
common witness would have a and c in its third quadrant and b and d in the first,
implying a ∼ d and c ∼ b, a contradiction. If ab and cd cross, assume without
loss of generality that x(a) < x(c). Neither c nor d can be inside B(a, b) (because
of Observation 1) and hence B(a, d) ∪B(c, b) ⊃ B(a, b), implying a ∼ d or c ∼ b,
a contradiction. Finally, the second part of the statement is a direct consequence
of Observation 1. 2

Lemma 2. Two independent edges with opposite slopes must share a witness.

Proof. Let ab ∈ E+ and cd ∈ E− be independent. Let w be a witness for ab
and let w′ be a witness for cd. The points c and d are not in quadrants I or III
of w, as otherwise the two edges would not be independent. If w is shared, we
are done. Otherwise it cannot be that c lies in quadrant II of w while d lies in
quadrant IV, or vice versa. Therefore c and d are either both in quadrant II or
both in quadrant IV of w. Assume, without loss of generality, the former is true.
The witness w′ is not outside of B(a, b), as we would have c ∼ a and/or c ∼ b
(assuming, without loss of generality, that x(c) < x(d)) and the edges would not
be independent. Therefore w′ is in B(a, b), so w′ is a shared witness, as claimed.

2

Lemma 3. There are no three pairwise independent edges in E+ (or in E−).

Proof. Assume that three pairwise independent edges e1, e2, e3 in E+ are wit-
nessed by w1, w2, w3, respectively, with x(w1) < x(w2) < x(w3). Then, by
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Lemma 1, y(w1) > y(w2) > y(w3). By the same lemma at least one endpoint of
e1 is in the second quadrant of w2 and at least one endpoint of e3 is in its fourth
quadrant, contradicting their independence. 2

Lemma 4. A witness rectangle graph does not contain three pairwise independent
edges.

Proof. By Lemma 3, two edges ab and cd of the three pairwise independent edges
ab, cd, and ef have opposite slopes. By Lemma 2, ab and cd share a witness
point w. Every quadrant of w contains one of the points a, b, c, or d, therefore
both e and f must be adjacent to one of them, a contradiction. 2

The preceding results allow a complete characterization of the trees that can
be realized as WRGs. An analogous result for rectangle-of-influence graphs was
given in [35].

Theorem 2. A tree is representable as a witness rectangle graph if and only if
it has no three independent edges.

+ + +

+
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+

+

+

r

+

+

+

+

b

+

+

+

+

r

a

Fig. 2. From left to right, All WRG trees of diameter 1 to 6. Any number of vertices
can be added in the cells containing three vertices.

Proof. In Figure 2, all maximal WRG trees are represented. They are ordered
by their diameter from left to right. Any number of vertices can be added in the
cells where there are at least three vertices.

As one can see in Figure 2 (upper left), all trees of diameter one to three are
realizable as WRG.
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The unique maximal WRG tree of diameter four (Figure 2 upper right) is
obtained by checking all ways to add branches to a path of length four without
increasing the diameter and without creating three independent edges. As one
can see, branches of length one have been added to the interior vertices, adding
a branch of length two would create three independent edges. Adding a branch
incident to one of the end-vertices of the path would increase the diameter.

The unique maximal WRG tree of diameter five is constructed similarly
(Figure 2 bottom left). If r is the root of the WRG tree, r can have an arbitrary
number of children, but at most two of its children can have children (otherwise
there would be three independent edges), and at most one of its grandchildren
can have children (otherwise the tree would have diameter six).

The unique maximal WRG tree of diameter six is constructed similarly to
the case of diameter four (Figure 2 bottom right). If r is the root of the WRG
tree, r can have at most two children a and b (otherwise there would be three
independent edges), an arbitrary number of grandchildren adjacent to a and
b, and a and b can have an arbitrary number of grandchildren all adjacent to
exactly one of their children (otherwise there would be three independent edges).

2

Lemma 4 immediately implies the following structural result that is far
from a complete characterization, yet narrows substantially the class of graphs
representable as WRGs.

Theorem 3. A witness rectangle graph has at most two non-trivial connected
components. If there are exactly two, each has diameter at most three. If there is
one, its diameter is at most six.

Note that the bounds on the diameter are tight: the tree in Figure 2 (right)
has diameter six and it is easy to draw the disjoint union of two three-link paths
as a WRG, by merging all the vertices in the same cell and removing r from
Figure 2 (right), for example.

Corollary 2. The condition of Theorem 3 is necessary to characterize a WRG
but not sufficient. In other words, not all connected graphs with no three indepen-
dent edges are realizable as a witness rectangle graph.

Proof. The graph formed from the complete graph Kc by attaching an additional
degree-one vertex adjacent to each of the c vertices (see Figure 3), which we call a
c-supernova, does not have two independent edges. Nevertheless, by Theorem 6, a

Fig. 3. A six-supernova.
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supernova with c > 4 is not realizable as a WRG. Indeed, to obtain a dominating
set of this graph, one must pick one vertex incident to each of the c edges incident
to a leaf. Therefore the domination number is at least c (actually it is c), which
implies that graph is not drawable as a WRG, by Theorem 6. 2

In fact, a simple extension of the above argument yields a family of graphs
not realizable as WRGs. Start with any graph with at least five vertices and
attach five edges to five of its vertices, as above. The resulting graph (which may
or may not have three independent edges) has domination number at leave five
and is therefore not realizable.

3 Two Connected Components

In this section we define a subclass of witness rectangle graphs, called staircase
graphs. We argue that a WRG with precisely two non-trivial connected com-
ponents has a very rigid structure. Namely, each of its non-trivial connected
components is isomorphic to a staircase graph.

Definition 1. A staircase graph of type IV is a witness rectangle graph, such
that the witnesses form an ascending chain (i.e., for every witness, other witnesses
lie only in its quadrants I and III) and all the vertices lie above the chain (i.e.,
quadrant IV of every witness is empty of vertices); refer to Figure 4.

+

+
+

+

+

Fig. 4. Staircase graph of type IV.

Staircase graphs of types I, II, and III are defined analogously; they are rotated
versions of the above. The type of the staircase graph is determined by which
quadrant of all witnesses is empty of vertices.

Note that an induced subgraph of a staircase graph is a staircase graph (of
the same type)—a property that immediately follows from the definition and
that we will find useful below.

Lemma 5. A combinatorial graph G = (V,E), isomorphic to a staircase graph,
is a join G1 +G2 if and only if it can be realized as a staircase graph of type IV
with some witness containing points corresponding to V (G1) in quadrant I and
points corresponding to V (G2) in quadrant III.
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Proof. Suppose G = G1 + G2 is realizable as a staircase graph. The combina-
torial graphs G1 and G2 are isomorphic to staircase graphs RG+(P1,W1) and
RG+(P2,W2) of type IV, which can be obtained, for example, by considering
any realization of G as a staircase graph of type IV and dropping the points
corresponding to V (G2) and V (G1), respectively. Create a staircase graph of
type IV isomorphic to G by placing a copy of RG+(P1,W1) in quadrant I of a
new witness w and a copy of RG+(P2,W2) in its quadrant III.

Conversely, given a staircase graph of type IV isomorphic to G such that
some of its vertices (call the set P1) are in the first quadrant of a witness w ∈W ,
and the remaining vertices (call them P2) are in its third quadrant, it is easily
checked that G = G1 +G2, where G1 and G2 are the subgraphs of G induced by
(the sets of vertices of G corresponding to) P1 and P2, respectively. 2

Lemma 6. In a witness rectangle graph, if witness w has no vertices in one of
its quadrants, any witness in the empty quadrant is redundant.

Proof. Suppose quadrant II of w contains a witness w′ but no vertices. Hence
quadrant II of w′ is empty of vertices as well. Suppose w′ witnesses edge ab, and
a and b are in its quadrants I and III respectively. (They cannot lie in quadrants
II and IV, as quadrant II is empty of vertices.) As quadrant IV of w is included
in quadrant IV of w′, a and b must be in quadrants I and III of w, respectively, as
well. Therefore w witnesses ab. Since this argument applies to all edges witnessed
by w′, w′ is redundant. 2

Lemma 7. In a witness rectangle graph, if no witness has a vertex in its quad-
rant IV, then the graph is a staircase graph of type IV, possibly after removing
some redundant witnesses.

Proof. First remove any redundant witnesses, if present. Now apply Lemma 6, to
the possibly smaller, new witness set, to conclude that every remaining witness
has its quadrant IV empty of witnesses as well. Therefore the remaining witnesses
form an ascending chain and all vertices lie above it, as in the definition of a
staircase graph of type IV. 2

Of course, if the empty quadrant in the above lemma is not IV but I, II, or III,
we get a staircase graph of the corresponding type.

Theorem 4. In a witness rectangle graph with two non-trivial connected compo-
nents, each component is isomorphic to a staircase graph. Conversely, the disjoint
union of two graphs representable as staircase graphs is isomorphic to a witness
rectangle graph.

Proof. We distinguish two cases.
All edges have the same slope: Suppose all edges of components C1, C2 have the
same slope, say positive. Let ab be an edge of C1 witnessed by w1 and cd be an
edge in C2 witnessed by w2, with x(a) < x(b) and x(c) < x(d). By Lemma 1,
w1 and w2 are distinct. The vertices a and b are in quadrants III and I of w1,
respectively. As c and d are not adjacent to a or b, and as cd doesn’t share its
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c
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I
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B2
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1

2

Fig. 5. Cases in the proofs of Lemmas 1, 2, 3, 4 and Theorem 4: Two edges of positive
slope (left), two edges of opposite slopes (center). Minimum bounding boxes of V (C1):
B1 (dashed), and of V (C2): B2 (plain). V (C1) is in quadrants I and III, V (C2) is in
quadrants II and IV (right).

witness with ab, c and d are both in quadrant II or both in quadrant IV of w1.
Suppose, without loss of generality, that cd is in quadrant IV of w1 (see Figure 5).
By a symmetric argument, ab is in quadrant II of w2. This holds for any two edges
ab ∈ C1 and cd ∈ C2. (Given two edges ef ∈ C1 and gh ∈ C2, we say ef < gh
if a witness of ef is in quadrant II of a witness of gh, and gh < ef otherwise.
We claim that either ef < gh for all choices of edges ef ∈ C1 and gh ∈ C2,
or gh < ef , for all such choices. Otherwise there would have to exist, without
loss of generality, a triple of edges ef, ij ∈ C1 and gh ∈ C2, with ef < gh < ij.
This implies that some witnesses w′, w′′, w′′ of ef , gh, ij, respectively, form a
descending chain. Considering the relative positioning of the three edges and
three witnesses, we conclude that ef and ij must be independent. Hence we have
three pairwise independent edges in E+, contradicting Lemma 3, thereby proving
the claim.) Notice that no vertex of C1 is in quadrant II of any witness of C1 or
it would be connected to C2. Similarly, no vertex of C2 is in quadrant IV of any
witness of C2 or it would be connected to C1. Hence, by Lemma 7, C1 and C2

are both staircase graphs.

At least two edges have opposite slopes: There is at least one pair of edges ab ∈ C1

and cd ∈ C2 of opposite slopes. Suppose, without loss of generality, that ab ∈ E+

and cd ∈ E−. By Lemma 2, ab and cd share a witness w (see Figure 5, center).

Draw isothetic boxes B1 and B2, as follows: B1 is the minimum bounding
box of the vertices of C1, while B2 is its analog for C2 (see Figure 5, right).

Consider C1; we argue that it is isomorphic to a staircase graph; as we can
apply the same reasoning to C2, this will imply the first part of the theorem. By
Lemma 2, every edge in E+ ∩ C1 shares some witness with cd; the witness must
therefore lie in B := B1∩B2. Let W ′ be the set of all such witnesses; w ∈W ′. All
vertices of C1 lie in quadrants I and III of every w′ ∈W ′, and all vertices of C2

lie in quadrants II and IV of every w′; otherwise C1 and C2 would be connected.
Now remove redundant witnesses from W ′, i.e., pick a minimal subset W ′′ of
W such that H := RG+(V (C1),W ′) coincides with RG+(V (C1),W ′′). H is a
staircase graph and the witnesses of W ′′ form an ascending chain, by Lemma 7.

Consider the portion of C1 in quadrant III of w. All witnesses to the left of
B2 and above its lower edge, or below B2 and to the right of its left edge, have
two consecutive quadrants empty of vertices of C1 (if there were some vertices
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of C1 in these quadrants they would be adjacent to vertices of C2 defining the
borders of B2). Therefore such a witness would not witness any edges and cannot
be present in W .

Hence all remaining witnesses (in quadrant III of w) of edges of C1 must lie
below and to the left of B2 (and, of course, in B1). All these witnesses have B2

in their first quadrant, therefore they witness edges of E− ∩E(C1). Let W ′′′ be a
minimal subset of such witnesses. Each of them has their quadrant III empty of
vertices of C1 (any vertex of C1 in quadrant III of such a witness w′′′ would be
adjacent to vertices in C2 as B2 is in quadrant I of w′′′), therefore by Lemma 7,
RG+(V (C1),W ′′′) is a staircase graph.

Consider the lowest leftmost witness w` of W ′′ (recall that they form an
ascending chain). As shown previously, w` doesn’t have any vertex of C1 in
its second and fourth quadrants. Let V1 be the set of vertices of C1 in its first
quadrant and let V2 be the vertices of C1 in its third quadrant. As shown above,
RG+(V1,W

′′ \ {w′`}) and RG+(V2,W
′′′) are staircase graphs, and, therefore, by

Lemma 5, RG+(V (C1),W ′′ ∪W ′′′) is isomorphic to a staircase graph. We apply
similar reasoning to quadrant I of B, to conclude that C1 is a join of at most
three staircase graphs and therefore isomorphic to a staircase graph.

C2 is handled by a symmetric argument (in fact, though it does not affect the
reasoning as presented, either C1 contains negative-slope edges, or C2 contains
positive-slope edges, but not both), concluding the first part of the proof.
Converse: Given two staircase graphs G1 and G2, place a scaled and reflected
copy of G1 in quadrant I of the plane, with witnesses on the line x+ y = 1 and
vertices below the line. Place a scaled and reflected copy of G2 in quadrant III of
the plane, with witnesses on the line x+ y = −1 and vertices above the line. It is
easy to check that the result is a witness rectangle graph isomorphic to G1 ∪G2.

2

4 What Are Staircase Graphs, Really?

The above discussion is unsatisfactory in that it describes one new class of graphs
in terms of another such new class. In this section, we discover that the class of
graphs representable as staircase graphs is really a well known family of graphs.

Recall that an interval graph is one that can be realized as the intersection
graph of a set of intervals on a line, i.e., its set of vertices can be put in one-to-one
correspondence with a set of intervals, with two vertices being adjacent if and only
if the corresponding intervals intersect. A co-interval graph is the complement of
an interval graph, i.e., a graph representable as a collection of intervals in which
adjacent vertices correspond to disjoint intervals.

Lemma 8. Graphs representable as staircase graphs are exactly the co-interval
graphs.

Proof. Consider a vertex v in a staircase graph RG+(V,W ). Without loss of
generality, assume the witnesses W lie on the line ` : y = x and the vertices lie
above it. Create an artificial witness on ` lying above all vertices. Associate v with
the smallest interval Iv of ` containing all witnesses lying to the right and below
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v as well as the witness immediately above v. It is easily checked that v ∼ v′ in
RG+(V,W ) if and only if Iv and Iv′ do not meet. Thus the intersection graph of
the intervals {Iv | v ∈ V } is isomorphic to the complement of RG+(V,W ).

Conversely, let H be a co-interval graph on n vertices and {Iv} its realization
by a set of closed intervals on the line ` : x = y. Extend each interval, if necessary,
slightly, to ensure that the 2n endpoints of the intervals are distinct. Place
2n− 1 witnesses along `, separating consecutive endpoints, and transform each
interval Iv = [(av, av), (bv, bv)] into point pv = (av, bv). Let W and P be the
set of witnesses and points thus generated. Now Iv misses Iw if and only if
av < bv < aw < bw or aw < bw < av < bv, which happens if and only if the
rectangle B(pv, pw) contains a witness. Hence RG+(P,W ) is isomorphic to H,
as claimed. 2

Theorem 4 and Lemma 8 imply the following more satisfactory statement:

Theorem 5. The class of graphs representable as witness rectangle graphs with
two non-trivial connected components is precisely the class of graphs formed as
the disjoint union of zero or more isolated vertices and two co-interval graphs.

Corollary 3. Whether or not a given combinatorial graph G = (V,E) with two
non-trivial connected components can be drawn as a witness rectangle graph can
be tested in time O(|V |+ |E|); a drawing, if it exists, can be constructed in the
same time.

Proof. Use the linear-time recognition and reconstruction algorithm for co-interval
graphs from [29,36]. 2

5 Domination number

For a graph G and a subset S of the vertex set V (G), denote by NG[S] the set
of vertices in G which are in S or adjacent to a vertex in S. If NG[S] = V (G),
then S is said to be a dominating set of vertices in G. The domination number
of a graph G(V,E), denoted γ(G), is the minimum size of a dominating set of
vertices in V [7, 8].

Lemma 9. The maximum domination number of a connected staircase graph is
two.

Proof. For the lower bound, consider a staircase graph of type IV that is a path
of length three. It contains four vertices. It is easy to check that it cannot be
dominated by one vertex.

For the upper bound, consider a non-trivial connected staircase graph of
type IV (see Figure 6). Let wi, 1 ≤ i ≤ k, be the witnesses in order from left
to right, with w1 being the bottommost leftmost witness and wk the uppermost
rightmost witness. Recall that we assume that the set of witnesses is minimal,
hence there is no witness with two adjacent quadrants empty of vertices. This
implies that there is at least one vertex d1 below w1 and at least one vertex d2 to
the right of wk. The vertices d1 and d2 form a dominating set of size two. Indeed
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Fig. 6. The two bold vertices form a dominating set for this staircase graph.

all vertices of the graph are in quadrants I, II and III of wk. The vertex d1 is
adjacent to all vertices in the graph that are in quadrant I and II of wk, and d2
is adjacent to all vertices in quadrant III of wk (since the graph is connected,
there are no vertices lying to the left and above of both w1 and wk – such vertices
would have to be isolated.) 2

Theorem 6. The maximum domination number of a witness rectangle graph
with non-trivial connected components is four.

Proof. We will consider three cases:

i) There is a witness w in WRG such that there is at least one vertex in each
quadrant of w. Pick one vertex in each quadrant, they form a dominating
set of size four. Indeed, the vertices in quadrant I, II, III, and IV are
respectively adjacent to all vertices in quadrant III, IV , I, and II.

ii) There is a witness w in WRG such that it has two opposite quadrants with
at least one vertex in each of them, and two opposite quadrants empty of
vertices. Pick one vertex in each of the non-empty quadrants, they form a
dominating set of size two. Indeed suppose without loss of generality that the
non-empty quadrants are I and III. Any vertex in quadrant I is adjacent
to all vertices in quadrant III, and any vertex in quadrant III is adjacent
to all vertices in quadrant I.

iii) All witnesses have one quadrant empty of vertices and three adjacent quad-
rants containing at least one vertex each. This is the last case as the set of
witnesses is minimal which implies that there is no witness with vertices in
one quadrant only or in two adjacent quadrants only.
Let the witnesses with one quadrant empty be the witnesses of type I, II,
III, and IV with the number of the type of witness corresponding to the
number of the empty quadrant. For each type of witness, all witnesses of this
type witness the edges of a staircase graph of this type, which is a subgraph
of the WRG. The union of the four staircase graphs defined by the four
types of witnesses is the original WRG (see Figure 7, for clarity the edges
are not represented).
By definition of a staircase graph, all its witnesses form a monotone ascending
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Fig. 7. WRG graph with all witnesses having exactly one quadrant empty. The bold
black vertices are the dominating set.

(for staircase graphs of type II and IV ) or descending (for staircase graphs
of type I and III) chain. Moreover notice that all witnesses of type II must
be in quadrant II or III of all witnesses of type I , all witnesses of type III
must be in quadrant III or IV of all witnesses of type II, all witnesses
of type IV must be in quadrant IV or I of all witnesses of type III, and
all witnesses of type I must be in quadrant I or II of all witnesses of type
IV . Reciprocally all witnesses of type I must be in quadrant I or IV of all
witnesses of type II, all witnesses of type II must be in quadrant I or II of
all witnesses of type III, all witnesses of type III must be in quadrant II
or III of all witnesses of type IV , and all witnesses of type IV must be in
quadrant III or IV of all witnesses of type I. If one of these constraints is
violated, one witness would have two adjacent quadrants that are empty,
and therefore the set of witnesses would not be minimal, a contradiction.

From this set of constraints it follows that either the vertices in quadrant II
of the topmost witness of type I are included in quadrant I of the topmost
witness of type II and/or the vertices in quadrant I of the topmost witness
of type II are included in quadrant II of the topmost witness of type I.
Hence there is a vertex v1 in the intersection of quadrant II of the topmost
witness of type I and quadrant I of the topmost witness of type II. Similarly
there is a vertex v2 in the intersection of quadrant III of the leftmost witness
of type II and quadrant II of the leftmost witness of type III; there is
a vertex v3 in the intersection of quadrant IV of the bottommost witness
of type III and quadrant III of the bottommost witness of type IV ; and
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finally there is a vertex v4 in the intersection of quadrant I of the rightmost
witness of type IV and quadrant III of the rightmost witness of type I.
Following the proof of Lemma 9, v1 and v2 form a dominating set for the
staircase graph of type II, v2, v3 form a dominating set for the staircase
graph of type III, v3, v4 form a dominating set for the staircase graph of
type IV , and v4, v1 form a dominating set for the staircase graph of type I.
Therefore v1, v2, v3, v4 form a dominating set for WRG.
If there are witnesses of fewer than four types, four vertices are also sufficient.
Indeed as shown in the proof of Lemma 9, each staircase graph requires two
vertices in its dominating set, and as we have seen above, staircase graphs
of consecutive types share a dominating vertex.

2

6 Mutual witness graphs and set separability

In [30], Manabu Ichino and Jack Sklansky introduce “mutual neighborhood graph”
defined by a pair of point sets (P,W ) in the plane. This concept coincides with
that of the negative witness rectangle graph RG−(P,W ) in which there is an edge
between two points p, q in P if and only if B(p, q) does not contain any witness
w ∈ W . For a fixed pair of sets A,B, they focus on the relation between the
two negative witness rectangle graphs RG−(A,B) and RG−(B,A). In particular,
they claim that if RG−(A,B) and RG−(B,A) are complete graphs, then the pair
(A,B) is linearly separable. Unfortunately this is not true, as demonstrated by
the counter-example in Figure 8.

A

B

Fig. 8. RG−(A,B) and RG−(B,A) are complete (say A is the set of black points and
B the set of white points) but the pair (A,B) is not linearly separable.

In [22], the authors have studied some similar properties of corresponding
witness proximity graphs in which one set is the set of vertices, the other set is
the set of witnesses and inversely, and they prove that for the negative witness
Delaunay graph (DG, introduced in [3]), given two disjoint sets of points A
and B, if DG−(A,B) and DG−(B,A) are complete, the pair (A,B) is circularly
separable, but not necessarily linearly separable. On the contrary, for the negative
witness Gabriel graph (GG−(P,W ), introduced in [4]), given two disjoint sets of
points A and B, if GG−(A,B) and GG−(B,A) are complete, the pair (A,B) is
linearly separable.
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7 Combining positive and negative witnesses

In this section we define a variant of witness rectangle graphs that combine
positive and negative witnesses. Given a set of vertices P in the plane, a set W+

of positive, and a set W− of negative witnesses, we define RG±(P,W+,W−)
as follows. We assume that P ∪W+ ∪W− has no two points with the same
x-coordinates and no two points with the same y-coordinates. Define S(p, q) :=
|B(p, q)∩W+|− |B(p, q)∩W−|. The graph has points of P as vertices and p ∼ q
if and only if S(p, q) > 0. In words, p is adjacent to q whenever the rectangle
defined by them has more positive witnesses than negative ones.

This class of graphs is a proper generalization of both the positive and negative
witness rectangle graphs, for an appropriate choice of the sets W+ and W−. In
fact, any graph can be realized:

Theorem 7. Any combinatorial graph G on n vertices can be drawn as a witness
rectangle graph with positive and negative witnesses using at most (n− 1)2 wit-
nesses.

Proof. Consider an n×n integer grid. Identify the vertices of G with the points
pi = (i, i) on the diagonal, for i = 1, . . . , n, in an arbitrary but fixed order (see
Figure 9).

We never put witnesses on the grid lines. We will place witnesses in the
(open) squares of the grid, maintaining the following properties: (a) each square
contains at most one (positive or negative) witness, (b) for any p, q ∈ V (G),
S(p, q) is either zero or one, and (c) S(p, q) = 1 if and only if p ∼ q.

The process begins with W+ = W− = ∅. We start with the diagonal con-
taining vertices and work our way outward. We maintain the following invariant:
property (a) holds all the time, and, at step k properties (b) and (c) hold for all
pairs pi, pj with |i− j| ≤ k. When k reaches n− 1, we are done.

Base case (k = 1): For every pair of consecutive vertices pi, pi+1, we put a pos-
itive witness into B(pi, pi+1) if pi ∼ pi+1 and place no witness otherwise.
The invariant is clearly satisfied (see Figure 9 left).

Inductive step (k > 1): Consider a pair of vertices pi, pi+k. Let X := B((i, i+k−
1), (i+1, i+k)) and Y := B((i+k−1, i−k), (i+k, i−k+1k)). We write SX

for |X∩W+|−|X∩W−| and define SY similarly. Since there are no witnesses
on the grid lines, by inclusion-exclusion principle we have S(pi, pi+k) =
SX +SY +S(pi+1, pi+k) +S(pi, pi+k−1)−S(pi+1, pi+k−1). By the inductive
hypothesis, each of the numbers S(pi+1, pk), S(pi, pi+k−1), S(pi+1, pi+k−1) is
either zero or one. In particular, the last three terms sum up to an integer
between −1 and 2. To maintain the invariant, we need S(p, q) to be 0 or 1,
depending on whether p ∼ q. Hence the combined contribution of X and Y
has to be between −2 and +2. However, SX + SY can be arranged to have
any value from −2,−1, 0, 1, 2 by placing one witness of an appropriate sign,
or no witness, in X and in Y (see Figure 9 right).
Repeating this process for all pairs (pi, pi+k) and noticing that the each pair
of vertices uses a pair of different boxes (X,Y ), we complete the inductive
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step: Every square of the grid still contains at most one witness, and for all
pairs of vertices (pi, pj) up to k apart, the box B(pi, pj) contains an equal
number of positive and negative witnesses if pi 6∼ pj , and positive witnesses
outnumber negative ones by one, otherwise. 2

pi

pi+1

pi+2

X

pi+k−1

pi+k

pi+1

pi

Y

Fig. 9. Vertices are the black disks, positive witnesses are the white disks with a cross,
and negative witnesses are the white disks with a minus sign.

The proof suggests a number of open problems: Is it possible that a significantly
smaller number of witnesses is sufficient to realize all possible combinatorial
graphs? We conjecture that a quadratic number of witnesses is necessary in the
worst case. A related open problem is to find a “good” set of vertices to realize
a given graph, as it can be proved that every graph can be realized on top of
any point set whose elements have no duplicated x or y coordinates, and the
number of witnesses depends on the specific initial set. Another open problem is
to find classes of graphs that are realizable with much fewer witnesses, say, O(n)
or O(1). Also attaching real-number weights to witnesses may possibly allow one
to realize graphs with fewer witnesses.

8 How to Stab Rectangles, Thriftily

Let P be a set of n points in the plane, and let S be some given family of
geometric regions, each with at least two points from P on its boundary. The
problem of how many points are required to stab all the elements of S using a
second set W of points has been considered several times for different families of
regions [3,4,17,32,43]. For example, among the shapes previously investigated
were the family of triangles with vertices in S and the family of disks whose
boundary passes through two points of P . This family of problems has a natural
formulation in terms of appropriate witness graphs.

We consider here a variant of this problem that is related to WRGs, in which
we focus on the family R of all open isothetic rectangles containing two points
of P on their boundary and assume that the points of P have no repeated x-
or y-coordinates. We denote by stR(n) the maximum number of piercing points
that are required, when all sets P of n points are considered. Stabbing all the
rectangles that have p and q on their boundary is equivalent to just stabbing
B(p, q). Therefore we see that

stR(n) = max
|P |=n

min{|W | : RG+(P,W ) = K|P |}.
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Theorem 8. The asymptotic value of stR(n) is 2n−Θ(
√
n).

Proof. We first construct a set Q of n points, no two of them with equal abscissa
or ordinate, that admits a set of 2n−Θ(

√
n) pairwise openly-disjoint rectangles,

whose boundary contains two points from Q, which will imply the lower bound.
Start with a grid of size

√
n×
√
n, then rotate the whole grid infinitesimally

clockwise, and finally perturb the points very slightly, so that no point coordinate
is repeated and there are no collinearities. The desired set of rectangles contains
B(p, q) for every pair of points p, q ∈ Q that were neighbors in the original grid;
refer to Figure 10.

Fig. 10. Construction of a set Q with a large number of rectangles with disjoint interiors,
each one with two points from Q on its boundary; every point of Q participates in four
rectangles, with the exception of those on the boundary of the configuration.
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Fig. 11. Construction, for a point set P , of a set W of positive witnesses such that
RG+(P,W ) = K|P |.

For the proof that 2n−Θ(
√
n) points suffice to stab all the rectangles refer

to Theorem 6 in [3]. A sketch of the proof is illustrated in Figure 11. The points
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that get only one witness form an ascending chain. A descending chain would
be used similarly and one of these alternative chains must have Ω(

√
n) size.

2

References

1. N. Alon, Z. Furedi, and M. Katchalski, “Separating pairs of points by standard
boxes.” European Journal of Combinatorics, 6, 205–210, 1985.

2. B. Aronov, M. Dulieu, and F. Hurtado, “Witness rectangle graphs,” Proc. Algorithms
Data Structures Symp. (WADS’11), 2011, to appear.

3. B. Aronov, M. Dulieu, and F. Hurtado, “Witness (Delaunay) graphs,” Computa-
tional Geometry Theory and Applications, 44(6-7), 329–344, Aug. 2011.

4. B. Aronov, M. Dulieu, and F. Hurtado, “Witness Gabriel graphs,” Computational
Geometry Theory and Applications, to appear.

5. F. Aurenhammer and R. Klein, “Voronoi diagrams,” chapter 5 in Handbook of Com-
putational Geometry, J. Sack and G. Urrutia, Editors, Elsevier Science Publishing,
201–290, 2000.

6. T.C.Biedl, A. Bretscher, and H. Meijer, “Rectangle of Influence Drawings of Graphs
without Filled 3-Cycles,” Graph Drawing, 1731, 359–368, 1999.

7. N. Bray, “Domination number,” From MathWorld–A Wolfram Web Resource, cre-
ated by E.W. Weisstein. http://mathworld.wolfram.com/DominationNumber.html

8. N. Bray, “Dominating Set,” From MathWorld–A Wolfram Web Resource, created
by E.W. Weisstein. http://mathworld.wolfram.com/DominatingSet.html

9. G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice Hall, 1998.

10. G. Di Battista, W. Lenhart, and G. Liotta, “Proximity drawability: A survey,” Proc.
Graph Drawing’94, Lect. Notes Comp. Sci. 894, pp. 328–339, 1995.

11. G. Di Battista, G. Liotta, and S. Whitesides, “The strength of weak proximity,” J.
Discrete Algorithms 4(3), 384–400, 2006.

12. M. de Berg, S. Carlsson, and M. Overmars, “A general approach to dominance in
the plane,” J. Algorithms 13(2), 274–296, 1992.

13. G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th edition, Chapman & Hall,
2004.
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