Skip to main content

Real-Time Spatial and Depth Upsampling for Range Data

  • Chapter
Book cover Transactions on Computational Science XII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 6670))

Abstract

Current active 3D range sensors, such as time-of-flight cameras, enable acquiring of range maps at video frame rate. Unfortunately, the resolution of the range maps is quite limited and the captured data are typically contaminated by noise. We therefore present a simple pipeline to enhance the quality as well as improve the spatial and depth resolution of range data in real time. To improve the spatial resolution of range data, we first upsample the depth information with the data from high resolution video camera. And then, a new strategy is utilized to increase the sub-pixel accuracy. We show that these techniques can greatly improve the reconstruction quality, boost the resolution of the range data to that of video sensor while achieving high computational efficiency for a real-time application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogger, T., Griesbach, K., et al.: 3D-Imaging in real-time with miniaturized optical range camera. In: Proc. OPTO, pp. 89–94 (2004)

    Google Scholar 

  2. SwissRangerTM SR-4000, MESA Imaging inc., http://www.mesa-imaging.ch

  3. Yang, Q., Wang, L., Yang, R., Stewnius, H., Nistr, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and Occlusion Handling. IEEE Trans. PAMI 31(3), 492–504 (2009)

    Article  Google Scholar 

  4. Liang, C.-K., Cheng, C.-C., Lai, Y.-C., Chen, L.-G., Chen, H.: Hardware efficient belief propagation. In: Proc. CVPR, pp. 80–87 (2009)

    Google Scholar 

  5. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Proc. NIPS (2005)

    Google Scholar 

  6. Yang, Q., Yang, R., Davis, J.: Spatial-depth super resolution for range images. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  7. Tomasi, C., Manduchi, R.: Bilateral ltering for gray and color images. In: Proc. ICCV, pp. 839–846 (1998)

    Google Scholar 

  8. Kopf, J., Cohen, M., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Transactions on Graphics (TOG) 26(3), 96(1–5) (2007)

    Google Scholar 

  9. Nvidia Corporation. CUDA: compute unified device architecture programming guide. Technical report (2008)

    Google Scholar 

  10. Schuon, S., Theobalt, C., Davis, J.: Thrun. S.: High-quality scanning using time-of-flight depth superresolution. In: Proc. CVPRW 2008, pp. 1–7 (2008)

    Google Scholar 

  11. Riemens, A.K., Gangwal, O.P., Barenbrug, B., Berretty, R.-P.M.: Multistep joint bilateral depth upsampling. In: SPIE 7257: Proc. VCIP (2009)

    Google Scholar 

  12. Porikli, F.: Constant time O(1) bilateral ltering. In: Proc. CVPR, pp. 1–8 (2008)

    Google Scholar 

  13. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. ACM Transactions on Graphics (TOG) 26(3), 103:1–10 (2007)

    Google Scholar 

  14. Yang, Q., Tan, H.-H., Ahuja, N.: Real-time O(1) bilateral ltering. In: Proc. CVPR, pp. 557–564 (2009)

    Google Scholar 

  15. Bhme, M., Haker, M., Martinetz, T., Barth, E.: Shading constraint improves accuracy of time-of-flight measurements. In: Proc. CVPR 2008 (2008)

    Google Scholar 

  16. Chan, D., Buisman, H., Theobalt, C., Thrun, S.: A noise-aware lter for real-time depth upsampling. In: M2SFA 208: Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications (2008)

    Google Scholar 

  17. Weiss, B.: Fast median and bilateral ltering. In: Siggraph., vol. 25, pp. 519–526 (2006)

    Google Scholar 

  18. Gehrig, S.K., Franke, U.: Improving stereo sub-pixel accuracy for long range stereo. In: Proc. ICCV, pp. 1–7 (2007)

    Google Scholar 

  19. Shimizu, M., Okutomi, M.: Precise sub-pixel estimation on area-based matching. In: Proc. ICCV, pp. 90–97 (2001)

    Google Scholar 

  20. Szeliski, R., Scharstein, D.: Sampling the disparity space image. IEEE Trans. PAMI 26(3), 419–425 (2004)

    Article  Google Scholar 

  21. Zhu, J., Wang, L., Yang, R., Davis, J.: Fusion of time-of-flight depth and stereo for high accuracy depth maps. In: Proc. CVPR (2008)

    Google Scholar 

  22. Guizar-Sicairos, M., Thurman, S.T., Fienup, J.R.: Efficient subpixel image registration algorithms. Opt. Lett. 33, 156–158 (2008)

    Article  Google Scholar 

  23. Lindner, M., Lambers, M., Kolb, A.: Data fusion and edge-enhanced distance fefinement for 2D RGB and 3D range images. IJISTA, Special Issue on Dynamic 3D Imaging 5(1), 344–354 (2008)

    Google Scholar 

  24. Kutulakos, K.N., Steger, E.: A theory of refractive and specular 3D shape by light-path triangulation. In: Proc. ICCV, pp. 1448–1455 (2005)

    Google Scholar 

  25. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. In: Siggraph., vol. 21, pp. 1–7 (2002)

    Google Scholar 

  26. Barash, D., Camiciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image and Vision Computing 22(1), 73–81 (2004)

    Article  Google Scholar 

  27. Alvarez, L., Deriche, R., Sanchez, J., Weickert, J.: Dense disparity map estimation respecting image discontinuities: A pde and scale-space based approach. Technical report. Research Report 3874, INRIA Sophia Antipolis, France (January 2000), 2,3

    Google Scholar 

  28. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. IJCV 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  29. Middlebury datasets, http://vision.middlebury.edu/stereo

  30. Tseng, Y.C., Chang, N., Chang, T.S.: Low memory cost block-based belief propagation for stereo correspondence. In: Proc. ICME, pp. 1415–1418 (2007)

    Google Scholar 

  31. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: Proc. ICCV, pp. 900–906 (2003)

    Google Scholar 

  32. Byrd, R., Lu, P., Nocedal, J., Zhu. C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comp. 16(5), 1190–1208 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xiang, X., Li, G., Tong, J., Zhang, M., Pan, Z. (2011). Real-Time Spatial and Depth Upsampling for Range Data. In: Gavrilova, M.L., Tan, C.J.K., Sourin, A., Sourina, O. (eds) Transactions on Computational Science XII. Lecture Notes in Computer Science, vol 6670. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22336-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22336-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22335-8

  • Online ISBN: 978-3-642-22336-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics