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Abstract—Energy consumption in datacenters has recently a hybrid datacenter model with two-class nodes that have
become a major concern due to the rising operational costs and different performance capabilities and power requiremént
sc_ala_bility issues. Recent solqtior_ws to this problem propose the energy efficiency. In a recent work [23], heterogeneity in a
principle of energy proportionality, i.e., the amount of energy con- MapRed lust idered f . b scheduli d
sumed by the server nodes must be proportional to the amount apreauce (?US €r was considered for Job scheduling an
of work performed. For data parallelism and fault tolerance Performance improvement. There are several recent résearc
purposes, most common file systems used in MapReduce-typeefforts dealing with energy management for MapReduce clus-
clusters maintain a set of replicas for each data block. Aovering ters [17], [16], but heterogeneity in such clusters has not
subset is a group of nodes that together contain at least one replica been considered yet. In this paper, we examine how energy

of the data blocks needed for performing computing tasks. In this fi be furth timized by taking int i
work, we develop and analyze algorithms to maintain energy CONSUMpUon can be further oplimized by taking INto accoun

proportionality by discovering a covering subset that minimizes the different power requirements of the nodes in the cluster
energy consumption while placing the remaining nodes in low-  Another important requirement for energy management is

power standby mode. Our algorithms can also discover covering energy proportionalityi.e., the ability to adjust energy con-

subset in heterogeneous computing environments. In order 0 g, mption in proportion to the given workload. As mentioned
allow more data parallelism, we generalize our algorithms so that .

it can discover k-covering subset, i.e., a set of nodes that contain in [3], server systems consume a substantial amount of gnerg

at least k replicas of the data blocks. Our experimental results €ven in idle mode (over 50% of the peak), although it could be
show that we can achieve substantial energy saving without ideally zero. Thus, a datacenter cluster still needs to woes

significant performance loss in diverse cluster configurations and a great deal of energy even under a very low load (e.g., at
working environments. midnight), since the cluster nodes require substantialgpow
even when no real work is done. Energy-proportionality can
be a great benefit in conserving energy especially in clsister
Energy consumption in scientific and commercial datacewith a high degree of load variation, such as the one destribe
ters has increased dramatically with the introduction ghhi in [7] where variations of over a factor of three between
performance, power-hungry components, such as multicgpeak loads and light loads have been observed. This paper
processors, high capacity memories, and high rotatiore#dp focuses on those two challenges, cluster heterogeneity and
disks. Therefore, the mounting costs of energy in datacgntenergy proportionality in data parallel computing cluster
has recently become a major concern. It is now estimated byOne known approach for cluster energy saving is achieved
EPA that in 2011 datacenters will consume up to 3% of th®/ powering on/off nodes in response to the current workload
total energy in the U.S., while their energy consumption Sor example, we could use cluster nodes in part to handle ligh
doubling every 5 years [20]. Despite the technological pgeg loads, and save energy by deactivating the rest of the nodes
and the amount of capital invested, there are significambt in use. In this work, we study the problem of determining
inefficiencies in datacenters with server utilization mead which nodes should be activated or deactivated whenevsr it i
at around 6% [18]. In this paper, we focus on optimizindetermined that workload characteristics have changed.
energy consumption of compute clusters in datacenter$, sucMore specifically, this work focuses on identifying a set of
as MapReduce clusters [12] often used in scientific comedes that minimizes energy costs while satisfying imntedia
putation [13]. The key idea is to achieve this by placindata availability for a data set required in computing. Tikis
underutilized components in lower power consumption statenportant since the cost of demand-based power state transi
(i.e., standby mode). tions of nodes for missing data blocks is significant in teais
Optimizing energy consumption in datacenters introducesth energy and performance due to the long latency needed
several challenges. As pointed out in [23], [15], [Bgtero- to transition back from standby to active mode. For example,
geneity of cluster nodes may be inevitable due to gradudehibernating (transitioning from standby to active madey
replacement or addition of hardware over time. The replacesfjuire 129W for a duration of 100 seconds [16], for a node
or added hardware should be “brand-new” rather than the sacmmsuming 114W in idle mode. In a heterogeneous setting,
as the old one. Cluster heterogeneity can also be a resultsath power requirements can be different from one node to
a design choice. For example, the authors of [8] presentadother. To address this, we establish a power consumption

I. INTRODUCTION



profile for each node, and use this information in locating ¢ —
optimal node set. In this paper, we refer to a group of nod Standhy b i
that together contain at least one replica of the data bloc ' (hibernated) o e 1
needed for performing computing tasks as a @8véring No jobs in queue
subsext
For high performance computing, the degree of data avdiig. 1. Power state transition diagram of a node in the clugte omit
ability has a critical role in determining the degree of datgower-off state.)
parallelism [2], [12]. To consider this, we extend our node
discovery algorithms to guarantee a certain degree of data
availability. In its simplest form, our node discovery aigjom real life, we assume that a node requires a different powet le
searches for a node set holding a single replica of the dad@cording to their power state, as illustrated in Figure & W
However, we may need a node set that has more thammssumen nodes in the cluster. Thug, nodes are involved in
single replica for each data item for certain situationst F@omputation for given jobs for NPS. For the CS approach, in
example, for satisfying performance dictated by servieelle contrast, a part of nodes are involved in computation fos¢ho
requirements we may need to activate a node set containjobs (i.e.,.n nodes andn < n), and the othen — m nodes
two replicas for supporting intermediate loads, rather thare deactivated for energy saving. Thus, we canisay an,
using a node set with a single replica. where0 < a < 1. We useT*) and P\’ to denote the time
Our key contributions are summarized as follows: duration and power consumption respectively for poweestat
o We provide mathematical analysis of minimal CS sizand node set. The variabley may take the following values
under the assumption of a uniform data layout as 7a(idle), a (Active), p (Peak) ,s (Standby),u (Activating),
function of the number of data blocks. We also shownd d (Deactivating). The variable may take the values of
the validity of the theoretical model by simulation. individual nodes or sets of nodes based on the context where
o We present node set discovery algorithms that find ainis used. For example, it can take the valli® to denote
energy-optimized node set with data availability for althe set of nodes in the covering sat('S for the set of nodes
required data items, for homogeneous and heterogeneoos in the covering set, anty to denote the set of all nodes.
settings. We simply useT® and P if the node (set) is obvious,
« We extend our discovery algorithms to identify a node send useT’, and P, if its power state does not matter. Table |
with any required degree of data availability, as a meassmmarizes the notations used in this paper.

of energy-proportional cluster reconfiguration. Now, we analyze energy consumption for the CS approach
« We present our evaluation results with respect to e(E.g) and NPS Enps). We assume that nodes are idle
ergy consumption and performance with a rich set @fitially. For the CS approach, CS nodes are active for a
parameter settings. The results show that our techniqygge periodTé“S) for computation, while non-CS nodes are
can achieve substantial energy saving without significagéactivated and activated again during the time periodt Tha
performance loss in most light workload environmentgg T](chs + Tj(vsés + T](V%S - ng) We denoteT — ng)
Also, we show that our power-aware technique can efsy simplicity. We also assume that job completion time is
ploit heterogeneity successfully, yielding greater epergnyersely proportional to the number of active nodes for a
saving. job. Under NPS, the complete set of nod€sis active, thus,
The paper is organized as follows. In the next section, wide active time for NPS would b&("” = o7\ = oT,
briefly discuss the background for this work, including fése where « = m/n as defined above. To represent the power
of the CS approach that activates a subset of nodes for enesgite transitioning time, we defing as 7 + T(4) = §gT,
saving and introduction to several closely related stutbes where(0 < 5 < 1. Thus, the extreme values g¢f imply
data availability and energy proportionality. In Secti&and that: if 3 = 0, there is zero transitioning time; and = 1,
6, evaluation setup and results are presented with a rich ggfnputation time is negligible compared to transitioniimget
of parameters in diverse working environments. We finallgigure 2 illustrates timing for both approaches in detail.
conclude our paper and present some research topics foe futu \ys first compute the lower bound on energy consumption

work in Section 7. for NPS based on the above assumptions. Since it is true that

1. BACKGROUND AND RELATED WORK P(l) < P(a) S P(p)’ NPS energy Consumption iS Slmply
{nputed as follows:

Job arrival

. S . [ole}
Since our approach in this paper is based on the concep

of covering subset (CS), we first discuss the benefits of the

CS approach for energy management. We then provide a brief

summary of studies related to our work. Exps > nTPW (1)

A. Energy benefits of CS approach

Here, we discuss energy benefits for the CS approach oveWe can also compute the upper bound on the CS approach
a full configuration called NPS (Non Power Saving). As in th€F ), as follows:
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Fig. 2. Timing comparison between NPS and CS approach: NPi8estithe entire set of nodes in the cluster for a given setlud.jtin the CS approach
only CS nodes are involved in processing the jobs, while NG&ea are hibernated during that period.

TABLE |
NOTATIONS
[ Symbol | Description [[ Symbol [ Description |
N Cluster node set B Data block set
[oF] CS node set@S C N) NCS non-CS node setNC'S C N)
n Cluster size b Number of data blocks
T Replication factor f Fraction of low-power nodes
P Idle power 7@ Idle time
P | Active power 7@ | Active time
P®) Peak power T®) Peak time
P) | Standby power TG | Standby time
P | Activating power 7@ | Activating time
P@ | Deactivating power T@ | Deactivating time
53 0=01 ——
Eoe = mplap@ dl g=0.2% = ]
cs = m S 45 - (1=b.5 1
+ (n— m)(p(d)T(d) + p(U)T(u)) g af
(= m)(POTES — (T 4+ T))) g 3%
< mP®T + (n—m)(PP(BT) + POT(1 - B)) " 22 i
o . r
= nT(aP® + (1-a)(BPY +(1-p)PY) (2) gLl
Based on Equation 1 and 2, Figure 3 shows the ratio 157
between two techniques in terms bfwer_bound(NPS) : r
upper_bound(CS), as a function of3. For the graphs, we 05, 02 oa 06 08 1
plugged in the Xeon measures in Table Il. It is intuitive that B = (TOLTW)T

Ecs has a greater energy benefit with a smaller power state
transitioning time. As seen from the figutg¢ s has no benefit _ N _
. . . . Fig. 3. Impact of power state transition time: As the CS actimeet(T")
if > 0.9. However, ifT" is relat|vely Iarge compared to theincreases, energy benefits also increase super-lineate, & is the fraction
transitioning time, energy benefits increase super-lige@he of active nodes (i.e.xn = the number of active nodes), amtlis a ratio
figure also plots energy ratio with diversevalues (i.e., as a of pow(o:ir) sta(ts)transition time for node activation and deatitin to7" (i.e.,
function of /). Intuitively, energy saving can grow up with? = =)
a smallera (i.e., a smaller set of CS nodes), and the figure
supports the intuition.
of CS nodes was not considered, and as a result, any single

B. Related Studies node failure can make this scheme ineffective. Also, theas w

1) MapReduce cluster energy managemefite initial NO notion of energy proportionality with gradual adjusten
work on MapReduce cluster energy management was pf@thel’ the cluster is in either full performance mode wité th
sented in [17] based on covering subset (CS). In that wotire set of nodes activated or in energy mode with only the
the CS nodes are manually determined, and one replica &% nodes activated.
each data item is then placed in one of the CS nodes. UndeAlS (All-in Strategy) [16] is a different approach. AlS runs
a light load, it would be possible to save energy by runnirtfpe given jobs employing the entire set of nodes in the dluste
the cluster with only the CS nodes activated. To enable this, complete them as quickly as possible. Upon completion
the authors modified the existing replication algorithmglsu of the jobs, the entire set of nodes are deactivated to save
that the CS nodes contain a replica of each data item. Fail@mergy until the next run. This makes sense since data glarall



clusters are often used for batch-oriented computatiof [1 Input: Data block set3, Node setS
One potential drawback is that even with small (batched§,job Output: Covering subset’
AIS still needs to wake up the entire cluster, possibly wagti 1 U < B;
energy. Both studies (static CS and AIS) did not considérF" < S;
cluster heterogeneity, as we do in this work. 3C 0
Rabbit [1] provides an interesting data placement algorith4 While U # () do
for energy proportionality in MapReduce clusters. The key | Select node € F' that maximizes
idea is to place data items in a skewed way across the| |U(i.getReplicaSet()|;
nodes in the cluster. More specifically, nodestoresb/k 6 | U =U —i.getReplicaSet();
data items, wher# is the total number of data items. Thus? | C < CU{i};
a lower-indexed node holds a larger number of data items, | £ <« F'— {i};
this makes it possible to deactivate a higher-indexed nodeend
safely without losing data availability. Energy proportiity 10 returnC’
is also provided by allowing one-by-one node deactivation.
Our approach provides energy management for clusters with
the existing data layout, while Rabbit introduces its own
method of data placement for energy management. Rabbit aidinition in [17]. The CS used here is not a static node set,
does not consider possibility of cluster heterogeneity. rather it is discovered on demand based on a given list of data
Cardosa et al. considered energy saving in a VM (Virtu&locks required for computation. Thus, our CS must contain a
Machine)_based MapReduce cluster [6] Their approacl‘ep|a(fep|ica forrequireddata items instead of thentire set of data
VMs in a timely balanced way, and finds a way to minimize thelocks in the cluster. Since data parallel computing ptatf
number of nodes to be utilized, so as to maximize the numbie often used for batch-style processing [10], [16], tHea dat
of nodes that can be idle. Subsequently, idle nodes can G be available for the next operational time window. We firs
considered as candidates for deactivation to save energy. @resent a basic algorithm for node discovery that searches a
essential assumption in this work, that may not be pracﬁsa] minimal number of nodes for data availability, and then edte
the availability of a tool for accurate running time estifoat it with an energy metric for heterogeneous settings.
for VMs.
2) Minimum set cover:Minimum (weighted) set cover is
a classic NP-complete problem. In the problem, we are givenBy definition, CS maintains at least one replicaf the
a setlU of n elements and a collectiof’ of subsets ofty required data blocks. Locating such a set is NP-complete as
each associated with a positive weight. A set covet/df a it can be reduced to the well knovget coverproblem [9], as
collection of subsetst”, of I where the union of the subsetsdescribed in the following proposition.
in F' is U. The weight of a coveF” is the sum of the weights ~ Proposition 3.1:A" mininum CS discovery problem
of the subsets in it. The problem objective is to find a sétS(B,S) with B required blocks and a set of servefs
cover with the minimum weight. Since the exact solution to sé& NP-complete, the reduction is from a minimum set cover
cover is NP-complete, a greedy set heuristic algorithmtisnof Problem SC(U, F), whereU is a universe of elements and
used. The greedy algorithm first selects the most costieféec £ is @ family of subsets ob/.
subset, i.e., the subset whose cost per element is smalhekt, Proof: We omit the proof since it is trivial. ]

adds that subset to the solution while removing the covered greedy algorithm for CS discovery is shown in Algo-

elementsj, and the subset fro”? 'further c0n5|deratlon: Tl?lfhm 1. In the algorithm, function getReplicaSet() givée t
process is repeated on the remaining subsets and eleméihts Ui of data blocks that the node contains

alrlo?jg;egtz;rio(\;,%\:e\:ﬁ?ﬁ I:ft’ thmn?:)esthzufgsc‘:?gr}lvb?sofrtﬁzen t Figure 4 plots the size of CS for a cluster with size- 1024
P under two replicated environments with= 3 andr = 5,

. _ ; th
hma:?rlnn;l;:z rfgrsr‘]tbz(:tecgzﬂ’}vihergz ;ng(l(i)g?r?elzatrz(iengit as a function of the number of required data blocks. As the
of U [9]. A naive in? Iemen%;t_i.o.r; N aTrLun time com Iei/(itnumber of data blocks increases, the CS size also increases.
' . b . L PIEXIDE o example, withn data blocks, the CS size ranges 20-30%
of O(JU||F|min(|U|, |F])), but a linear-time implementation - . o
is also possible 111, Ch.35 of the cluster for the two replication settings. This implie
! possible [11, Ch.35]. that it would be possible to have energy saving of up to
I1l. NODE SET DISCOVERY ALGORITHMS 70-80% in this setting. The CS size grows to 60-80% of
. . . . the cluster for the case where the number of data blocks
In this section, we present our CS discovery algorithms for. a C : :
T ) . iS 32n, which is ~ 27T B with the default data block size
set of nodes that minimizes energy consumption subjecttto da .
oo : .. In MapReduce [12] and Hadoop [14]. As observed in [2],
availability constraints. We assume that the data setstiti ata popularity in MapReduce clusters is time-varving and
for the next round of computation is readily available ang pop y P ying
therefore discover the CS based on that information. Thidde  1¢4nsidering more than a single replica will be discussedémeéxt section

to a slightly different definition of CS as compared with theSection 1V) for energy proportionality.

Algorithm 1: FindCS(B, S)

A. A basic method for CS discovery
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Fig. 4. CS size as a function of the number of data blocks: C&lsis a Fig. 5. Minimal CS size: This figure shows the minimal CS size ioleth by
strong correlation with the number of required data blocks.sF-data blocks, the mathematical equation in Theorem 3.3 ("by prob”) and sitiara("by
CS size is 20—-30% of the cluster, while it is 60-80%38r blocks & 27°'B)  sim”). We usedn = 20 and computed CS size froln= n to b = 1024n.
in two settings with replication factor 3 and 5.

Then, the expected value of;, F(X;), is equal toP. The

skewed, and thus, there will be substantial opportunities gxpected number of CS is thus,

see a relatively small number of data blocks as a requirement .

for a certain time window. Z B(X) = (n)P
We briefly discuss the theoretical analysis for the minimal ‘=0 m

CS size as a function of the number of data blocks in a uniform

daFa distribL_Jtio_n. Assume thatcopie_zs of each data bI0(_:k a€ent. Therefore, the minimah that ensures existence of at

uniformly dlstr|buted_onn nodes_wnh each node h(_)ldlhg atleast one CS must satis(y;)P > 1.

most one of the: copies. As previously defined, CS is a node

set that contains at least one replica of each of the given Figure 5 shows the minimal CS size as a function of the

data items. - number of data blocks in a small system witk= 20. The fig-
Lemma 3.2:Let P be the probability that a randomly yre compares the analytical results based on our probibilis

selected set ofn nodes out ofn nodes is CS. ThenP is  model and simulation results, and we can see that they agree

equal to(l Tt (1 - n’;l)) : with each other. Also, the sub-linear shape of CS size iiserea

Proof: The total number of ways for selectingnodes OVer the number of blocks agrees with the mathematical work
from the availablex nodes to hold the replicas is(j}). From Studied in [22]. Note that we used rack-unaware replication

these possible selections, exac([ﬁ/;m) do not place a copy for simulati_on to assume the equivalent setting. .

in the randomly selectech nodes. We can then calculate the AS described above, the problem of our node set discovery

probability that the selected nodes do not have any replica ofS SIMPly mapped to the set cover problem, and the solution is
. (") (nem)i(n—r)! m—1 to locate a set with the minimal size covering the data items

a data itemd; asP' =~~~ = R =TT T(1— . ; :

B Al(n=m=r)! i=0 in question. However, in a heterogeneous environment where
~=). Due to the fact that the replicas for each of thé nodes may have different power metrics, locating a minimal-
data items are plflCEd independently, we Bet (1 — P')’, size set would not be sufficient. We presenp@wer-aware
or P=(1-J[%, (1—-35)" B discovery algorithm as a solution for identifying an optima

n—i

Theorem 3.3:The minimalm such that we can expect atnode set in a heterogeneous cluster next.
least one CS from any given uniform data layout satisfie

Note that this is true even though th&'s are not indepen-

B. Power-aware (PA) discovery for heterogeneous clusters
m—1

b
(n) <1 — H (1 _ T )) > 1. Let us illustrate a heterogeneous cluster with a realistic
m i=0 n—t example. Suppose there are 20 nodes in a cluster with 10
Proof: Let M = {M;, Ms, - - -, M,} be the collection of Xeons and 10 Atoms with power profiles as in Table II.
all sets of sizen selected fromm nodes. Thug = (7’;;) By We can see that Xeons consume ten times more energy than
Lemma 3.2, we know that the probability of eath to be a Atoms. In such an environment, a CS with two Xeon nodes
CS isP. Let X; be a random variable where, as a minimal subset may require a greater power level than
a CS with ten Atom nodes. The former power requirement is
) ) 2-315W + 8- 18W + 10 - 2W = 794W at peak, while the
- {1 if M; is a CS, latter only requiresiO - 33.8W + 10 - 181 = 518IV. At the

0 otherwise. idle state, the former requires 683W and the latter does 436W



However, any technique that naively selects low-power Input: Data block set3, Node setS
nodes for CS discovery may not work that well. For example, Output: Covering subset’
in the above example, if Xeons consume only half watts U < B;
than that in the table, i.eP?) = 315/2W = 157.5W and 2 I" <5,
P = 18/2W = 9W, whereP®) stands for peak power and3 C < 0;
P() does standby power, then the power requirement for a @gvhile U # () do
with two Xeons becomeg - 157.5W +8-9W +10-2W = 5 | Select node € F that minimizes
407W, which is smaller than the energy requirement for a CS T gii};;{:iaseto‘;
with ten Atom nodes. Henpe, we n'eed a more SOphIStIC?.tgd U =U — i.getReplicaSet();
approach to locate an optimal CS in heterogeneous settings,| . UL
as discussed next. We will revisit the naive method WheEp F e F_{\

. SR {i}:
discussing Figure 9. 9 end
. F(%(rlr)nally,(g?e overall po(\xe'r requirement in t.he CS approaﬁbc — FindCS(B,0);
is Po¢ + Pyeog, Where Ppg is power for CS in active state,; returnc
andPI(\,S)CS is power for non-CS nodes in standby. The energy Algorithm 2: FindPACS@, S)
consumption £) for a given period of timeX) is then simply
E = (Pé“s) + PJ(VS)CS) x T'. If we assume thai is fixed, our
objective in identifying CS is to minim_izéDé‘Q'Jr P](V%S. In fIO P]ia) _ P}gs)_ Let C C F be the minimum weighted set
other words, what we want to do here is t_o discover no_d_es_ hver of SC(U, F). DefineC’ = {s;u; € C}, then it is easy
CS whose aggregated energy consumption can be minimizg
during time period7’. This can be rewritten as follows for

eeC’ is also the minimum weighted set of nodes covering
all blocks in B. Reversely, weighted set cover can be reduced

power P to the heterogeneous CS discovery problem, and the reductio
is in polynomial time. ]
Po— PP
B (a) (s) For an active node, its power consumption can scale from
- Z P+ Z By idle to peak based on workloads. That B(®) can vary
veCs yeNes over time depending on jobs running on the node. Thus, it
= > (PJE“) + P — Pés)) + > By is difficult to estimateP!” for a given time period. In this
zeCS yENCS work, we simply chose the mean between these two extreme
_ Z (nga) _ Pﬁ) n Z Pe 4 Z P vaIue;,Pi(“) = (Pi(’).JrPi(p))/Q, and use this for weight; for
2e0S vels JENCS nodei. However, this can be replaced with any other relevant
measure.
= Z (Paﬁ“) _Pogé)) + Z Ps(rs) ®) Our power-aware algorithm for node set discovery in a
veCs veN heterogeneous setting is illustrated in Algorithm 2. Thisagly

Since the second part in Equation 3 is a constant, we CaN rithm selects a node that minimizes P@ _p()
then map the node set discovery problem in a heterogene?n U n.getReplicaSet()]*

. . . . other words, the algorithm prefers a node with a smaller
setting to aweighted set coveproblem with an energy metric . .
(a) (s) . . . X power requirement but with a greater number of data blocks
(P;" — P;”’) as the weight associated with each nedilore

precisely, the goal of the node set discovery problem can E)er CS.

cast as follows. LetG be the set of all possible covering One interesting part in the algorithm is the addition of

subsets for a required set of data blocks. For covering wb% geo rlit?;maf;[/sé :)ut;tatlihnein(?loi (v:vzigsrftteggl stgtecc\;\\/g?g}ggri?ﬁrtng)or:/er
€ G, we define its weightv(g) as the sum of weights of ' . ) .
J W ine its weightu (g) . welg more. We call it a “reduction” phase. We observed that this

Its nodes, Le., reduction can decrease the size of CS by removing ineskentia
w(g) =Y (nga) - P;ES)) (4) nodes. Indeed, a greedy technique yields good approximatio
z€g but the resulted set may not be an optimal. To explain thismor
Then, our goal is to find a covering subgesuch thatu(q) < in detail, here is an example. Suppase- 3 and the cluster
w(g) for all g € G. consists of the equal number of high-power and low-power

Proposition 3.4:A minimum CS discovery problem nodes. Then, the probability that a specific data block has no
CS(B,S) in a heterogeneous setting is NP-complete, andriplica in any low-power node is = (%)3 = 0.125. In other
can be reduced to a minimum weighted set cover problemords, 12.5% of data blocks should only be found in high-
WSC(U, F), whereU is a universe and” is a family of power nodes probabilistically. If we consider those esaknt
subsets ofJ. high-power nodes first as the elements of CS, it is possible to

Proof: As in Proposition 3.1, given a CS problemeliminate some redundant low-power nodes because the high-

CS(B,S), we can construct a corresponding set cover propewer nodes also keep some other data blocks. This simple
lem SC(U, F'), where for each sef;, € F', we set its weight optimization helps to reduce CS size, as shown in Figure 6.
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algorithm (Basic): PA saves more energy where energy ratiwden LP and
Fig. 6. CS Size with optimization for the power-aware aldorit The simple  HP (i.e., E(LP)/E(H P)) is smaller, and vice versa.
optimization reduces CS size by 2-5% by removing inessemgdlindant
nodes from CS.

ML (“Medium-Low”) has twice of LP power measures, and

, . MH (“Medium-High”) has four times of LP measures (i.e.,
Figure 7 compares the power-aware CS discovery ngaML — 2% Prp and Py = 4 x Prp). Then peak power
the basic CS method. As above, we considered two clas$gs o1ch class of node i®®) —256W P®) —51.2wW
of nodes, low-power (LP) and high-power (HP), based 0Bw) 145 s andp® —25L£§5W T ML o
Table 1l. The two figures show CS size (Figure 7(a)) andMi ~ =  ANdyy p =209 oW, . .
Y ; - (Mg Figure 9 compares three CS discovery algorithms with
percentage of LP nodes (Figure 7(b)) in the resulted CS

as a function of fraction of LP nodes in the cluster. In thigeSpeCt to aggregated peak power of CS. Here, “Naive™ is

experiment, we set the number of data bloéks= n and aCS dl_s;coyery method that simply chooses th_e Iow_est power
nodes first in a greedy manner. For each configuration in the

replication factorr = 3. We can see that the power-awar(ﬁgure, we assume the number of each class of node is equiv-

algorithm yields a slightly bigger set for CS, but not thatIent in the cluster. We consider three configurations: IH?/H

significant (the max gap is s_maller than 49%). Figure 7(k?a_}Pf/MH/HP and LP/ML/MH/HP (i.e., four classes of nodes
shows the power-aware algorithm takes a greater number; T'the clus,ter). Naive finds CS with ,smaller peak power than

LP nodes for CS. Even with 0.25 for LP fraction, arOungasic However, the figure shows that the difference between
50% of nodes in the CS are LP nodes, while it is 259> ' 9

. . . . . -~ Naive and Basic is reduced in more heterogeneous environ-
with the basic algorithm. This power-optimized CS techeiqu s : . : :
L : ments: it achieves 67% of Basic in the LP/HP configuration,
can significantly reduce energy consumption over the ba%'ﬁt becomes 83% and 89% in the other two configurations
CS technique in heterogeneous settings, as we will show In : : . '
Section VI, In" contrast, our PA algorithm shows fairly consistent resul

between 62—73% of the peak power as compared with Basic.

A short discussion about energy benefits of the power-awgtg mnaring idle power between Naive and PA to Basic shows
discovery technique over the basic algorithm. Figure 8 shoyp Najve requires 67-89% of Basic, whereas PA requires 66—
thi; as a function of fraction of LP nodes with respect to gper 7504 of Basic, although not shown in the figure. We repeated
ratio between LP and HP. For example(LP)/E(HP) = fie times for this experiment, and report average in the &igur

0.5 means that LP node energy consumption is 1/2 of energye 9504 confidence intervals are smaller than 3.8%.
consumption of a HP node. We can see that the power-aware

discovery achieves more energy saving, as the energy rdtio Incremental CS reorganization for node failure
between LP and HP nodes goes high. Past studies, such as [8}ere, we briefly discuss the issue of CS reorganization in
[21], observed that(LP)/E(H P) is 1/10 or even smaller. case of cluster configuration changes due to node failure. We
In such cases, it is expected that more than 42% energy savidgume that a new CS set is constructed periodically or on
can be achieved over the basic CS method where LP fract'@@mand_ Thus, any Conﬁguration Change can be accounted at
is 0.5 (f = 0.5). All these suggest thathe power-aware every construction time. However, there may be node failure
technique is beneficial to discover CS closer to the optimghd as a result, some data blocks can be unavailable from
in terms of energy efficiency the CS set. To deal with such failure cases, it is possible to
We mainly assumed two classes of nodes, LP and HP, feorganize CS incrementally by adding some nodes to keep
heterogeneity. In reality, however, a cluster may have mattee CS effective. Upon detection of any failure that affects
than two generations of nodes. To consider more heterogiee CS set, we can perform the CS discovery algorithm with
neous environments, we compose clusters with some otigouts of the missing data blocks from the CS set and a set
classes of nodes, in addition to LP and HP, with synthetad non-CS nodes (i.e., NCS). The resulting set can then be
power values chosen based on the LP measures. We suppaited to the CS set. The incremented set may not be optimal,
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heterogeneous environments. LP/HP for a cluster with twesels of nodes, number of non-failure nodes, while the bottom figure showscih@nges of
LP/MH/HP for three classes of nodes, LP/ML/MH/HP for fouas$es of CS size by incremental reorganization due to CS node failure.
nodes. ML and MH power values are synthetically definégi;, = 2x Prp
and Pyyg =4 X Prp.

down over time with incremental reorganizations (incregsi

) , i , o CS size) and full reorganizations (minimizing CS size) from
but still effective with required data availability. At trend of o pottom one.

the time window for which the current CS is effective, a full |, this section, we have discussed node set discovery for

reorganization is initiated to find an optimal node set fa& thog ¢ provides a single replica availability for data kkc

new set of data blocks. in requirement. This can be extended to guarantee a higher
Figure 10 shows an example of CS reorganization ovgggree of data availability, e.g., two replicas for eachunegi

time under a node failure environment. We assumed that nqgl§a block. In the next section, we discuss how we can achieve

Probabilistically, at each time unit around 5 nodes suffer @oportionality in a cluster.

failure in a cluster withn = 1024. Thus, at each time step,

there would be an incremental reorganization if any CS node IV. MULTI-LEVEL NODE SET DISCOVERY

suffers a failure. We assume that a failed node is recoveretHere we discuss how it is possible to provieieergy pro-
after a deterministic amount of time (10 time units), and thaortionality in this framework. In [16], the authors considered

a full reorganization takes place at every 10 time units. keveral strategies for node deactivation for non-CS nodes t
the figure, the upper plot shows the number of nodes that sigpport the CS approach. By deactivating (and activating)
not experience failure, while the bottom plot shows CS sizedes one by one according to the current load, it is posgible
changes over time. In the upper plot, we can see that nodgs energy proportionality, but as the authors indicatkdre

fail and recover back, and the CS size varies accordingly imay be load inequality between nodes because the number of
the bottom plot. As shown in the figure, CS size varies up améplicas for each data block may be different for a certaneti



For example, if we deactivate one node (and all the othershode Multi-level CS size (95% confidence interval < 0.5)
are active), there will remain — 1 blocks for the data blocks 100 ‘ ‘ ‘ ‘
kept in that node, while the other blocks are maintaineddase

on replication factor «). This implies a possibility of load 80 ¢
imbalance. For these types of complications, we do not nely o
a node selection strategy for achieving energy proportiigna
Instead, we propose a multi-level CS discovery that gives
different degrees of data availability based on perforreanc
requirements for the given workload.

D
o

CS-2 Size (%)

N
o

In our multi-level CS approach, different CS levels provide 0% 51 (r=8) —— 1|
different degrees of data availability. For example, a C8 se g
in level 2 in our framework gives 2-replica availability ftire 0 ‘ ‘ ‘ CS2(1=5) e

n 2n 4n 8n 16n 32n

required data blocks (we call @S-2. Therefore, there can be Number of data blocks (h1024.1<3)

a series of CS sets frol3S-1to CS-r (usually equivalent to
n). In this section, we describe how we can discover such Gf3. 11. Multi-level CS size: This figure plots CS size for €%nd CS-2

sets for a certain degree of data availability. under two replicated env_ironr_nents;,:_‘?) andr = 5, as a function of the
number of data blocks. Since it satisfiese(CS«) < size(CSw) for z < v,

The problem of ide.mifying::s'kcan be mapped to theet it is possible to choose C8¢1 < i < r) based on load intensity for energy
multicover problem with coverage factot, wherek denotes proportionality.

the minimal number of times each object in question appears

: ; TABLE IIl
in the res'ulltlng set. ' PARAMETERS
Proposition 4.1: The CS-k(B,S) problem is NP-
complete, the reduction is from the set multicover problem —
SMC(U, F,k), where U is a universe,F' is a family of [ Symbol | Description | Default value |
IR . ! y n Cluster size 1,024
subsets of’/, and a required coverage factor 5 Number of data blocks 16n(~ 1TB)
Proof: The reduction algorithm is the same as proof 3.4. r Replication factor 3
Since there is a one-to-one mapping between the bbpcek g ELarf]tk'J‘;’: gff j'g‘é"s‘po""er nodes 1%8’0
B anq the element; € U, any elem'ent that is covered 5y Job arrval rate 05
times inSMC (U, F, k) also appearg times in the result set X Number of tasks n
of CS-k(B,S)and vice versa. Also, the reduction remains in 2 ﬁvefage gomputatlffm time i 3081560
: : verage data transfer overheg .
polynomial time. u T Task processing time Normal/c/d

In [4], the authors presented an(k|U||F|) time greedy
heuristic for theSMC(U, F, k) problem with an approxima-
tion factor of (1 + Ina) from optimal wherex = max; |F;|. power (i.e.,P() = p(@ — p(®) based on the observations
The greedy heuristic makes a selection of a new set in e3gf16]. In the table MaxThreadis the max number of threads
iteration. The selected set must include the max number it can be concurrently run in the node, @abacityrefers to
elements that have not been covefetimes yet. We employ processing capacity. Thus in the table, we can see that an Ato
this greedy heuristic for our multi-level CS discovery. node can accommodate 4 concurrent tasks at max, and its
Figure 11 shows the CS size compared to the cluster sigggcessing capacity is 0.36 of that of a Xeon. For example, if
as a function of the number of data blocks in two replicategXeon node can run 100 instructions for a finite time interval
environments,{ = 3 andr = 5). As shown in the figureCS-1 an Atom node can perform 36 instructions for that amount of
and CS-2have different sizes. For example with= 4n and tjme.
r = 3, the CS size is around 50% and 80% of the cluster we conducted experiments extensively with a diverse set
for CS-1and CS-2 respectively. From those sets, we capf parameters summarized in Table Ill. We assume data
Se|eCt the one with a desired data aVa||ab|I|ty Wh|le COEIS[[Q p|acement follows the basic MapReduce rep”cation prml’t
the (expected) workload. By doing so, our multi-level Cghence, almost close to a uniform data layout). We then iinjec
technique can be used for achieving energy-proportignalit 3 series of jobs to the simulator based on job arrival raje (
the cluster. We use average computation timg defined below as the unit
time for X in this paper. For example, X = 1 andc = 100s,
it means that a single job is enqueued in the system at every
For evaluation, we developed a simulator based on OMO0 seconds on average. We assume job arrival follows an
NeT++ [19] providing a discrete event simulation frameworlexponential distribution. Since we are more interestedigint |
We ran our simulation using the power consumption data givéyads for energy saving, we use= 0.5 by default in our
in [8], [16] shown in Table Il. The measurement informatiorexperiments, but we explore the impactofis well.
does not include power requirements for node activation andEach job requireg parallel tasks, and task processing time
deactivation, and we simply assume they are equal to the péakis determined by computation overhead, data transfer

V. EVALUATION METHODOLOGIES



TABLE Il
POWER MODEL: SPEG>OWER RESULTS FROM8] AND NODE HIBERNATION COSTS FROM[16].

[ Platorm [ P® [ pWw [ PG [ 1@ [ 70 [ MaxThread| Capacity |
HP (Xeon) || 259.5W | 315.0W | 18.0W 11s 100s 8 1
LP (Atom) 25.6W 33.8W 2.0W 11s 100s 4 0.36

overhead (), and node capacity(lapacity). We calculate compared to NPS regardless of fraction of LP nodes in the
computation time in a deterministic way based omand cluster. In contrast, we can see that PA further improves
node capacity by the equatiofimpute_time = ¢/Capacity. energy saving in heterogeneous settings. Witk 0.75, PA

In contrast, data transfer time is determined probalibkdli. improves energy saving over 50%, as shown in Figure 12(a).
Since no previous work identified distributions for datangf@r For turnaround time, no significant differences among the
time in data parallel computing clusters, we employ twearious techniques were observed, as in Figure 12(b). This
distribution models,normal and exponential in this study. indicates that our PA technique can improve energy saving
For normal we pick a random numbemw,) from N(0,d), with little performance loss by exploiting cluster hetezogity.

and the data transfer time is computed 8yta_time = AIS also achieves energy saving, but it is less than 20%.
|vn| x ¢/Capacity. For exponential we select a random One interesting observation is that AIS shows the best tresul
number {.) from an exponential distribution witlmean = d, in energy saving in a cluster that only has HP nodes, yielding
and then comput@ata_time = v, x ¢/Capacity. That is, 40% energy saving. This is because AIS can quickly complete
d is used to define standard deviation feormal while it a set of jobs in the queue, and then move to low-power mode
determines mean foexponential Finally, a task processingin that configuration. However, in the environment where LP
time is computed by adding those two elements, ire5= nodes exist, slower nodes (i.e., LP nodes in our experimeat d
compute_time + data_time. Due to randomness, tasks mayo the low capacity) can delay job completion, and it resints

have differentr even in a single job. the reduced number of opportunities to get into power-gavin
We compare the following techniques in terms of energyode. In the HP-only configuratiory (= 0), the number of
consumption and average turnaround time: cluster deactivation to low-power mode is 2.5-3 times gneat
« NPS, without energy management; than the other configurations.
o AIS, All-in Strategy;
« Basic, basic CS discovery based on Algorithm 1; B. Impact of the number of data blocks

« PA, power-aware CS discovery based on Algorithm 2. Next, we investigate the impact of the number of data
NPS fully utilizes nodes in the cluster, and nodes are in ididocks since the CS size has strong correlation with this
mode after jobs are completed. AIS also utilizes the engite arameter. To see this, we used a diverse set of values for

of nodes for processing jobs, but keeps the cluster desativathe number of data blocks, from = n (i.e., 64GB) to

as soon as all jobs are completed until the next job arrivéds= 32n (i.e., 2TB). Figure 13 shows the results with respect

Basic constructs CS dynamically without considerations & both energy and performance. We can see linear increases

node heterogeneity, while PA takes heterogeneity intowtico of energy consumption as the number of blocks increases for
Initially, the entire cluster is “on” for NPS and AIS, while CS techniques, since a greater number of data blocks results

only CS nodes selected by each algorithm are active fir @ larger CS. environment. Basic shows 30-60% energy

our CSbased techniques. After completing all injected jobsaving, while PA yields 40-70% saving with no noticeable

(i.e., &), we measured aggregated energy consumption apgiformance degradation.

average turnaround time for each technique, and compared i )

the measured results. We repeated each experiment ten tifnedmMpact of job arrival rate

and provide 95% confidence intervals. By default, we used job arrival rate = 0.5, since we are

more interested in light load environments. In this expernim

we discuss the experimental results under varied job &rriva

A. Impact of fraction of low-power nodes rates. We employed a multiple set of job arrival rates from
In this experiment, we explore the impact of the fraction of = 0.25 (for a light load) to\ = 2 (for a heavy load) in this

LP nodes in the cluster. We varied the fraction of LP nodexperiment.

from O to 1. By definition, the two extremes (i.¢.= 0 and Figure 14 shows energy and performance as a function of

f = 1) refer to homogeneous settings (i.¢.,= 0 for all \. We see no significant changes between our CS techniques,

high-power node setting anfl = 1 for all low-power node except that PA somewhat degraded in a heavy workload

setting), while intermediate values gfrepresent mixtures of environmentA = 2. Interestingly, AIS saves energy more

both classes of nodes. well with smaller A. This is because AIS could lengthen
As shown in Figure 12, PA yields the same results akeactivation periods in a light load. In this experimentSAl

Basic for both extremes, showing around 30% energy savipiglded around 30% energy saving whin= 0.25. However,

VI. EXPERIMENTAL RESULTS
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Fig. 13. Impact of the number of data blocks

little energy saving has been observed with greater jobalrri data transfer overhead, respectively. For a diverse set of

rates @ > 0.5) for AIS. distributions, we can see that o@Sbased techniques con-
o sistently save energy around 30% for Basic and 40% for PA
D. Impact of computation time without significant performance losses.

We examine the impact of computation time. In addition
to ¢ = 300s used by default, we examined the techniques
with three more computation times,= 100s, ¢ = 600s, and F. Impact of the number of tasks
¢ = 1200s to consider a diverse range of applications that
have different computation requirements. The results sdow \We next present our evaluation results showing the impact of
no noticeable impact of this parameter for both energy atisk number of tasks on energy and performance. We varied the
performance, as plotted in Figure 15. number of tasksy() fromn/4 to 4n (i.e.,x = [%,4n]) for each
job. Figure 17 shows the experimental results as a function
of the number of tasks. Basic achieves 30% energy saving
In this experiment, we employ several distribution models tas compared to NPS, and PA further improves energy saving
consider indeterministic data transfer overhead. As éxpth up to 40%. However, the CS-based techniques showed some
in the previous section, we consider two distributions fost extent of performance degradation with the heavy workload
— normalandexponentiabistributions. Again, we model datawhere y = 4n. This result is not surprising as CS-based
transfer overhead by specifying standard deviation fomadr techniques are designed for light workloads. Nonethelgss,
distribution and mean for exponential distribution. We diseaddress this problem by providing the concept of multideve
d = 0.05,0.1,0.25 for this experiment. CS sets, as discussed next. As shown in the figure, AIS
Figure 16 shows the results. In the figuf€prm(d) and yields no significant energy saving, and hence no performanc
Exp(d) represent normal and exponential distributions withenalty.

E. Impact of data transfer overhead
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G. Evaluation of multi-level CS operational costs and scalability issues. For data pésatle

Finally, we present performance and energy consumptiaﬁd fault tolerance purposes, m_ost_common file gystems used
of multi-level CS sets. To see the impact more clearly, w8 MapReduce-type clusters maintain a set of replicas fohea
used a greater replication factor= 5 and a smaller value for data block.
the number of data blocks = n, in this experiment_ Thus Our basic idea in this work is to identify a subset of nodes,
there can exist four CS sets froB5-1to CS-4 in addition to called a covering subset, that can provide a required degree
the entire cluster. Then we variedto see how the CS setsdata availability for a given set of data blocks. In this work
respond to different loads. we developed algorithms to maintain energy proportiopalit

Figure 18 shows the results. From the figure, we can see tR4tdiscovering a covering subset that minimizes energy con-
each CS level gives a different degree of energy saving. Fsfmption while placing the remaining nodes in low-power
A = 1, even withCS-4 it saves 20% of energy comparedstandby mode. In particular, we consider heterogeneity in
to NPS on the average. The figure also shows B&t3 determining a power-optimized covering subset. For evalua
achieves 50% energy saving in the same setting, wb8e2 tion, we conducted experiments with a variety of parameters
and CS-1further increase energy saving to 70%. With regardg/ch as job arrival rate and data transfer distribution. The
to performance, we can see that a lower level CS showsxperimental results show that power management based on
greater turnaround time. Thus, any appropriate CS can ®4 covering subset algorithms can significantly reducegne
chosen based on load intensity to maximize energy savig@nsumption, up to 70% compared to a non-power saving
with performance guarantees. configuration, with little performance loss. In particulﬂne

experimental results show that our algorithms can enhance
VII. CONCLUSIONS energy saving in a heterogeneous environment by consggerin

Energy consumption in commercial and scientific datacepewer metrics of individual nodes in the construction of a

ters has recently become a major concern due to the risicmyering subset. The results also show that our extended
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algorithm can be used to provide a coarse-grained level ¢f]

energy proportionality based on covering subset with céffie
degrees of data availability (thus providing different cests
of data parallelism).

In the future, we plan to also work on efficient scheduling
algorithms for activating/deactivating nodes based oriciant

patory analysis of future workloads.
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