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Abstract

We show that it is decidable in exponential time whether the lex-
icographic ordering of a context-free language is scattered, or a well-
ordering.

1 Introduction

When the alphabet A of a language L ⊆ A∗ is linearly ordered, L may be
equipped with the lexicographic order turning L into a linearly ordered set.
Every countable linear ordering may be represented as the lexicographic
ordering of a language (over the two-letter alphabet). A (deterministic)
context-free linear order is a linear ordering that can be represented as the
lexicographic ordering of a (deterministic) context-free language. The study
of context-free linear orderings has been initiated in [3]. In [4], it was shown
that a well-ordering is deterministic context-free (or equivalently, definable
by an algebraic recursion scheme) iff its order type is less than ωωω

. Then,
in [5] it was shown that the Hausdorff rank of any deterministic context-free
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linear ordering is less than ωω. For an extension of these results to linear
orderings definable by higher order recursion schemes we refer to [2].

Any monadic second-order definable property is decidable for deterministic
context-free linear orders (given by LR(1) grammars, say). This follows
form a general decidability result for graphs in the pushdown hierarchy [6],
more exactly from the “uniform version” of this result. In particular, it
is decidable whether a deterministic context-free linear ordering is dense,
or scattered, or a well-ordering. The results of [4, 5] implicitely give rise to
practical algorithms for deterministic context-free languages. In contrast, as
shown in [9], it is undecidable for a context-free linear ordering whether it is
dense. The main results of this paper show that on the contrary, there is an
exponential time algorithm to decide whether a context-free linear ordering
is scattered, or a well-ordering. The fact that these properties are decidable
for context-free linear orderings was first announced in [7].

2 Linear orderings

In this paper, by a linear ordering L = (L,<) we shall mean a countable lin-
ear ordering. We will use standard terminology as in [11]. The isomorphism
class of a linear ordering is its order-type.

A linear ordering L is dense if it has at least two elements and for all x, y ∈ L,
if x < y then there is some z with x < z < y. Up to isomorphism there are
four (countable) dense linear orderings, the ordering of the rationals whose
order-type is denoted η, possibly endowed with a least or greatest element,
or both. A scattered linear order is a linear ordering that has no dense
sub-order. A well-ordering is a linear ordering that has no sub-ordering
isomorphic to the ordered set of the negative integers. Every well-ordering
is scattered.

A linear ordering is quasi-dense if it is not scattered. It is well-known that
any scattered sum or finite union of scattered linear orderings is scattered.
Thus, if I is a scattered linear ordering and for each i ∈ I, Li is a scattered
linear ordering, then so is

∑

i∈I Li. Moreover, if a linear ordering L is the
finite union of sub-orderings Li, i = 1, . . . , n, then L is quasi-dense iff at
least one the Li is quasi-dense.

Suppose that A is an alphabet whose letters are ordered by a1 < . . . < ak.
Then we define the strict order <s on the set of words A∗ by u <s v iff
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u = xaiy and v = xajy for some x, y, y′ ∈ A∗ and letters ai and aj with
ai < aj . The prefix order is defined by u <p v iff u is a proper prefix of v.
The strict order and the prefix order are partial orders. The lexicographic
order <ℓ is the union of the two, so that x <ℓ y iff x <s y or x <p y. Clearly,
(A∗, <ℓ) is a linear ordering.

If L ⊆ A∗ then (L,<ℓ) is a linear ordering, called the lexicographic ordering
of L. We call L dense, scattered or well-ordered if (L,<ℓ) has the appro-
priate property. When L is a (deterministic) context-free language, we call
(L,<ℓ), and sometimes any linear ordering isomorphic to (L,<ℓ) a (deter-
ministic) context-free linear ordering. Every (deterministic) context-free lin-
ear ordering is isomorphic to the lexicographic ordering of a (deterministic)
context-free language over the alphabet {0, 1}, ordered by 0 < 1. Indeed,
when L ⊆ A∗ and A has k letters a1 < . . . < ak, say, then we may encode
each letter ai with a binary word h(ai) of length ⌈log k⌉ over {0, 1} so that
h(ai) <ℓ h(aj) whenever ai < aj , then (L,<ℓ) is isomorphic to (h(L), <ℓ).

When L ⊆ {0, 1}∗ then T (L) is the binary tree whose vertices are the words
in the prefix closure of L. T (L) is nonempty if L is nonempty. A vertex y
is a descendant of vertex x if x is a prefix of y. The following fact is quite
standard:

Proposition 2.1 Suppose that L ⊆ {0, 1}∗ and consider the corresponding
tree T (L). Then L is quasi-dense iff the full binary tree has an embedding
in T (L).

Proof. Let L0 be the regular prefix language (00+11)∗01 whose lexicographic
ordering has order type η, and consider the tree T (L0). If the full binary
tree embeds in T (L), then so does T (L0). Consider an embedding of T (L0)
in T (L) which maps each vertex x of T (L0) to a vertex h(x) of T (L). For
each leaf x of T (L0) select a leaf vx of T (L) which is a descendant of h(x).
The words vx form a dense subset of L with respect to the lexicographic
order. (Note also that any two words vx are actually related by the strict
order.)

For the reverse direction, suppose that L is quasi-dense. Let us color a
vertex x of T (L) blue if x ∈ L. Call a vertex x of T (L) appropriate if the
blue vertices of the subtree Tx rooted at x form a quasi-dense linear ordering
with respect to the lexicographic order. If x is appropriate, then it has at
least two proper descendants y and z which are appropriate vertices with
y <s z. Indeed, x has a proper descendant x′ such that both the set of blue
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vertices y′ of Tx with y′ <s x
′ and the set of blue vertices z′ of Tx with

x′ <ℓ z
′ form quasi-dense linear orderings with respect to the lexicographic

order. Suppose that x′ = xu, where u is a nonempty word. Then one of the
vertices xv0 where v1 is a prefix of u is appropriate, as is one of the vertices
xv1 and x′, where xv0 is a prefix of x. Let y and z be these vertices.

Thus, starting from the root of T (L), we can construct a set V of appropriate
vertices such that each x ∈ V has two (proper) descendants y and z in V

with y <s z. The vertices in V determine an embedding of the full binary
tree in T (L). ✷

Proposition 2.2 Suppose that L,L′ ⊆ {0, 1}∗. If (L,<ℓ) and (L′, <ℓ) are
both scattered, then so is (LL′, <ℓ).

Proof. We will prove that if (LL′, <ℓ) is quasi-dense, then one of (L,<ℓ)
and (L′, <ℓ) is quasi-dense. Assuming that LL′ is quasi-dense, T (LL′) has
an embedded copy T0 of the full binary tree. Let us color a vertex u of
T (LL′) blue if uv ∈ L for some v ∈ {0, 1}∗, i.e., when u has a descendant
in L. There are two cases to consider, either each subtree of T0 contains a
blue vertex, or there is a subtree of T0 having no blue vertex.

Case 1. Suppose that each subtree of T0 contains a blue vertex. Then each
vertex of T0 is colored blue, so that L is quasi-dense.

Case 2. Suppose that T0 contains a subtree having no blue vertex. Let T1
denote such a subtree and let u denote the root of T1. Let u0, . . . , uk be all
the (proper) prefixes of u that are in L. Now let us color each vertex x of
T1 with the set of all integers i, 0 ≤ i ≤ k, such that x has a descendant in
T (LL′) which is a word in uiL

′. Then each vertex x of T1 is labeled by a
nonempty subset of the set {0, . . . , k}, and if x′ is a descendant of x in T1,
then the label of x′ is included in the label of x. Let H be a minimal set
that appears as the label of a vertex v of T1. Then all descendants of v in T1
are labeled H. Thus, if i ∈ H, then the full binary tree embeds in T (uiL

′)
and thus in T (L′), so that L′ is quasi-dense. ✷

3 Scattered context-free linear orderings

In this section, we assume that G = (N, {0, 1}, P, S) is a context-free gram-
mar with nonterminal alphabet N , terminal alphabet {0, 1}, rules P and
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start symbol S that contains no useless nonterminals or ǫ-rules. Moreover,
we assume that G is left-recursion free and that L(G) is not empty. These
can be assumed for the results of the paper, since there is an easy polyno-
mial time transformation of a context-free grammar to a grammar over the
alphabet {0, 1} that generates an isomorphic language (with respect to the
lexicographic order) not containing ǫ, and each grammar not generating the
empty word can be transformed in polynomial time into an equivalent gram-
mar that contains no useless nonterminals or ǫ-rules or any left-recursive
nonterminal. See [1, 8].

We let X,Y,Z (sometimes decorated) denote nonterminals, u, v, w, x, y ter-
minal words in {0, 1}∗, and we let p, q, r denote words in (N ∪ {0, 1})∗.
For every word p, we denote by L(p) the set of all words w ∈ {0, 1}∗ with
p⇒∗ w. Thus, the language L(G) generated by G is L(S). The length of p
is denoted |p|.

For nonterminals X and Y we define Y � X iff there exist p, q with X ⇒∗

pY q, and we define X ≈ Y if both X � Y and Y � X hold. When X ≈ Y ,
we say that X and Y belong to the same strong component. When Y � X

but X 6≈ Y , we also write Y ≺ X. The height of a nonterminal X is the
length k of the longest sequence Y1 ≺ . . . ≺ Yk = X. When C is a strong
component and X ∈ C has height k, we also say that C has height k.

A primitive word is a nonempty word that is not a proper power. For
elementary properties of primitive words we refer to [10].

Theorem 3.1 The following conditions are equivalent.

1. (L(G), <ℓ) is a scattered linear ordering.

2. There exist no nonterminal X and words u, v ∈ {0, 1}∗ such that nei-
ther u is a prefix of v nor v is a prefix of u, moreover, X ⇒∗ uXp and
X ⇒∗ vXq hold for some p, q.

3. For each recursive nonterminal X there is a primitive word u0 = uX0
such that whenever X ⇒+ wXp then w ∈ u+

0
.

4. For each strong component C containing a recursive nonterminal there
is a primitive word u0 = uC0 , unique up to conjugacy, such that for
all X,Y ∈ C there is a (necessarily unique) conjugate v0 of u0 and a
proper prefix v1 of v0 such that if X ⇒+ wY p for some w ∈ {0, 1}∗

and p ∈ (N ∪ {0, 1})∗ then w ∈ v∗0v1.
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Proof. It is easy to prove that the first condition implies the second. Suppose
that L(G) is scattered and let X ⇒∗ uXp and X ⇒∗ vXq. If neither u is a
prefix of v nor v is a prefix of u, then u and v are nonempty and comparable
with respect to the strict order, say u <s v. Suppose that S ⇒∗ wXp. The
vertices w(u+ v)∗ determine an embedding of the full binary tree in T (L).
Thus, by Proposition 2.1, L is quasi-dense, a contradiction. Thus, either u
is a prefix of v or vice versa.

Suppose now that the second condition holds. We prove that the third
condition also holds. Let X be a recursive nonterminal and suppose that
X ⇒+ uXp. Then u is nonempty (since G is left recursion free) and thus
has a primitive root u0. We claim that whenever X ⇒+ wXq then w is a
power of u0. Indeed, if X ⇒+ wXq then w is also nonempty and thus there
exist m,n > 0 with |un| = |wm|. Since X ⇒+ unXpn and X ⇒+ wmXqm,
it follows that un = wm, so that u0 is also the primitive root of w.

Next we prove that the third condition implies the fourth. So assume that
the third condition holds. Note that if a strong component contains a re-
cursive nonterminal, then all nonterminals in that strong component are
recursive.

Lemma 3.2 Suppose that X,Y are different recursive nonterminals that
belong to the same strong component. Then uX0 and uY0 are conjugate.

Proof. Since X,Y belong to the same strong component, there exist x, y
and p, q with X ⇒+ xY p and Y ⇒+ yXq. Thus, X ⇒+ xyXqp and
Y ⇒+ yxY pq. Thus, xy is a power of uX0 and yx is a power of uY0 . Since
xy and yx are conjugate and uX0 and uY0 are primitive, this is possible only
if uX0 and uY0 are conjugate. ✷

Using the lemma, we now complete the proof of the fact that the third
condition implies the fourth.

Suppose that the strong component C contains a recursive nonterminal and
X0 ∈ C. Let uC0 = uX0

0
. For the sake of simplicity, below we will just write

u0 for this word. Let X,Y ∈ C with X ⇒+ wY p and Y ⇒∗ xXq, where
w, x, p, q are appropriate words, so that X ⇒+ wxXqp. By Lemma 3.2 we
have that wx is a power of a primitive word v0 which is a conjugate of u0. It
is clear that v0 is unique. Also, w = vn0 v1 for some n ≥ 0 and some proper
prefix v1 of v0.

We still need to show that if X ⇒+ w′Y p′ for some w′ and p′, then w′ can
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be written as vm0 v1 for some m. But in this case X ⇒+ w′xXqp′ and w′x is
a power of v0. Since the length of w′ is congruent to the length of w modulo
the length of v0, it follows that w′ = vm0 v1 for some m ≥ 0. This ends the
proof of the fact that the third condition implies the fourth.

Suppose finally that the fourth condition holds. Then clearly, the third
condition also holds. We want to prove that L(G) is scattered. To this end,
we establish several preliminary facts.

Definition 3.3 Suppose that X is a recursive nonterminal and let u0 = uX0 .
For each n ≥ 0 and prefix ui of u0, where i = 0, 1, let L(X,n, ui) denote the
set of all words of the form un0uiw in L(X), where w ∈ {0, 1}∗ and i = 1 iff
i = 0.

Let X be a recursive nonterminal. The following facts are clear. (Below we
continue writing u0 for uX0 .)

Proposition 3.4 Each word in L(X) is either in L(X,n, ui) for some n ≥ 0
and prefix ui of u0, or is a word of the form un0u where n ≥ 0 and u is a
proper prefix of u0.

Proposition 3.5 For each n ≥ 0 and prefix ui of u0 there is only a finite
number of left derivations

X ⇒∗
ℓ wY p⇒ℓ u

n
0uiq (1)

such that un0ui is not a prefix of w.

Let us denote by F (X,n, ui) the finite set of all words q that occur in
derivations (1).

Proposition 3.6 If Y is a nonterminal that occurs in a word q ∈ F (X,n, ui)
for some n ≥ 0 and prefix ui of u0, then Y ≺ X.

Proof. Suppose that (1) is a left derivation and Y occurs in q, so that
q = q1Y q2 for some q1, q2. If X ≈ Y then there exist some r1, r2 with
Y ⇒∗ r1Xr2. Thus, q = q1Y q2 ⇒∗ q1r1Xr2q2. Let v denote a terminal
word with q1r1 ⇒

∗ v. Then we have

X ⇒∗ un0uiq ⇒
∗ un0uivXr2q2.
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Since un0uiv is not a power of u0, this contradicts the third condition. ✷

We now complete the proof of Theorem 3.1.

Let X be a nonterminal. We prove the following fact: If (L(Y ), <ℓ) is
scattered for all nonterminals Y whose height is less than the height of X,
then (L(X), <ℓ) is scattered.

If X is not a recursive nonterminal, then the height of each nonterminal
appearing on the right side of a rule X → p is less than the height of X.
Thus L(X) is the finite union of all languages L(p) where X → p is in P . By
the induction hypothesis and Proposition 2.2, each linear ordering (L(p), <ℓ)
is scattered. Since any finite union of scattered linear orderings is scattered,
(L(X), <ℓ) is also scattered.

Suppose now that X is recursive. Then by Proposition 3.4,

L(X) = L0 ∪
⋃

n≥0, ui

L(X,n, ui)

where ui ranges over the prefixes of u0 = uX0 and each word of L0 is of the
form un0v for some n ≥ 0 and some proper prefix v of u0. It is clear that L0

is scattered (in fact, either a finite linear ordering or an ω-chain). Thus, it
suffices to show that

(
⋃

n≥0, ui

L(X,n, ui), <ℓ)

is scattered. But this linear ordering is isomorphic to the ordered sum

∑

n≥0, u1

L(X,n, u1) +
∑

n≤0, u0

L(X,−n, u0)

where in the first term u1 is a prefix of u0 and in the second term u0 is a
prefix of u0. Since a scattered sum of scattered linear orderings is scattered,
it remains to show that each L(X,n, ui) is scattered. But by Proposition 3.5,
for each n and ui, L(X,n, ui) is a finite union of languages of the form
un0uiL(q) where q contains only nonterminals of height strictly less than
the height of X. Thus, by the induction hypothesis and Proposition 2.2,
each such language is scattered. Since any finite union of scattered linear
orderings is scattered, it follows that L(X,n, ui) is scattered. This ends the
proof of the fact that the fourth condition implies the first. The proof of
Theorem 3.1 is complete. ✷
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Theorem 3.7 L(G) is well-ordered iff L(G) is scattered and there is no
recursive nonterminal X such that L(X) contains a word w such that un0 <s

w for some n, where u0 = uX0 .

Proof. Note that the extra condition is equivalent to that for all recursive
nonterminals X and for any prefix u0 of u0 = uX0 , the language L(X,n, u0)
is empty. Now by repeating the last part of the proof of Theorem 3.1, it
follows that under this condition, if L(G) is scattered, then L(X) is well-
ordered for all X. One uses the well-known fact that if a linear order is
a finite union of well-orderings, then it is also a well-ordering, and that a
well-ordered sum of well-orderings is well-ordered.

On the other hand, if the extra condition is not satisfied for the recursive
nonterminal X, then L(X) is not well-ordered. For suppose that L(X,n, u0)
contains the word un0u1x. We know that there is some m ≥ 1 and some w
with X ⇒+ um0 Xw. Thus, the words ukm0 un0u1xv

km for k = 0, 1, . . . form a
strictly decreasing sequence in L(X). We conclude by noting that if L(X)
is not well-ordered for some X, then L(G) is not well-ordered either, since
G contains no useless nonterminals. ✷

At this point, we are already able to show that it is decidable whether L(G)
is scattered, or well-ordered.

Corollary 3.8 There exists an algorithm to decide whether L(G) is scat-
tered.

Proof. As before, we may assume that G = (N, {0, 1}, P, S) contains no
useless nonterminals or ǫ-rules. Moreover, we may assume that G is left-
recursion free and that L(G) is not empty. By Theorem 3.1 we know that
L(G) is scattered iff for each recursive nonterminal X there is a primitive
word u0 such that whenever X ⇒+ wXp then w ∈ u+

0
. We are going to test

this condition. Given a recursive nonterminal X in the strong component C,
we find a word u such that X ⇒+ uXp for some p. Clearly, u 6= ǫ. Let u0
denote the primitive root of u. Then consider the following grammar GX .
The nonterminals are the nonterminals of G together with the nonterminals
Y , where Y ∈ C. The rules are those of G together with the rules

Y → pZ

such that Y,Z ∈ C and there is some q with Y → pZq ∈ P . There is one
more rule, X → ǫ. Let X be the start symbol. Then L(GX) ⊆ u∗0 iff for
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all w such that X ⇒+ wXp for some p in G, it holds that w ∈ u+
0
. Now

L(GX) ⊆ u∗0 iff the intersection of L(GX) with the complement of u∗0 is
empty, which is decidable. ✷

Corollary 3.9 There exists an algorithm to decide whether L(G) is well-
ordered.

Proof. The extra condition introduced in Theorem 3.7 can be effectively
tested, since it says that for each recursive nonterminal X, the intersection
of L(X) with the regular language of all words of the form un0u1x, where
n ≥ 0 and u0 is a prefix of u0, is empty. ✷

4 Decidability in exponential time

In this section, we give somewhat more efficient algorithms. First we need
some preparation.

Suppose that u0 ∈ {0, 1}∗ is a fixed primitive word, and consider the set
S of all pairs (x1, x2), where x1 is a proper suffix of u0 and x2 is a proper
prefix of u0. In particular, (ǫ, ǫ) ∈ S. With each (x1, x2) ∈ S we associate
the language L(x1, x2) = x1u

∗
0x2, if |x1x2| < |u|, and L(x1, x2) = x1u

∗
0x2+ z

where z is the suffix of x1x2 obtained by removing its prefix of length |u0|,
if |x1x2| ≥ |u0|. (Note that the prefix of length |u0| of x1x2 is a primitive
word which is a conjugate of u0.) We call a word w legitimate if it belongs
to L(x1, x2) for some (x1, x2) ∈ S. Clearly, a word is legitimate iff it is
a subword of some power of u0 iff it is in v∗0z for some conjugate v0 of
u0 and some necessarily unique proper prefix z of v0. Moreover, for each
(x1, x2) ∈ S there is a unique conjugate v0 of u0 and a unique proper prefix
z of v0 with L(x1, x2) = v∗0z. It follows from this fact that any two languages
L(x1, x2) and L(y1, y2) for (x1, x2) 6= (y1, y2) in S are either disjoint or have
a single common element which is a proper subword of u0. In particular,
for any legitimate word u with |u| ≥ |u0| there is a unique (x1, x2) ∈ S with
u ∈ L(x1, x2).

It is also clear that any subword of a legitimate word is legitimate, and
if u ∈ L(x1, x2), say, and v is obtained from u by removing a subword of
length |u0|, then v is legitimate with v ∈ L(x1, x2). Also, if v is obtained
by duplicating a subword of u of length |u0| then v is legitimate with v ∈
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L(x1, x2). Moreover, when u, v ∈ L(x1, x2), then |u| is congruent to |v|
modulo |u0|.

Let (x1, x2), (y1, y2) ∈ S. Then L(x1, x2)L(y1, y2) contains only legitimate
words iff x2y1 ∈ {u0, ǫ}, in which case L(x1, x2)L(y1, y2) ⊆ L(x1, y2). This
motivates the following definition. For any (x1, x2) and (y1, y2) in S, let

(x1, x2)⊗ (y1, y2) =

{

(x1, y2) if x2y1 ∈ {u0, ǫ}
undefined otherwise,

so that ⊗ is a partial operation on S. Thus, if (x1, x2)⊗ (y1, y2) = (z1, z2),
then L(x1, x2)L(y1, y2) ⊆ L(z1, z2), moreover, (z1, z2) is the only element of
S with this property.

Now let (x1, x2) ∈ S and consider a word y. Then L(x1, x2)y contains only
legitimate words iff y ∈ L(y1, y2) for some (y1, y2) ∈ S such that x2y1 ∈
{u0, ǫ}, in which case (x1, y2) is the unique element of S with L(x1, x2)y ⊆
L(x1, y2). Thus we define (x1, x2) ⊗ y = (x1, y2) if this holds, otherwise
(x1, x2)⊗y is not defined. We define y⊗ (x1, x2) symmetrically. The partial
operation ⊗ is associative in a strong sense.

Using the above notions, the fourth condition of Theorem 3.1 can be rephrased
as follows. For each strong component C containing a recursive nonterminal
there is a primitive word u0 = uC0 (unique up to conjugacy) such that for
all X,Y ∈ C there is (a necessarily unique) (x1, x2) ∈ S such that whenever
X ⇒+ wY p then w ∈ L(x1, x2).

As before, let us assume that G = (N, {0, 1}, P, S) is a context-free grammar
that contains no useless nonterminals or ǫ-rules. Moreover, we assume that
G is left-recursion free and that L(G) is not empty.

Lemma 4.1 Suppose that the fourth condition of Theorem 3.1 holds and let
C be a strong component containing a recursive nonterminal. Let u0 = uC0 ,
and suppose that each nonterminal generates at least two terminal words.
Then for each X such that X0 ⇒∗ pXqY r for some X0, Y ∈ C and words
p, q, r there is a unique (x1, x2) ∈ S with L(X) ⊆ L(x1, x2).

Proof. Let (y1, y2) denote the unique element of S such that w ∈ L(y1, y2)
whenever X0 ⇒+ wY s for some s. Then L(pXq) ⊆ L(y1, y2), so that
uL(X)v ⊆ L(y1, y2) for any fixed u ∈ L(p) and v ∈ L(q). This is possible
only if L(X) ⊆ L(x1, x2) for some (x1, x2) ∈ S. Since L(X) contains at least
two words, (x1, x2) is unique. ✷
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Theorem 4.2 Suppose that each nonterminal generates a language of at
least two words. Then (L(G), <ℓ) is a scattered linear ordering iff the fol-
lowing holds for each strong component C containing a recursive nontermi-
nal: There exists a primitive word u0 such that for any two not necessarily
different nonterminals X and Y in C there is some ϕ(X,Y ) ∈ S and for
each nonterminal Z there is some ψ(Z) ∈ S such that

ϕ(X,Y )⊗ ϕ(Y,Z) = ϕ(X,Z) (2)

for all X,Y,Z ∈ C, and such that the following hold for all productions
X → w0Y1 . . . Ykwk:

1. If X ∈ C and Yi ∈ C for some i, then

ϕ(X,Yi) = w0 ⊗ ψ(Y1)⊗ w1 ⊗ . . . ⊗ ψ(Yi−1)⊗ wi−1. (3)

2. If there is derivation X0 ⇒
∗ pXqY r for some X0, Y ∈ C, then

ψ(X) = w0 ⊗ ψ(Y1)⊗ . . .⊗ ψ(Yk)⊗ wk. (4)

(In the degenerate case when k = 0 in the last equation, we mean that w0

belongs to the language L(ψ(X)).

Proof. Suppose that the conditions of the Theorem hold. Consider a strong
component C containing a recursive nonterminal and the corresponding
primitive word u0. Then for any X such that there is derivation X0 ⇒∗

pXqY r for some X0, Y ∈ C we have that L(X) ⊆ L(ψ(X)):

Claim 1. Suppose that (4) holds for all appropriate rules. Then for each X
such that there is a derivation X0 ⇒∗ pXqY r for some X0, Y ∈ C it holds
that L(X) ⊆ L(ψ(X)).

Indeed, suppose that X ⇒∗ w. We prove that w ∈ L(ψ(X)) by induction on
the length of the derivation. When the length of the derivation is 1, the claim
is clear by (4). Suppose that the length is greater than 1. Then there exist
some ruleX → w0Y1w1 . . . Ykwk and words z1, . . . , zk with w = w0z1 . . . zkwk

and Yi ⇒
∗ zi for all i. By the induction hypothesis we have that each zi is in

L(ψ(Yi)). Since (4) holds, we conclude that w = w0z1 . . . zkwk ∈ L(ψ(X)).
This ends the proof of Claim 1.

Also, for any X,Y ∈ C and words w and p with X ⇒+ wY p we have that
w ∈ L(ϕ(X,Y )) as shown by the following claim:
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Claim 2. Suppose that (2), (3) and (4) hold. Then if X ⇒+ wY p, where
X,Y ∈ C, then w ∈ L(ϕ(X,Y )).

To see this, consider a derivation tree whose root is labeled X and whose
frontier is wY p. Let Y1 = X,Y2, . . . , Yℓ, Yℓ+1 = Y be all the nonterminal
labels along the path from the root to the leaf labeled Y . Moreover, let
Yi → piYi+1qi denote the rule used to rewrite Yi, for i = 1, . . . , ℓ. By (3) we
have that

ϕ(Y1, Y2) = ψ(p1), . . . , ϕ(Yℓ, Yℓ+1) = ψ(pℓ)

where if pi = z0Z1 . . . Zkzk, say, then ψ(pi) = z0⊗ψ(Z1)⊗. . .⊗ψ(Zk)⊗zk+1.
Now let us write w = w1 . . . wℓ with pi ⇒

∗ wi for all i. Using Claim 1 and
the equality ϕ(Yi, Yi+1) = ψ(pi), we obtain wi ∈ L(ϕ(Yi, Yi+1)). Since this
holds for all i, we obtain by (2) that w ∈ L(ϕ(X,Y )).

We conclude that the fourth condition of Theorem 3.1 holds, so that L(G)
is scattered.

Suppose now that L(G) is scattered. Then the fourth condition of Theo-
rem 3.1 holds. Suppose that C is a strong component containing a recursive
nonterminal. Let u0 = uC0 . By assumption, for each X,Y ∈ C there exists a
unique (x1, x2) ∈ S such that whenever X ⇒+ wY p then w ∈ L(x1, x2). De-
fine ϕ(X,Y ) = (x1, x2). By Lemma 4.1, for each X such that there is deriva-
tion X0 ⇒

∗ pXqY r for some words p, q, r and nonterminals X0, Y ∈ C, there
is a unique (x1, x2) ∈ S with L(X) ⊆ L(x1, x2). Define ψ(X) = (x1, x2).
The pairs so defined solve the system of equations in the Theorem. ✷

Theorem 4.3 It is decidable in exponential time whether a context-free lan-
guage generated by a context-free grammar G is scattered.

Proof. Without loss of generality we may assume that the terminal alphabet
is {0, 1} and that the grammar G contains no useless nonterminals or ǫ-rules.
Moreover, we may assume that G is left-recursion free and each nonterminal
generates at least two terminal words.

First, for each C containing a recursive nonterminal, one can compute in
exponetial time a primitive word u0 which is the only candidate for uC0 .
This is done by finding in exponential time a left derivation X ⇒+ wXp,
with X ∈ C, then u0 is the primitive root of w. Second, in the same way,
for any X,Y ∈ C, we can determine in exponential time the only candidate
for ϕ(X,Y ) by computing a left derivation X ⇒+ wY p, where the length of
w is between |u0| and 2|u0|. Also, we can compute in exponential time the
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only candidate for ψ(X), for all appropriate X. Then it remains to check
that the equations of Theorem 4.2 hold. But there are a polynomial number
of them, and the validity of each can be checked in exponential time. ✷

The same result holds for deciding whether a context-free language is well-
ordered.

Theorem 4.4 It is decidable in exponential time whether a context-free
grammar generates a well-ordered language.

Proof. Again, we may restrict the grammars as in the previous proof. The
extra condition introduced in Theorem 3.7 can be tested in exponential time.
Hint: if X ⇒+

ℓ un0u1Y p ⇒ un0u1q is a left derivation, where u0 is a prefix
of u0, then the length of the derivation can be bounded by a exponential.

✷

Remark 4.5 The algorithms given in the proofs of Theorem 4.3 and 4.4
run in polynomial time in the important special case when each nonterminal
generates a prefix-free language of at least two words, since in that case
whenever X → pY q is a rule such that X ≈ Y , then u ∈ {0, 1}∗.
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[7] Z. Ésik, Algebraic and context-free linear orderings,
Slides presented at Workshop on Higher-Order Recursion
Schemes & Pushdown Automata, 10–12 March 2010, Paris,
http://www.liafa.jussieu.fr/∼serre/WorkshopSchemes/
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