Skip to main content

Ensembling Predictions of Student Knowledge within Intelligent Tutoring Systems

  • Conference paper
Book cover User Modeling, Adaption and Personalization (UMAP 2011)

Abstract

Over the last decades, there have been a rich variety of approaches towards modeling student knowledge and skill within interactive learning environments. There have recently been several empirical comparisons as to which types of student models are better at predicting future performance, both within and outside of the interactive learning environment. However, these comparisons have produced contradictory results. Within this paper, we examine whether ensemble methods, which integrate multiple models, can produce prediction results comparable to or better than the best of nine student modeling frameworks, taken individually. We ensemble model predictions within a Cognitive Tutor for Genetics, at the level of predicting knowledge action-byaction within the tutor. We evaluate the predictions in terms of future performance within the tutor and on a paper post-test. Within this data set, we do not find evidence that ensembles of models are significantly better. Ensembles of models perform comparably to or slightly better than the best individual models, at predicting future performance within the tutor software. However, the ensembles of models perform marginally significantly worse than the best individual models, at predicting post-test performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, R.S.J.d., Corbett, A.T., Aleven, V.: More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Baker, R.S.J.d., Corbett, A.T., Gowda, S.M., Wagner, A.Z., MacLaren, B.A., Kauffman, L.R., Mitchell, A.P., Giguere, S.: Contextual Slip and Prediction of Student Performance after Use of an Intelligent Tutor. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 52–63. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Brusilovsky, P., Millán, E.: User models for adaptive hypermedia and adaptive educational systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 3–53. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Chang, K.-m., Beck, J.E., Mostow, J., Corbett, A.T.: A bayes net toolkit for student modeling in intelligent tutoring systems. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 104–113. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Corbett, A., Kauffman, L., Maclaren, B., Wagner, A., Jones, E.: A Cognitive Tutor for Genetics Problem Solving: Learning Gains and Student Modeling. Journal of Educational Computing Research 42, 219–239 (2010)

    Article  Google Scholar 

  6. Corbett, A.T., Anderson, J.R.: Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)

    Article  Google Scholar 

  7. Gong, Y., Beck, J.E., Heffernan, N.T.: Comparing Knowledge Tracing and Performance Factor Analysis by Using Multiple Model Fitting Procedures. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 35–44. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Koedinger, K.R., Corbett, A.T.: Cognitive tutors: Technology bringing learning science to the classroom. In: Sawyer, K. (ed.) The Cambridge Handbook of the Learning Sciences, pp. 61–78. Cambridge University Press, New York (2006)

    Google Scholar 

  9. Pardos, Z.A., Heffernan, N.T.: Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Pardos, Z.A., Heffernan, N.T.: Navigating the parameter space of Bayesian Knowledge Tracing models: Visualizations of the convergence of the Expectation Maximization algorithm. In: Proceedings of the 3rd International Conference on Educational Data Mining, pp. 161–170 (2010)

    Google Scholar 

  11. Pardos, Z.A., Heffernan, N.T.: Using HMMs and bagged decision trees to leverage rich features of user and skill from an intelligent tutoring system dataset. To appear in Journal of Machine Learning Research W & CP

    Google Scholar 

  12. Pavlik, P.I., Cen, H., Koedinger, K.R.: Learning Factors Transfer Analysis: Using Learning Curve Analysis to Automatically Generate Domain Models. In: Proceedings of the 2nd International Conference on Educational Data Mining, pp. 121–130 (2009)

    Google Scholar 

  13. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance Factors Analysis – A New Alternative to Knowledge Tracing. In: Proceedings of the 14th International Conference on Artificial Intelligence in Education, pp. 531–538 (2009), Version of paper used is online at http://eric.ed.gov/PDFS/ED506305.pdf (retrieved January 26, 2011); This version has minor differences from the printed version of this paper

  14. Rai, D., Gong, Y., Beck, J.E.: Using Dirichlet priors to improve model parameter plausibility. In: Proceedings of the 2nd International Conference on Educational Data Mining, Cordoba, Spain, pp. 141–148 (2009)

    Google Scholar 

  15. Reye, J.: Student modeling based on belief networks. International Journal of Artificial Intelligence in Education 14, 1–33 (2004)

    MATH  Google Scholar 

  16. Caruana, R., Niculescu-Mizil, A.: Ensemble selection from libraries of models. In: Proceedings of the 21st International Conference on Machine Learning, ICML 2004 (2004)

    Google Scholar 

  17. Wang, Q.Y., Pardos, Z.A., Heffernan, N.T.: Fold Tabling Method: A New Alternative and Complement to Knowledge Tracing (manuscript under review)

    Google Scholar 

  18. Yu, H.-F., Lo, H.-Y., Hsieh, H.-P., Lou, J.-K., McKenzie, T.G., Chou, J.-W., et al.: Feature Engineering and Classifier Ensemble for KDD Cup 2010. In: Proceedings of the KDD Cup 2010 Workshop, pp. 1–16 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baker, R.S.J.d., Pardos, Z.A., Gowda, S.M., Nooraei, B.B., Heffernan, N.T. (2011). Ensembling Predictions of Student Knowledge within Intelligent Tutoring Systems. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds) User Modeling, Adaption and Personalization. UMAP 2011. Lecture Notes in Computer Science, vol 6787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22362-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22362-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22361-7

  • Online ISBN: 978-3-642-22362-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics