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Abstract

The Resource Description Framework (RDF) is a popular data model for representing linked
data sets arising from the web, as well as large scientific data repositories such as UniProt. RDF
data intrinsically represents a labeled and directed multi-graph. SPARQL is a query language
for RDF that expresses subgraph pattern-finding queries on this implicit multigraph in a SQL-
like syntax. SPARQL queries generate complex intermediate join queries; to compute these
joins efficiently, we propose a new strategy based on bitmap indexes. We store the RDF data
in column-oriented structures as compressed bitmaps along with two dictionaries. This paper
makes three new contributions. (i) We present an efficient parallel strategy for parsing the raw
RDF data, building dictionaries of unique entities, and creating compressed bitmap indexes of
the data. (ii) We utilize the constructed bitmap indexes to efficiently answer SPARQL queries,
simplifying the join evaluations. (iii) To quantify the performance impact of using bitmap
indexes, we compare our approach to the state-of-the-art triple-store RDF-3X. We find that our
bitmap index-based approach to answering queries is up to an order of magnitude faster for a
variety of SPARQL queries, on gigascale RDF data sets.

Keywordssemantic data, RDF, SPARQL query optimization, compressed bitmap indexes, large-
scale data analysis

1 Introduction

The Resource Description Framework (RDF) was devised by the W3C consortium as part of the
grand vision of a semantic web1. RDF is now a widely-used standard for representing collections of
linked data [4, 5]. It is well-suited for modeling network data such as socio-economic relations and
biological networks [27, 30]. It is also very useful for integrating data from dynamic and heteroge-
neous sources, in cases where defining a schema beforehand might be difficult. Such flexibility is
key to its wide use. However, the same flexibility also makes it difficult to answer queries quickly.
In this work, we propose a new strategy using bitmap indexes to accelerate query processing.

Each record in the RDF data model is a triple of the form 〈subject, predicate, object〉. If
these records are stored in a data management system as a three-column table, then all queries
except a few trivial ones would require self-joins, and this would be inefficient in practice. To
speed up the query answering process, there have been a number of research efforts based on
modifying existing data base systems and developing specialized RDF processing systems. For

1More information about RDF can be found at http://www.w3.org/RDF/.
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example, popular commercial database systems (DBMS) such as ORACLE have added support for
RDF [22]. A number of research database management systems have also been applied to RDF
data [1, 29]. Special-purpose RDF storage systems include Jena 2 and hyperGraphDB 34.

The most commonly used query language on RDF data is called SPARQL [26]. The need to
support queries in this language also makes it more necessary to develop specialized RDF processing
systems.

The critical piece of technology in these new RDF processing systems and additions to DBMS
systems is the indexing technology to enable efficient query answering on RDF data. The key
observation underlying our work, and many others in the past, is that RDF data is a table with only
three columns, and therefore can only have a small number of combinations for composite and join
indexes [18,23,33]. More specifically, there are only three single-column indexes, three two-column
indexes and three join indexes involving join conditions of the form (in SQL notation) “S.subject
= T.subject,” “S.subject = T.object,” and “S.object = T.object.” Given this observation, we
can design data structures to implement all these possible combinations to satisfy most common
queries, as demonstrated by RDF-3X [23] and RDFKB [21].

Our work takes the above idea and builds a significantly more efficient set of data structures for
both storing the RDF data and answering SPARQL queries. By utilizing a compute-efficient bitmap
compression technique and carefully engineering the query evaluation procedure, we dramatically
reduce the query processing time compared to the state-of-the-art software package RDF-3X. More
specifically, our contributions include the following:

• We present an efficient processing strategy for parsing the raw RDF data, building dictionaries
of unique entities, and creating compressed bitmap indexes of the data. In addition, we exploit
shared-memory parallelism on multicore systems to speed up key routines in this strategy.
With our approach, we construct the dictionaries and bitmap indexes for a 500-million record
RDF data set (raw data size of 62 GB) in less than 30 minutes on a workstation.

• We utilize the constructed bitmap indexes to accelerate SPARQL query evaluation. We
present an outline of our query evaluation strategy in Section 4.

• We conduct an extensive experimental study to gauge the impact of using bitmap indexes.
Performance results indicate that our strategy either matches or outperforms the high-performance
triple store RDF-3X for a variety of complex RDF queries. Section 6 presents our observations
from this study.

2 Related Work

In this section, we briefly review related work on indexing RDF data. Since the RDF records can
be treated as either nodes of a graph or rows of a three-column table, we classify the indexing
techniques accordingly into graph indexing techniques or table indexing techniques.

Before RDF become widely used, there were already a number of innovative indexing methods
for XML data [10, 15]. Since the advent of RDF, many new techniques specifically for RDF data
have been developed [12,14,16]. Most of these indexing methods are implemented using prototype

2http://openjena.org/.
3http://www.hypergraphdb.org/.
4More specialized RDF processing systems are listed at http://semanticweb.org/wiki/Tools.
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systems and cannot easily be integrated into other data processing systems. Overall, we believe the
table indexing methods are more likely to be compatible with an existing data processing system
and therefore concentrate on such methods in this work.

The most common indexing techniques in database systems are variants of B-Trees [8] or bitmap
indexes [25]. The techniques for indexing RDF data generally follow these two prototypical methods
as well. For example, Fletcher and Beck proposed a technique called Three-way Triple Tree [9],
and McGlothlin and Khan proposed a indexing method using bitmaps [20]. Of course, there
are also creative combinations of multiple indexing approaches, for example, Nguyen et al. propose
combining hashing with B-trees to produce B+Hash Trees [24]. Typically, a B-Tree based approach
is more efficient for highly selective queries, such as those looking for one or a few records. Because
most of the query conditions on RDF data selects more than a handful of records, the bitmap
indexing approach is generally more efficient. Among the existing indexing methods, RDF-3X
is the best among the B-Tree variants [23]; however, two bitmap indexing methods, BitMat and
RDFJoin, have demonstrated performance on par with RDF-3X [2, 19]. They also highlight the
effectiveness of a bitmap-based approach and motivate us to consider even more optimized bitmap
indexes.

The BitMat index creates a 3D bit-cube with the three dimensions being subject, predicate,
and object. This cube is compressed and loaded into memory before answering any queries [2, 3].
This technique has been shown to be quite efficient, but due to its reliance on the whole bit-cube
to be in memory, it is difficult to scale to larger datasets.

The RDFJoin technique breaks the 3D bit-cube used by BitMat into six separate bit matrices.
Each of these bit matrices can be regarded as a separate bitmap index, and therefore can be used
independently from other other. Thus, the RDFJoin approach is more flexible and can be applied
to larger datasets [20]. In this work, we further enhance the approach by only loading the necessary
bitmaps into memory and reducing the memory requirement to the minimum. This not only reduce
the I/O costs, but also reduce the amount of time needed for CPU also.

To accelerate join operations, a tempting option for the authors is to use the bitmap cross-
product option [17]. Here, the result of the join is directly computed using bitmaps that represent
the subjects and objects. It has been shown to be quite efficient and requires no explicit join
indexes. However, this strategy is better-suited for tables with many columns where the joins can
be performed on arbitrary combinations of columns. For RDF data, there are only three columns
and only three commonly used join conditions. Therefore, a more specialized indexing strategy
might be more efficient, as demonstrated by McGlothlin and Khan [20, 21]. We adapt a compute-
efficient compression method to further improve the bitmap indexes for RDF data.

Most compression methods are designed to minimize the compressed size of the index. However,
in the case of bitmap indexes, because the compressed bitmaps are extensively used in bitwise
logical operations, it is more important that logical operations can be efficiently performed on
the compressed bitmaps directly. The specific compression method we use is called Word-Aligned
Hybrid (WAH) code [35]. It is a hybrid between run-length compression and literal representation of
raw bits. It is very simple so that bitwise logical operations can directly operate on the compressed
bitmaps without producing uncompressed bitmaps. A key feature of this compression is that during
bitwise logical operations, it accesses data as whole words instead of individual bytes or bits. This
allows the operations to better match the capability of modern CPUs, and further improves its
overall efficiency. At the same time, WAH also offers enough compression that the worst-case index
size is a linear function of the number of records [35]. In computational complexity theory, this is
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regarded as optimal.
Compression techniques have also been used to directly compress the RDF data [1, 29]. This

accelerates query processing by reducing the amount of I/O needed to answer queries. In this work,
we replace the string values with dictionaries and compressed bitmaps, which represents the RDF
records very compactly. This also turns most computations while answering a query into bitwise
logical operations, where our compute efficient compression can show its full benefit. At the same
time, the bitmaps can provide statistics about the string values needed for query planning, which
can further accelerate certain queries.

Since most of the operations on the RDF records are querying instead of updates, the systems
for managing RDF data are similar to data warehouses. This has led to a number of researchers
to explore the possibility of transplanting On-Line Analytical Processing (OLAP) techniques to
the RDF stores [7]. Furthermore, a number of graph summarization techniques such as Trace
Equivalence and Bi-similarity have also been proposed in recent literature [13].

3 Bitmap Index Construction

We next explain the data structures used in our work. We describe them as bitmap indexes in this
work, because each of them consists of a set of key values and a set of compressed bitmaps, similar
to the bitmap indexes used in database systems [25, 35]. However, the key difference is that each
bitmap may not necessarily correspond to an RDF record (or a row), as in database systems. For
RDF data, one can construct the following sets of bitmap indexes:

Column Indexes. The first set of three bitmap indexes are for three columns of the RDF data.
In each of these indexes, the key values are the distinct values of subjects, predicates, or objects,
and each bitmap represents which record (i.e., row) the value appears in. This is the standard
bitmap index used in existing database systems [25,35].

Unlike conventional bitmap indexes, our indexes for subject and object share the same dictio-
nary. This strategy is taken from the RDFJoin approach [20]. It eliminates one dictionary from
the three bitmap indexes, and allows the self-join operations to be computed using integer keys
instead of string keys. This is a trick used implicitly in many RDF systems.

Composite Indexes. We can create three composite indexes, each with two columns as keys.
The keys are composite values of predicate-subject, predicate-object, and subject-object. This
ordering of the composite values follows the common practice of RDF systems. As in normal
bitmap indexes, each composite key is associated with a bitmap. However, unlike the normal
bitmap index where a bitmap is used to indicate which rows have the particular combination of
values, our bitmap records values the other column has. For example, in a composite index for
predicates and subjects, each bitmap represents what values the objects have.

In a normal bitmap index, there are many columns not specified by the index key. Therefore, it
is useful for the bitmap to point to rows containing the specified key values, so that any arbitrary
combination of columns may be accessed. However, in the RDF data, there are only three columns.
If the index key contains information about two of the three columns already, directly encoding the
information about the third column in the index removes the need to go back the data table and
is a more direct way of constructing an index data structure.
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Table 1: Summary of bitmap indexes and dictionaries employed in our RDF query evaluation
scheme. In the terms below, nX (X being P , S, O, or SO) refers to cardinality of column X.

Index # bitmaps Size of each
uncompressed bitmap

PSIndex O(nP · nS) nSO

POIndex O(nP · nO) nSO

PSIndex (summary) nP nSO

POIndex (summary) nP nSO

Dictionary Mapping # entries

Predicates String to integer identifier nP

Subject-Object String to integer identifier nSO

To effectively encode the values of the third column in a bitmap, we use a bitmap that is
as long as the number of distinct values of the column. In the example of a predicate-subject
index, each bitmap has as many bits as the number of distinct values in objects. In our case, the
bitmap has as many bits as the number of entries in the subject-object dictionary. To make it
possible to add new records without regenerating all bitmap indexes, our dictionary assigns a fixed
integer to each known string value. A new string value will thus receive the next available integer.
When performing bitwise logical operations, we automatically extend the shorter input bitmap
with additional 0 bits. This allows us to avoid updating existing bitmaps in an index, which can
reduce the amount of work needed to update the indexes when new records are introduced in a
RDF data set.

Join Indexes. A normal join index represents a cross-product of two tables based on an equality
join condition. Because the selection conditions in SPARQL are always expressed as triples, the
join operations also take on some special properties, which we can take advantage of when con-
structing the join indexes. Note that for SPARQL queries, joins are typically across properties.
Thus, the most commonly-used join indexes for RDF data would map two property identifiers to a
corresponding bitmap, and there can be three such indexes based on the positions of the variable.
In the current version of our RDF processing system, we chose not to use construct join indexes
due to the observation that most of the test queries could be solved efficiently with just composite
indexes. We will investigate use of join indexes for query answering in future work.

Summary Composite Indexes. In addition to the composite indexes, we also create two other
bitmap indexes: summary POIndex and summary PSIndex. The summary POIndex composite
index is a collection of nP bitmaps. For each predicate pid, summary PSIndex[pid]is given by the
bit vector

⋃nS
i=1 PSIndex[pid, sid]. Thus, this bitmap captures all possible object identifiers with

which the predicate pid may occur in the data set. Since the number of predicates is typically much
lower than the distinct subject-object count, it is not very expensive to maintain these summary
composite indexes.
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3.1 Parallelization

The salient features of the bitmap indexes and dictionaries that we construct for query evaluation
are summarized in Table 1. The dictionary and bitmap index construction steps are computationally
very expensive, with the cost increasing super-linearly on increasing data size. Prior work reports
that the data ingestion step is extremely slow for popular open-source RDF stores such as Jena and
Sesame [28]. We implement all the construction steps in a modular manner, and hence they are
amenable to incremental parallelization. In particular, we perform the following steps to construct
the dictionaries and composite indexes:

1. Read the RDF data into an in-memory buffer in batches and parse each new line to identify
the subject, predicate, and object strings.

2. Use a hash table to determine the unique predicate strings. Assign each of these strings
unique integer identifiers and write the dictionary to disk.

3. Sort the triples by subject, iterate through list of subjects removing duplicates, and create a
list of unique subject strings.

4. Sort the triples by object, iterate through list removing duplicates, and create a list of unique
object strings.

5. Merge the sorted subject and object string arrays, identify list of unique strings, and create
the combined subject and object dictionary. Write the dictionary to disk.

6. Replace the subject and object strings with their integer identifiers. Write the integer triple
list to disk.

7. Read the integer triples from disk. To create PSIndex, sort the integer triples first by Predi-
cate, and second by Subject. Identify all unique objects for each PS pair, create corresponding
compressed bitmap. Write all the created bitmaps to disk.

8. Construct POIndex in an approach similar to the previous step.

9. Create the summary composite indexes.

Observe that we use the sort routine extensively, for finding unique subjects, objects, as well
as for composite index creation. This is due to the fact that the number of unique subject-object
strings is typically quite large in RDF data sets, about the same order as the number of triples.
Sorting mitigates irregular memory references that may be required when maintaining a hash table.
We also perform all the sorts in parallel, thus incrementally parallelizing the construction phase
without affecting other steps in the construction process.

4 Query Evaluation and Optimization

SPARQL is a query language that expresses conjunctions and disjunctions of triple patterns. Each
conjunction, denoted by a dot in SPARQL syntax, nominally corresponds to a join. A SPARQL
query can also be viewed as a graph pattern-matching problem: the RDF data represents a directed
multigraph, and the query corresponds to a specific pattern in this graph, with the possible degrees
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of freedom expressed via wildcards and variables. Figure 1 gives an example SPARQL query (more
queries are listed in the Appendix). Informally, this query corresponds to the question “produce a
list of all scientists born in a city in Switzerland who have/had a doctoral advisor born in a German
city”. This query is expressed with six triple patterns, and each triple pattern can either have a
variable or a literal in the three possible positions. The goal of the query processor is to determine
all possible variable bindings that satisfy the specified triple patterns.

SPARQL Query:

select ?p where {

?p <type> ‘‘scientist’’ .

?city1 <locatedIn> ‘‘Switzerland’’ .

?city2 <locatedIn> ‘‘Germany’’ .

?p <bornInLocation> ?city1 .

?adv <bornInLocation> ?city2 .

?p <hasDoctoralAdvisor> ?adv .

}

Corresponding Query Graph:

Figure 1: An example SPARQL query and a graph representation of the query triple patterns.
The rectangular nodes in the graph represent triple patterns. The labels (a)-(f) correspond to the
ordering of the patterns in the query.

To understand how the constructed bitmap indexes can be utilized to answer a SPARQL query,
consider the “graph” representation of the query shown in Figure 1. Each triple pattern is shown
as a rectangular node. Two triple nodes are connected via query variables they may share, and
these variables are represented using circular nodes. Further, the triple patterns are colored based
on the number of variable positions in the pattern. The light blue-colored blocks have one variable
and one literal in their pattern, whereas the dark blue blocks represent patterns with two variables.
Similarly, the dark brown circular node represents the output variable, and the nodes in light blue
color are other variables in the query. Such a query graph succinctly captures the query constraints,
and forms the basis for a possible query evaluation approach.

For query evaluation, consider representing each variable using a bitmap. For instance, the
variable p can be initialized to a bitmap of size nSO (where nSO is the cardinality of the combined
subject-object dictionary), with all subject bits set to 1. Observe that triple patterns that have
only one variable in them can be resolved by composite index (in our case, PSIndex and POIndex)
lookups. For instance, the key corresponding to predicate <type> and object “scientist” can be de-
termined using dictionary lookups, and then a bit vector corresponding to all possible subjects that
satisfy the particular condition can be obtained with a single composite index lookup. Performing
a conjunction just translates to performing a bitmap logical “AND” operation with the initialized
bitmap. Similarly, we can initialize and update bitmaps corresponding to city1 and city2 in the

7



figure. The other triples (d), (e), and (f) have two variables in their pattern, and so we are required
to perform joins. The bit vectors give us a sorted list of index values, and so we employ the nested
loop merge join to determine the final binding.

We can utilize auxiliary information in the bitmap indexes to guide the join ordering. Another
useful optimization we implement is to utilize the summary PSIndex and POIndex data structures.
The summary indexes give, for a particular predicate, the set of Ll possible subjects or objects
that could appear along with them, in the form of a bit vector. We can perform a bitmap logical
AND operation of the summary PSIndex vector with the current binding associated with a variable
prior to performing the join, in order to further reduce the number of set bits in the bitmap. For
instance, patterns (d) and (e) in the example have the predicate <bornInLocation>. We can thus
perform an AND of the corresponding summary POIndex bitmaps with p and adv, and an AND
of the summary PSIndex bitmaps with city1 and city2. Reducing the number of set bits in the
bitmaps clearly reduces the computational complexity of the final required nested-loop merge join
computation.

The UNION expression is an uncommon feature of SPARQL, which allows certain forms of
disjunctions. This feature can be incorporated in our processing by performing bitmap logical
“OR” computations.

The current version of our query processing system does not include a SPARQL query parser.
Hence we manually parse the query and implement one of the many possible join orders. Note that
the intent of this work is to demonstrate the feasibility of bitmap indexes for RDF data processing
and understand its strengths and limitations. In future work, we will investigate automated query
optimization and advanced join ordering algorithms. We will also adopt a calculus representation
suitable for working with bitmap indexes, such as the one proposed by Atre et al. [2] for SPARQL
query optimization using the BitMat data representation.

Thus, the key primitives in our query-answering methodology are dictionary lookups, composite
index lookups, summary composite index lookups, bit vector AND and OR operations, and finally
nested loop merge joins after decompressing bit vectors. We were able to express all the benchmark
queries, some with as many 15 triple patterns, compactly using these primitives. The query required
less than 20 lines of source code in almost all cases.

We use FastBit software to perform these operations. In most cases, the lookup operations are
performed with integer identifiers of the string values obtained through the dictionaries. These
integer identifiers are directly used as indices into arrays of bitmaps in the bitmap indexes. FastBit
stores bitmaps with Word-Aligned Hybrid (WAH) compression. The bitwise logical operations can
be directly performed on the compressed bitmaps. A theoretical analysis has shown that the bitwise
AND and bitwise OR operations on WAH compressed bitmaps scale linearly with the compressed
sizes of these bitmaps, which is optimal in computational complexity [35]. In a number of empirical
studies, operations on WAH compressed bitmaps are also found to much more efficient than on
other compressed bitmaps [34].

5 Experimental Evaluation

5.1 Data sets

We choose a variety of data sets and test instances to test our new FastBit-based query evaluation
scheme. First, we experiment with synthetic data sets of different sizes using the Lehigh University
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Benchmark suite LUBM [11]. LUBM is a popular benchmark for evaluating triple stores, with a
recommended list of fourteen queries that stress different aspects related to query optimizations.
The LUBM queries are listed in the Appendix. The number of predicates generated in this data
set is 18.

We also present query results with the Yago [31] dataset, which is comprised of facts extracted
from Wikipedia. This dataset contains about 40 million triples, and the number of distinct predi-
cates (337K) is significantly higher than LUBM. We use a set of queries that were previously used
to evaluate RDF-3X.

Further, we use large subsets of two datasets: the Billion Triples Challenge [6] data and the
UniProt [32] collection. The Billion Triples dataset encapsulates public domain web crawl informa-
tion, whereas UniProt is a repository for protein-related information. We implement three sample
queries for each of these datasets. Both these datasets are significantly more complex, noisy, and
heterogeneous compared to LUBM. We use queries recommended by the UniProt publishers, and
ones similar to prior RDF-3X query instances.

5.2 Choice of Competing Approaches

There are numerous production and prototype research triple-stores available for comparison, a
majority of which are freely available online5. In this paper, we chose to compare our bitmap
index strategies against RDF-3X [23]. We use version 0.3.6 (the latest version) for most of our
experiments (unless otherwise specified), and version 0.3.5 for a few runs. RDF-3X is a production-
quality RDF-store widely used by the research community for performance studies, and prior work
shows that it is significantly faster, sometimes by up to two orders of magnitude, than alternatives
such as MonetDB and Jena-TDB. We also experimented with the bitmap indexing-based software
BitMat [2], but found that RDF-3X consistently outperforms BitMat for a variety of queries. In
particular, the new version v0.3.6 of RDF-3X presumably enables some optimizations that fix a
previous shortcoming when processing high selectivity complex queries.

The RDF-3X SPARQL query processing routine includes a parser and performs selectivity
estimation and a dynamic programming-based query optimization phase before the actual operator
tree execution to realize the final output. For a fair comparison with our work, we only time the
operator tree execution phase when presenting RDF-3X results.

5.3 Test Systems and Software

The primary test machine data5 is a typical Linux workstation with a quad-core Intel Xeon processor
with a clock speed of 2.67GHz, 8MB L2 cache, and 8GB RAM. The disk system used to store the
test data is a software RAID concatenating two 1TB SATA disks in RAID0 configuration. We also
present results on a 256 GB SSD drive on the same system. The second test machine named euclid
is a shared resource at NERSC 6. It is a Sunfire x4640 SMP with eight 6-core Opteron 2.6 GHz
processors and 512 GB of shared memory. On this system, the test files are stored on a GPFS file
system shared by thousands of users. Therefore, we may expect more fluctuations in I/O system
performance.

We use FastBit v1.2.2 for implementing our bitmap index-based RDF data processing approach.
We built the codes using the GNU C++ compiler v4.4.3 on data5 and the PGI C++ compiler v10.8

5Please see http://semanticweb.org/wiki/Tools for a list of tools.
6More information about NERSC and euclid can be found at http://www.nersc.gov.

9

http://semanticweb.org/wiki/Tools
http://www.nersc.gov


Table 2: Data, Index, and Database sizes for different data sets.

Data set LUBM LUBM LUBM Yago UniProt BTC
# triples 1M 50M 500M 40M 220M 626M

Raw data 0.125 6.27 62.30 3.56 30.58 65.19
FastBit Dictionaries 0.032 0.79 8.22 1.30 3.05 2.48
FastBit Indexes 0.016 1.59 15.41 1.20 6.30 15.03
RDF-3X DB 0.058 2.83 33.84 2.75 — —

on euclid. For parsing the data, we use the Raptor RDF parser utility (v2.0.0).
For all the queries, we present cold cache performance results, which correspond to the first

run of the query, as well as “warm cache” numbers, which are an average of ten consecutive runs,
excluding the first.

6 Results and Discussion

6.1 Index construction and sizes

Table 2 lists the sizes of the FastBit dictionaries and indexes after the construction phase. We
observe that the cumulative sum of the dictionary and index sizes is substantially lower than the
raw data size for all the data sets. As a point of comparison, we present the size of the RDF-3X
B-tree indexes (which internally stores six compressed replicas of the triples compactly) for each
of these datasets. We could not construct indexes for the larger data sets using RDF-3X v0.3.6
due to time constraints (the latest version was released early February). However, for the data sets
studied, our approach uses slightly lower disk space than RDF-3X.

The dictionary and index construction times range from 20 seconds on data5 for the 1M triple
LUBM data set, to nearly four hours for the BTC 626M triple data set on euclid. Figure 2 gives
the overall parallel performance (on eight cores of euclid) and the performance breakdown of the
various steps involved in the construction phase. The overall parallel speedup is 2.66×, and the
serial reads and writes to GPFS become a significant bottleneck in the parallel run. Among the
other steps, the combined subject-object dictionary construction takes the maximum time, as it
involves two sorts of variable-sized strings.

6.2 LUBM Query Performance

We next evaluate the performance of our bitmap index based approach for LUBM data sets of three
different sizes.
Comparison to RDF-3X. In Table 3, we compare the cold and warm caches performance of
queries for the LUBM-1M and the LUBM-50M data sets. We do not observe a substantial difference
between the cold and warm cache times (the difference is not as pronounced as RDF-3X), which
may indicate that the indexes may be already cached in main memory and I/O activity is minimal.
Overall, we observe that our strategy outperforms RDF-3X by a significant margin in the warm
cache case, particularly for the 1M dataset. Studying the queries individually, we observe that the
speedup is higher for simple two or three triple pattern queries (such as queries 1, 5, 10, and 14).
The results for the slightly more complex queries (queries 2, 8, 9) are mixed: RDF-3X is faster for
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Figure 2: Serial and parallel (on eight cores of euclid) execution times for various steps in the bitmap
index and dictionary construction phase for the Billion Triples data set. The overall parallel speedup
achieved is 2.66×.

query 2 for both the 1M and the 50M data sets, whereas our bitmap index-based approach is faster
for query 8 on both the data sets. We surmise that this may be because we picked a non-optimal
join ordering when executing query 2. Table 4 presents performance results for the same set of
queries on a 500M data set, but on the euclid system. We also ran an older version of RDF-3X on
this system. Interestingly, query 2 is significantly slower and our test harness times out for this
particular instance. Thus, the new version of RDF-3X presumably includes some optimizations to
handle these tough queries. Another trend apparent on investigating the relative performance is
that the overall average speedup reduces as the data size increases.

We also separately analyzed Queries 2, 6, 9, and 14, as their execution times were significantly
higher than the rest of the queries. We wanted to know whether this was due to join computations
(performing extraneous work) or dictionary lookups (potentially expensive random accesses). Ta-
ble 5 gives the query execution times and the output triple sizes for these four queries. In addition,
we defer materializing the output in order to isolate the time incurred in dictionary lookups. We
see that the relatively-simpler queries 6 and 14 achieve a substantial speedup when the lookups are
not timed. This is expected, as the query selectivity is very low. Similarly, the execution times of
the relatively high selectivity queries 2 and 9 is dominated by bitmap and join computations.
Query execution time scaling with data size. We next study the query execution time scaling
as a function of the data size. On comparing the execution times for queries as the data size is
increased from 1M to 500M, we see that the times, for most queries, increase sub-linearly for both
RDF-3X and our approach. The execution times of low selectivity queries such as Q14 shoot up as
the data size increases, but that is mostly because of materializing the final result.
Impact of Flash memory. We performed similar experiments with data residing on the higher
bandwidth and lower latency SSD drive on the data5 system. The query execution times for a rep-
resentative data size, LUBM-50M, are tabulated in Table 6. Interestingly, we observe that the cold
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Table 3: LUBM benchmark SPARQL query evaluation times (in milliseconds) for data sets of
different sizes on data5-sata.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

LUBM-1M, Cold caches
FastBit 0.078 16.2 0.098 0.150 0.118 2.85 0.12
RDF-3X 15.5 32.3 7.3 1.27 1.14 92.4 1.25

LUBM-1M, Warm caches
FastBit 0.008 15.7 0.026 0.042 0.028 2.59 0.032
RDF-3X 0.385 10.2 0.385 0.553 1.11 76.1 0.89
Speedup 48.1× 0.65× 14.8× 13.16× 39.6× 29.4× 27.8×

LUBM-50M, Cold caches
FastBit 0.30 1320 1.26 0.65 0.34 139 0.643
RDF-3X 0.43 572 2.9 0.75 2.1 4150 4.62

LUBM-50M, Warm caches
FastBit 0.167 1311 0.92 0.40 0.19 135 0.46
RDF-3X 0.31 544 0.193 0.70 1.95 4021 1.52
Speedup 1.86× 0.42× 0.21× 1.75× 10.26× 29.8× 3.30×

Q8 Q9 Q10 Q11 Q12 Q13 Q14

LUBM-1M, Cold caches
FastBit 5.41 11.2 0.08 0.07 0.215 0.076 7.94
RDF-3X 63.8 46.6 1.04 0.95 3.45 0.414 256

LUBM-1M, Warm caches
FastBit 4.67 10.2 0.016 0.11 0.104 0.011 7.91
RDF-3X 50.6 23.3 0.32 0.38 2.27 0.187 244
Speedup 10.83× 2.23× 20× 3.45× 21.8× 17× 30.85×

LUBM-50M, Cold caches
FastBit 7.85 9457 0.313 0.263 2.61 0.36 636
RDF-3X 55.6 1431 1.65 0.41 17.2 3.9 14190

LUBM-50M, Warm caches
FastBit 6.34 9288 0.179 0.148 2.34 0.34 467
RDF-3X 50.4 1369 0.336 0.35 7.44 1.7 13770
Speedup 7.95× 0.15× 1.87× 2.36× 3.17× 5.0× 29.5×

and warm cache numbers are identical to the SATA case. This is expected, as the dictionaries and
indexes fit in main memory for this problem size and thus the overall I/O effects are insignificant.
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Table 4: LUBM benchmark SPARQL query evaluation times (in milliseconds) for a 500 million
triple data set on euclid.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

LUBM-500M, Cold caches
FastBit 1.92 17481 17.2 3.2 0.62 2560 1.75
RDF-3X (v0.3.5) 1.58 — 85.9 199.6 1.25 91300 560.6

LUBM-500M, Warm caches
FastBit 1.73 8344 7.81 1.21 0.41 2344 1.21
RDF-3X (v0.3.5) 0.875 — 0.984 2.344 1.11 80039 3.47
Speedup 0.51× — 0.13× 2.71× 2.68× 34.1× 2.87×

Q8 Q9 Q10 Q11 Q12 Q13 Q14

LUBM-500M, Cold caches
FastBit 9.43 278.1 1.27 2.44 15.7 5.32 11231
RDF-3X 204.2 41.2 870.1 30.2 1051.12 15082.3 —

LUBM-500M, Warm caches
FastBit 7.23 140.4 0.38 1.52 11.51 2.53 10682
RDF-3X 71.8 28.1 1.01 0.94 124.2 18.5 —
Speedup 9.93× 0.2× 2.66× 0.62× 10.79× 7.31× —

Table 5: Impact of deferred dictionary lookups when materializing final result: LUBM benchmark
SPARQL query evaluation times (in milliseconds) for a 50 million triple data set on data5-sata.

Q2 Q6 Q9 Q14

Warm caches time 1311 135 9288 467
Time with deferred dictionary lookups 1317 13.2 8395 51.5
Speedup with optimization 0.99× 10.23× 1.11× 9.07×
Output size 2754 911982 47655 2864582

Table 6: LUBM benchmark SPARQL query evaluation times (in milliseconds) for a 50 million triple
data set on data5-ssd.

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Cold caches time 0.292 1340 1.25 2.02 0.33 141 0.66
Warm caches time 0.156 1329 0.897 0.38 0.18 132 0.44

Q8 Q9 Q10 Q11 Q12 Q13 Q14

Cold caches time 7.61 9510 0.30 0.259 2.32 0.356 652.3
Warm caches time 6.19 9261 0.17 0.14 2.05 0.343 451.5
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Table 7: YAGO data set SPARQL query evaluation times (in milliseconds) on data5-sata.

A1 A2 B1 B2 C1 C2

Cold caches
FastBit 11.4 13.67 241.8 3.55 1145 58.3
RDF-3X 15.5 18.9 64.9 31.7 1668 44.8

Warm caches
FastBit 2.13 4.2 205.2 1.64 964.5 35.1
RDF-3X 7.5 7.8 53.9 21.1 271.2 38.2
Speedup 3.52× 1.86× 0.27× 12.87× 0.28× 1.09×

Table 8: UniProt and Billion Triple datasets SPARQL query evaluation times (in milliseconds) on
euclid.

UniProt Billion Triples
Q1 Q2 Q3 Q1 Q2 Q3

Warm caches time 1.71 262 30.4 12.35 443.42 378.21

6.3 Performance on Multi-pattern Complex SPARQL Queries

We next discuss results for three other fixed-size datasets. Table 7 gives the FastBit and RDF-3X
performance achieved for queries on the Yago data set. The queries are classified into three types:
type A consisting of oriented facts, type B that are relationship oriented, and type C examining
relationships with unknown predicates. One common characteristic of all these queries is that they
are all highly selective, leading to result sets with less than 100 triples in each case. RDF-3X
outperforms our approach for queries B1 and C1. These are queries using the SPARQL distinct
keyword, which requires additional computation in case of bitmap indexes. We will investigate
optimizing these queries in future work. For the rest of the queries, FastBit outperforms RDF-3X
by a substantial margin, both for the warm and the cold cache cases.

In Table 8, we summarize performance achieved for sample queries on the large-scale UniProt
and Billion Triple data sets. The summary POIndex and PSIndexes are very useful in case of
the UniProt queries, where there are several triple patterns sharing the same join variable. These
indexes help prune the tuple space significantly, and the query execution times are comparable to
previously-reported RDF-3X numbers. We could not build the RDF-3X database for these datasets,
as we encountered a parsing problem. We will resolve this issue in future work.

Table 9 summarizes the overall performance improvement achieved for queries using FastBit
versus RDF-3X, when taking the geometric mean of the execution times into consideration. We
observe that we outperform RDF-3X for both the LUBM and the Yago datasets.

7 Conclusions and Future Work

This paper presents the novel use of compressed bitmaps to accelerate SPARQL queries on large-
scale RDF repositories. Our experiments show that we can process queries with as many as 10 to
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Table 9: FastBit query evaluation performance speedup achieved (taking the geometric mean of
the execution times across queries) over RDF-3X for various data sets. † Speedup w.r.t. RDF-3X
v0.3.5 on euclid.

LUBM-5M LUBM-50M LUBM-500M† YAGO

Speedup 12.96× 2.62× 2.81× 1.38×

15 triple patterns, and query execution times compare very favorably to the current state-of-the-
art results. Bitmap indexes are space-efficient, and we claim that bitvector operations provide an
intuitive and convenient mechanism for expressing and solving ad-hoc queries. The set union and
intersection operations that are extensively used in SPARQL query processing are extremely fast
when mapped to bitvector operations.

We plan to extend and optimize our RDF data processing system in future work. First, we will
speed up data ingestion even further by exploiting parallel I/O capabilities and distributed memory
parallelization of the sort steps. Our current dictionary and index creation schemes provision for
incremental updates to the data. We intend to study the cost of updates, both fine-grained as well
as bulk loads.

We do not support a full SPARQL query parser and automated query optimization with guided
join ordering in our current implementation; we plan to research these problems in future work.
It is currently quite cumbersome to express path-based queries in SPARQL, and our indexes have
not been designed with such queries in mind. However, we note that the composite indexes pro-
vide a compressed representation of the implicit RDF graph, and we can utilize these indexes for
developing parallel graph algorithms for traversal, shortest paths, and connected components.
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A SPARQL Queries

We list here all the benchmark SPARQL queries used in our bitmap index evaluation.

A.1 LUBM

Most of the suggested LUBM queries require inference and references to the ontology, and so we
simplified the queries to avoid inference. The queries that require inference can also be expressed
using the SPARQL UNION operator in some cases.

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix ub: <lubm-bench.owl#>

Q1:

select ?x where {

?x rdf:type ub:GraduateStudent .

?x ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>

}

Q2:

select ?x ?y ?z where {

?x rdf:type ub:GraduateStudent .

?y rdf:type ub:University .

?z rdf:type ub:Department .

?x ub:memberOf ?z .

?z ub:subOrganizationOf ?y .

?x ub:undergraduateDegreeFrom ?y .

}

Q3:

select ?x where {

?x rdf:type ub:Publication .

?x ub:publicationAuthor <http://www.Department0.University0.edu/AssistantProfessor0> .

}

Q4:

select ?x ?y1 ?y2 ?y3 where {

?x rdf:type ub:AssociateProfessor .

?x ub:worksFor <http://www.Department0.University0.edu> .

?x ub:name ?y1 .

?x ub:emailAddress ?y2 .

?x ub:telephone ?y3 .

}

Q5:

select ?x where {

?x rdf:type ub:GraduateStudent .

?x ub:memberOf <http://www.Department0.University0.edu> .

}

Q6:
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select ?x where {

?x rdf:type ub:GraduateStudent .

}

Q7:

select ?x ?y where {

?x rdf:type ub:UndergraduateStudent .

?y rdf:type ub:Course .

?x ub:takesCourse ?y .

<http://www.Department0.University0.edu/AssociateProfessor0> ub:teacherOf ?y .

}

Q8:

select ?x ?y ?z where {

?y ub:subOrganizationOf <http://www.University0.edu> .

?y rdf:type ub:Department .

?x ub:memberOf ?y .

?x rdf:type ub:UndergraduateStudent .

?x ub:emailAddress ?z .

}

Q9:

select ?x ?y ?z where {

?x rdf:type ub:UndergraduateStudent .

?y rdf:type ub:FullProfessor .

?z rdf:type ub:Course .

?x ub:advisor ?y .

?x ub:takesCourse ?z .

?y ub:teacherOf ?z .

}

Q10:

select ?x where {

?x rdf:type ub:UndergraduateStudent .

?x ub:takesCourse <http://www.Department0.University0.edu/Course0> .

}

Q11:

select ?x where {

?x rdf:type ub:ResearchGroup .

?x ub:subOrganizationOf <http://www.Department0.University0.edu> .

}

Q12:

select ?x ?y where {

?x rdf:type ub:FullProfessor .

?y rdf:type ub:Department .

?x ub:worksFor ?y .

?y ub:subOrganizationOf <http://www.University0.edu> .

}
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Q13:

select ?x where {

?x rdf:type ub:FullProfessor .

?x ub:mastersDegreeFrom <http://www.University236.edu> .

}

Q14:

select ?x where {

?x rdf:type ub:UndergraduateStudent .

}

A.2 YAGO

A1:

select ?gn ?fn where {

?gn <givenNameOf> ?p . ?fn <familyNameOf> ?p .

?p <type> ‘‘scientist’’ . ?p <bornInLocation> ?city .

?p <hasDoctoralAdvisor> ?a . ?a <bornInLocation> ?city2 .

?city <locatedIn> ‘‘Switzerland’’ .

?city2 <locatedIn> ‘‘Germany’’ .

}

A2:

select ?n where {

?a <isCalled> ?n . ?a <type> ‘‘actor’’ .

?a <livesIn> ?city . ?a <actedIn> ?m1 .

?a <directed> ?m2 .

?city <locatedIn> ?s . ?s <locatedIn> ‘‘United_States’’ .

?m1 <type> ‘‘movie’’ . ?m1 <producedInCountry> ‘‘Germany’’ .

?m2 <type> ‘‘movie’’ . ?m2 <producedInCountry> ‘‘Canada’’ .

}

B1:

select distinct ?n1 ?n2 where {

?a1 <isCalled> ?n1 . ?a1 <livesIn> ?c1 . ?a1 <actedIn> ?movie .

?a2 <isCalled> ?n2 . ?a2 <livesIn> ?c2 . ?a2 <actedIn> ?movie .

?c1 <locatedIn> ‘‘England’’ . ?c2 <locatedIn> ‘‘England’’ .

filter (?a1 != ?a2)

}

B2:

select ?n1 ?n2 where {

?p1 <isCalled> ?n1 . ?p1 <bornInLocation> ?city . ?p1 <isMarriedTo> ?p2 .

?p2 <isCalled> ?n2 . ?p2 <bornInLocation> ?city .

}

C1:

select distinct ?n1 ?n2 where {

?n1 <familyNameOf> ?p1 . ?n2 <familyNameOf> ?p2 .

?p1 <type> ‘‘Scientist’’ . ?p1 [] ?city .

?p2 <type> ‘‘scientist’’ . ?p2 [] ?city .
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?city <type> <site> .

filter (?p1 != ?p2)

}

C2:

select distinct ?n where {

?p <isCalled> ?n . ?p [] ?c1 . ?p [] ?c2 .

?c1 <type> ‘‘village’’ . ?c1 <isCalled> ‘‘London’’ .

?c2 <type> ‘‘site’’ . ?c2 <isCalled> ‘‘Paris’’ .

}

A.3 Billion Triples Dataset

prefix geo: <http://www.geonames.org/>,

pos: <http://www.w3.org/2003/01/geo/wgs84 pos#>,

dbpedia: <http://dbpedia.org/property/>,

dbpediares: <http://dbpedia.org/resource/>,

owl: <http://www.w3.org/2002/07/owl#>

Q1:

select ?lat ?long where {

?a [] "Eiffel Tower" . ?a geo:ontology#inCountry geo:countries/#FR .

?a pos:lat ?lat . ?a pos:long ?long .

}

Q2:

select ?t ?lat ?long where {

?a dbpedia:wikilink dbpediares:List of World Heritage Sites in Europe .

?a dbpedia:title ?t .

?a pos:lat ?lat .

?a pos:long ?long .

?a dbpedia:wikilink dbpediares:Middle Ages .

}

Q3:

select ?a ?y where {

?a a <http://dbpedia.org/class/yago/Politician110451263> .

?a dbpedia:years ?y .

?a <http://xmlns.com/foaf/0.1/name> ?n .

?b [] ?n .

?b <http://purl.org/dc/elements/1.1/subject> ‘‘Blackwater’’ .

}

A.4 UniProt

prefix uni: <http://purl.uniprot.org/core/>,

uniprot: <http://purl.uniprot.org/>,

schema: <http://www.w3.org/2000/01/rdf-schema#>,

file: <file:///uniprot.rdf#>

Q1:
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select ?protein ?name where {

?protein a uni:Protein .

?protein uni:encodedBy [ uni:name "CRB" ] .

?protein uni:name ?name .

}

Q2:

select ?a ?vo where {

?a uni:mnemonic ?vo .

?a uni:replacedBy uniprot:uniprot/P62965 .

?a a uni:Protein .

?a uni:modified ‘‘1990-11-01’’ .

?a uni:replacedBy uniprot:uniprot/P62966 .

?b uni:modified ‘‘2005-08-30’’ .

?b uni:replacedBy uniprot:uniprot/P62964 .

?b uni:reviewed ‘‘false’’ . ?b uni:obsolete ‘‘true’’.

?b a uni:Protein .

?a uni:replacedBy ?ab .

?ab [] ?b . ?ab uni:classifiedWith uniprot:keywords/845 .

}

Q3:

select ?a ?vo where {

?a schema:seeAlso ?vo .

?a uni:annotation file:7A64A6 .

?a uni:classifiedWith uniprot:keywords/67 .

?a uni:annotation file:7A649B .

?a uni:annotation file:7A64AF .

?a schema:seeAlso uniprot:embl-cds/AAN81952.1 .

?b uni:reviewed "true" . ?b schema:seeAlso uniprot:geneid/1025922 .

?b schema:seeAlso uniprot:smr/P0A7A1 .

?b schema:seeAlso uniprot:embl-cds/AAP18215.1 .

?a uni:replaces ?ab . ?ab uni:replacedBy ?b .

}
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