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Abstract. Assessing a learner's mastery of a set of skills is a fundamen-
tal issue in intelligent learning environments. We compare the predictive
performance of two approaches for training a learner model with domain
data. One is based on the principle of building the model solely from
observable data items, such as exercises or test items. Skills modelling is
not part of the training phase, but instead dealt with at later stage. The
other approach incorporates a single latent skill in the model. We com-
pare the capacity of both approaches to accurately predict item outcome
(binary success or failure) from a subset of item outcomes. Three types
of item-to-item models based on standard Bayesian modeling algorithms
are tested: (1) Naive Bayes, (2) Tree-Augmented Naive Bayes (TAN),
and (3) a K2 Bayesian Classi�er. Their performance is compared to the
widely used IRT-2PL approach which incorporates a single latent skill.
The results show that the item-to-item approaches perform as well, or
better than the IRT-2PL approach over 4 widely di�erent data sets, but
the di�erences vary considerably among the data sets. We discuss the
implications of these results and the issues relating to the practical use
of item-to-item models.
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1 Introduction

A number of adaptive applications need a learner model to assess the student
skills. They will query this model to �nd out if a given concept is known, or if
a skill is mastered, to perform some adaptation of the learning environment to
the user's pro�le. The skill modelled is an abstraction that cannot be measured
directly. A skill is often referred to as a learner's latent trait that will determine
the successes or failures to some test items or exercises. It is often represented
as a probabilistic abstraction, to re�ect the fact that stochastic factors like slips
and guesses in�uence the success or failure outcome to item trials.

We explore two means to create such abstractions. One is to integrate skills
directly along observable items in a domain model. Hierarchies of skills, where
observable items are situated at the bottom of this hierarchy, is a typical example
of a domain model that is commonly found in the literature of intelligent tutoring
systems and most often modeled as a Bayesian Network or some hybrid derivative



(for eg. [22,5,4] ). Standard algorithms for probabilistic inference can then be used
to infer the probability of mastery of skills given observed items.

Another approach relies on a Q-matrix [20], which de�nes which skills are
linked to each test items. A familiar example that can be considered as a sum-

mative assessment with a Q-matrix is a standard questionnaire scoring scheme,
where each question is given a weight and the weighted sum of successes to each
question yields the assessment of the skill that is intended to be measured by the
questionnaire. The skills are the columns of the Q-matrix and the items are the
row, and the contribution of each item to a set of skills is given by the weights
in the matrix. Assuming a matrix of n rows representing items, and m columns
representing skills, and assuming that if a value greater than 0 in cell (i, j) rep-
resents the weight of item i to skill j, then we can compute the skill pro�le of a
student through the dot product of the student's item response outcomes vector
and the Q-matrix. This product is a skills mastery vector which readily can be
normalized to obtain the percent mastery of each skill, for example.

The summative assessment approach to skill assessment with a Q-matrix
is not probabilistic in itself, but if the student item outcome matrix contains
probabilities of mastery, then the resulting skills assessment is probabilistic.

The choice between the item-to-item approach or the latent traits approach
(eg. Bayesian Network) is a compromise between a number of factors to consider,
such as knowledge engineering e�orts, computational complexity, and most im-
portantly reliability and accuracy of predictions. A number of researchers in the
learner modeling �eld have investigated this issue over the last decade or so
[22,5,4,6,1,15].

This paper revisits the issue of assessing item-to-item model performance by
comparing the predictive accuracy of standard Bayesian classi�er algorithms [10]
to create item-to-item learner models with that of the IRT approach (see [21]),
which contains a single latent skills. These approaches readily lend themselves
to a fair comparison to the extent that each of them are solely data driven and
require no knowledge engineering e�ort for the purpose of predicting item out-
come. This would not the case if we wanted to predict the mastery of a set of
(unobservable) skills, in which case both approaches would require some knowl-
edge engineering e�ort, such as de�ning a Q-matrix or de�ning the topology of a
Bayesian Network, as well as independent means to assess the skills for validation
purpose.

Similar studies were conducted by Desmarais et al., [6,7]. These studies re-
spectively compared the performance of a Bayesian Network developed by Vomlel
[23] and of the IRT approach with a derivative of a Naive Bayes item-to-item
model (POKS). The results showed that for predicting item outcome, POKS
performed slightly better than the two other approaches. The current study ex-
tends this work by comparing IRT with three standard probabilistic inference
techniques: (1) the Tree Augmented Naive Bayes (TAN), (2) a variant of TAN
that relies on the K2 search algorithm, and (3) the simple Naive Bayes model.
Because the POKS technique used in the work of Desmarais et al. (2005, 2006)
integrates a feature selection algorithm in addition to the probabilistic infer-



ence techniques listed, it cannot be directly compared here. However, given that
POKS uses a Naive Bayes inference rule, the performance would be expected to
be the same as the Naive Bayes technique of this study.

The next two sections describe the IRT model and the item-to-item models.
They are followed by the description of the experiments methodology and results.

2 Model with a Single Latent Trait: Item Response

Theory

The Item Response Theory (IRT) model [21] is the most widely studied model in
psychometrics and routinely used for Computer Adaptive Testing applications.
It also gained some adoptions by the intelligent learning community in the last
decade or so. This model assumes that the success to all items in a test is
determined by a single skill, θ. This skill is referred to as the latent trait. The
model can be graphically represented by the network in �gure 1.
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Fig. 1. Generic graphical representation of an IRT model

In the two parameter version of IRT, the probability of success to a single
item, Xi, is determined by the logistic function:

P (Xi|θ) =
1

1 + e−ai(θ−bi)
(1)

where parameter ai is the discrimination and bi is the di�culty of item i. A
multiplicative factor of 1.7 is often added to a to �t the curve closer to the
integration of the normal curve and align it with the so called normal ogive
model of the original IRT theory. These parameters are estimated from a training
sample and they are speci�c to each item i (see [3]). This model has a single
latent trait (skill) corresponding to θ, which is estimated by maximizing its value
according to the observed outcomes to a vector of item nodes X and under the
assumption of independence of the conditional probabilities P (Xi|θ):

argmax
θ

P (θ|X) = P (θ|X1, X2, ..., Xn) =

n∏
P (Xi|θ) (2)



3 Bayesian Models Without Latent Skills

To compare the predictive performance of latent models vs. non latent models,
we now consider three types of Bayesian classi�er models which do not integrate
any latent traits (such as θ in IRT):

NaiveBayes (NB) The Naive Bayes model can be represented as �gure 1's
network, but the (latent) class node θ is replaced by some node Xk for
which we aim to predict the most likely binary value, {0, 1} (or predict the
probability of each value). Computation follows the structure of equation 2,
except that instead of maximizing the conditional probability P (θ|X), we
maximize for Xk:

arg max
Xk={0,1}

P (Xk|X) =
∏

Xi∈X

P (Xi|Xk) (3)

where X can be any subset of test items excluding Xk.
A distinct equation of the form above is constructed for each of the item in
the set. Given that there are no latent trait, the link function of equation (1)
is replaced by the conditional probability estimate P (Xi|Xk), which is esti-
mated from the observed frequencies. Akin to the IRT model, independence
of the conditional probabilities P (Xi|Xk) is assumed.

TreeAugmentedBayesianNetwork (TAN) To address the issue that some
items may be highly correlated, and therefore that the independence assump-
tion between conditional probabilities does not hold, an alternative class of
network topologies was proposed by Friedman et al. [10]: the Tree Augmented
Bayesian network (TAN). This topology retains the Naive Bayes topology
but it adds a tree structure of links among the leaf nodes. Except for the
class root node, each node can have two parents, the class and another node
among X. The resulting network creates a tree among the children of the
class node Xk (see �gure 2). As with the Naive Bayes approach, a di�erent
model is created for each item. This structures retains much of the simplicity
of Naive Bayes while allowing for e�cient network topology induction and
inference.

BayesianNetworkClassi�er (BNC) BNC is a variant of the TAN model
that uses the K2 algorithm (see [24]) to search for the tree structure among
children nodes. We will name this model a Bayesian Network Classi�er in
accordance with [24], but the reader should keep in mind that it follows the
same topological constraints as the TAN.

4 Experiments

The respective performances of the IRT latent trait model and of the non latent
Bayesian models are compared by assessing their predictive power in a simulation
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Fig. 2. TAN network example with four predictor items forXk. In addition to the usual
Naive Bayes structure, a tree structure is de�ned among the leaf nodes, X1 to X4.

study. A �xed number of observed item outcomes (success or failure) from a test
is fed to the model and we measure the model's ability to correctly classify the
outcome of all other observable items from the same individual. These remaining
observable items are kept unobserved from the model's perspective, but the real
outcome has in fact been recorded, which allows a comparison of the prediction
to the reality.

Our choice is to compare predictions over observed data only. Even for the
latent model IRT, we do not attempt to derive an independent measure of the
skill θ to assess how accurately its estimate/prediction matches. Such procedure
was used by Vomlel in an experiment where he asked experts to independently as-
sess concept mastery from test data and compared the assessment of a Bayesian
Network over this independent data [23]. Instead, we presume that if θ is cor-
rectly estimated, then it will show in the model's ability to predict the observed
outcome to items. This approach allows for better experimental replication qual-
ity as it is less prone to biases and errors introduced by a few number of experts
in assessing skill mastery.

4.1 Data sets

The experiments are conducted over four sets of real data:

Collegemathematics: Data from a mathematics test administered in 2005 to
freshman engineering students that covers their general knowledge of col-
lege mathematics. It spans many topics from algebra to analytical geometry,
calculus, trigonometry, and exponentials.

Fraction algebra: This data set is from Vomlel's Bayesian Network study [23].
It was administered to 10-12 year old and covers the basics of fraction alge-
bra. Only the data from the 20 question items tests was used and the concept
expert assessment was ignored.

LSAT: This data set is available from the ltm package written R [17] which
can be obtained through the usual CRAN repository1. It corresponds to
data from the Law School Admission Test.

1 http://cran.r-project.org/



UNIX: A questionnaire developed by the author to assess knowledge of the
Unix shell commands. It contains question items that cover basic knowl-
edge to advanced topics and was administered to respondents having a very
large array of expertise. This distribution of item di�culty and respondent
expertise allows for strong classi�cation performance.

All these sets are composed of binary success/failure data with few missing
values, from 0% to 5%, which were recoded as failure answers.

Table 1 reports a number of statistics and informations about the four data
sets:

Nb. items: Size of the questionnaire.
Nb. respondents: Number of questionnaires answered by respondents.
Training size: Number of respondents used in a cross validation (the remaining

being used for testing).
Avg. respondent score: Average of respondent success rates.
Stdev. score: Standard deviation of success rates.
Nb. folds: Number of folds in the cross-validation experiments for the results

reported in the next section.
Nb. features: Number of items fed to the models as observations. These items

are selected based on a simple feature selection, namely the degree of corre-
lation with the class variable. Each item has a di�erent set of �feature� items
selected for its prediction by the models. The training of the models is done
only on the features selected.

Avg. cor. among features: As a measure of the degree to which the indepen-
dence assumption of the BN and IRT models is violated, we report the
average correlation among the features selected.

We can judge from table 1 that the data sets di�er widely among them. LSAT
is only a 5 items set but, it contains a large number of respondents, whereas
UNIX has larger number of items. With only 48 respondents, the UNIX training
is limited to 38 cases and the testing to 10, such that the number of folds was
increased to obtain more reliable results from the simulations. The correlation
among features is also widespread, ranging from 0.08 for LSAT to 0.62 for UNIX.
These di�erences may explain to some extent the large di�erences in performance
reported in the next section.

4.2 Simulation Methodology

Model performance assessment is done through cross-validations. Each model is
trained on a portion of the data and tested on the other. For a single fold, the
same training and testing sets are used across models to reduce variance. The
IRT 2PL model is based on the ltm package implemented in R [17]. All three
other models are taken from the Weka data mining package [24] and used within
R through RWeka

2 [14].

2 RWeka version 0.4-3 and RWeka.jar dated 27 Sept 2010. These packages are available
under the CRAN repository. The scripts for the simulations and the data sets are



Table 1. Data sets

Coll. math Frac. algebra LSAT UNIX

Nb. of items 60 20 5 34
Nb. of respondents 246 149 1000 48

Training size 171 100 900 38
Testing size 75 49 100 10

Avg. respondent score 0.60 0.61 0.76 0.53
Stdev. score 0.15 0.25 0.21 0.29
Nb. of folds 10 10 10 20

Nb. of features 5 5 4 5
Avg. cor. among features 0.17 0.47 0.08 0.62

In accordance with the approach described in section 3, a di�erent model is
trained for each item. Although this is not required for the IRT model, for which
a single model could be derived for the prediction of all item outcomes, we chose
to apply the same methodology throughout all models3.

Following the usual terminology for classi�cation tasks, we also refer to the
predicted item as the target class and to the observed items as features. For each
model, 5 features are selected, except for the LSAT data which has only 5 items
in total and therefore only 4 other features can be de�ned. The respective item
models are trained only over the selected feature subset. The selection of features
for each item is based on the correlation with the target. For a subset of size 5,
the top 5 features most correlated with the target nodes are selected. Note that
a more sophisticated feature selection algorithm which would take into account
intra-features dependencies would likely yield slightly better results from the
current experiment for the item-to-item models. However, it remains unclear
whether it would favor one item-to-item model over another.

Once a model is trained, the simulation procedure consists in feeding the
model with observed items (features). All four models output a probability that
the target item will be 0 or 1 and this prediction is compared with the actual
respondent's score. Using this probability allows us to derive a ROC curve (Re-
ceiver Operating Characteristic), from which the AUC (The Area Under the
ROC Curve) score is computed and which serves as one of the performance
measure4. The other measure reported is the accuracy: if a target node has a
probability above 0.5, it is considered true, or false otherwise. Accuracy is re-
ported as percent correct of predictions matched with reality.

available from this url: http://www.professeurs.polymtl.ca/michel.desmarais/
Papers/UMAP2011/.

3 IRT can predict all items from the same model because θ is the single predictor to
all item nodes, whereas for the item-to-item models, a di�erent network is derived
for each node.

4 ROC and AUC analysis are computed with the ROCR package (Sing et al., 2005;
available at http://cran.r-project.org/)



5 Results

The simulation methodology described above is run over the 4 data sets and
the average AUC and accuracy scores are computed. Table 2 reports the di�er-
ent results of the AUC scores for each model and each data set. Each number
represents the mean across AUC values of each run, where each AUC value
is the average AUC of all question items for a given data set. The number in
parenthesis is the standard error across simulation runs.

Table 2 also reports signi�cance levels for three hypothesis tests based on an
analysis of variance (AoV)5:

All: all 4 conditions (models)
TAN-IRT: TAN and IRT conditions alone
w/o IRT: without IRT (i.e. TAN+BNC+NB)

The AoV test is performed on the AUC score averaged over students and over
items.

Table 2. mean (AUC) results of Models for the four data sets

TAN BNC NB IRT AoV signi�cance level
All TAN-IRT w/o IRT

Coll. math 0.77(.012) 0.76(.012) 0.75(.014) 0.74(.013) *** *** **
Frac. algebra 0.90(.018) 0.90(.018) 0.88(.018) 0.85(.015) *** *** **

LSAT 0.59(.038) 0.59(.038) 0.58(.039) 0.57(.041) - - -

UNIX 0.96(.021) 0.96(.023) 0.95(.023) 0.91(.036) *** *** -(a)

*** p<0.001, ** p<0.01, * p<0.05 - p>0.05
(a)Close to signi�cant: p=0.052

The results show that, for AUC scores, apart from the LSAT data set, almost
all the hypothesis tests are positive at the level of p<0.01 or p<0.001. The TAN-
IRT condition indicates that TAN performs signi�cantly better than IRT, with
di�erences in AUC ranging from 3% to 5% for Coll. math, Frac. algebra and
UNIX data sets, and 1% for LSAT. TAN and BNC have almost exactly the
same performance up to the second decimal, so all conclusions regarding TAN
applies to BNC.

Note that even if these di�erences are small, they must be taken into the
context that a random prediction would perform at 0.5 for AUC, and that the
relative error reduction from 95% to 97.5% is equivalent to the reduction from
80% to 90% (reducing the remaining error rate by half). Considering this, the 3%
AUC error reduction for the UNIX data set is in fact more substantial in relative
terms than the 5% fraction algebra. This would be re�ected when computing

5 An analysis of variance is preferred over a Student-t test here to avoid conducting
multiple t-tests. Furthermore, the choice of reporting only the TAN-IRT condition
over all 6 possible pairs is because TAN seems to yield the best results.



con�dence intervals in the prediction of test scores, for example, which entails
important implications when a tutoring system needs to gauge the certainty of
its assessment. In other words, even if the di�erences are small in absolute terms,
they can have a substantial impact in practice.

The �w/o IRT� condition shows that the thee di�erent latent free Bayesian
methods do perform at signi�cantly di�erent levels. The NB condition is sys-
tematically lower than the other, suggesting that the added value of the more
complex topology of TAN and BNC does yield improvement by accounting for
internal correlation among predictor items.

Large di�erences in the AUC scores are found across data sets. Even if large
training samples are available for the Coll. math and LSAT experiments, perfor-
mance over these tests is the lowest. However, the LSAT relative performance
di�erences is by far the lowest. A possible explanation is that large data sets
reduces the predictive advantage of the three other techniques.

Table 3. Accuracy results of Models for the four data sets

TAN BNC NB IRT AoV signi�cance level
All TAN-IRT w/o IRT

Coll. math 0.64(.044) 0.64(.043) 0.63(.044) 0.65(.036) - - -
Frac. algebra 0.70(.069) 0.70(.068) 0.68(.064) 0.71(.047) - - -

LSAT 0.83(.009) 0.83(.010) 0.83(.012) 0.83(.010) - - -
UNIX 0.93(.016) 0.94(.013) 0.91(.021) 0.86(.029) *** *** ***

*** p<0.001, ** p<0.01, * p<0.05 - p>0.05

Table 3 reports the accuracy scores with a cuto� of 0.5 (an item is considered
succeeded if the estimated probability is above 0.5). The scores are obtained
according to the procedure described in section 5, and the signi�cance levels
reported are for the same conditions as the AUC score.

Accuracy scores show no signi�cant di�erences among models, except for
the UNIX data set, and indicate that accuracy is a much less sensitive measure
than the AUC results reported in table 2. However, the results concur with the
explanation that the size of the data sets has an e�ect on model performance,
since the only signi�cant di�ference between the models is for the smallest data
set, UNIX, which is composed of only 38 respondants.

6 Discussion

The results of the experiments clearly suggest that the predictive performance
of item-to-item models is generally as good, or superior to the well known IRT
model that contains a single latent skill to predict performance. Even the simplest
of the item-to-item model (NB) performs as well or better than IRT on the AUC
scores. However, the accuracy scores show smaller di�erences than the AUC
scores across models.



The improvement over IRT varies considerably between data sets and appear
sensitive to sample size, with small samples favoring the Bayesian approaches
over IRT. The gain over IRT also coincides with the strength of inter-item cor-
relations reported in table 1, which is to be expected since the item-to-item
approach exploits these very correlations in the estimates.

The item-to-item approaches outlined in this paper can therefore o�er a valid
alternative to an IRT approach, especially for small samples where the item-to-
item models appear to outperform IRT. Under this approach, estimating the
chances of success to a single item requires building a classi�er from a chosen
subset of a few observed items. Assessing overall mastery involves estimating the
chances of success to each item that is yet to be administred in the test. This
overall assessment process can take close to one second, according to the setup
we used for this experiment (a combination of non optimized code written over
R and Weka and running on an single threaded process on an AMD Phenom II
2.6 GHz processor). On a multicore machine, and granted that the processing
time of the simulation code can be improved, we can expect that a signle server
can support testing of an averaged size class of around 50 students and more
from a single server.

6.1 From Item-to-Item Models to Skills Assessment

The assessment outcome of the item-to-item approach is a set of probabilities,
the probabilities that a given student will succeed each test item. Now, item
outcome estimates do not constitute, in themselves, a skills assessment. Recall
from the introduction that the student's assessment of skills is based on the
weighted sum of all item responses, one weighted sum for each skill. This can be
conceived as the dot product of the response matrix by the Q-matrix. Implicit
to this approach is that the skill domain is covered by the set of items, of which
only a subset is actually administered as part of the actual student assessment,
and the mastery of the rest of the items is estimated based on the item-to-
item model. The assumption is that the estimated probabilities of success to
untested items allow for a more accurate assessment of skills. Such framework
has been extensively studied by Falmagne, Doignon, and a number of colleagues
[8] under the theory of Knowledge Spaces and it has given rise to a widely
used commercial intelligent learning environment named ALEKS6 and to a few
academic systems [11,13]. Moreover, Heller and his colleagues [12] have devised
a formal framework to de�ne prerequisite relations between items and skills that
allows a more sophisticated means of assessing skills with item mastery estimates.

6.2 Q-Matrix vs. Skills as Latent Traits

A Q-matrix is an intuitive concept that is readily understood as a weighted sum
of items. Therefore we can assume any teacher or domain expert would be able
to construct one without exceptional e�ort. However, the single latent concept

6 www.aleks.com. See also [9].



IRT approach is even more simple to the extent that no other artifact like a Q-
matrix is necessary to assess the single concept. The discrimination and di�culty
parameters of an item indirectly determines its weight to the assessment of this
concept, and yet no expert intervention is required given su�cient data. Of
course, it is limited to a single concept, but multidimensional IRT models allow
for a few skills to be assessed simultaneously, albeit with the aid of an expert that
does an item classi�cation that approaches the task of building a Q-matrix. So,
in the end, the two approaches must involve a minimum knowledge engineering
e�ort to handle multiple skills. Recent work by Pavlik et al. [16], by Stamper
et al. [19], and by Liu [15], among others, o�er some avenues to automatize the
induction of Q-matrices from data, but this work is still in early stage.

However, a di�erence arises in the fact that the item-to-item approach o�ers
no means to validate the Q-matrix, since item mastery prediction is entirely
detached from the skills assessment. With IRT, the item �t method and the
procedures used in our experiment allows some assessment of the validity of the
skill assessment to predict item outcome, even if we had used a multidimen-
sional (multi-skill) model. This is not possible with the item-to-item approach,
as de�ned here, and it leaves open the question of how to validate the Q-matrix.
However, research on automating the construction of a Q-matrix may o�er in-
teresting solutions in the future (see for eg. [2]).

References

1. Amershi, S., Conati, C.: Unsupervised and supervised machine learning in user
modeling for intelligent learning environments. In: IUI '07: Proceedings of the 12th
international conference on Intelligent user interfaces. pp. 72�81. ACM, New York,
NY, USA (2007)

2. Ayers, E., Nugent, R., Dean, N.: A comparison of student skill knowledge estimates.
In: 2nd International Conference on Educational Data mining, Cordoba, Spain. pp.
1�10 (2009)

3. Baker, F.B.: Item Response Theory Parameter Estimation Techniques. Marcel
Dekker Inc., New York, NY (1992)

4. Carmona, C., Millán, E., de-la Cruz, J.L.P., Trella, M., Conejo, R.: Introducing
prerequisite relations in a multi-layered bayesian student model. In: Ardissono, L.,
Brna, P., Mitrovic, A. (eds.) User Modeling 2005, 10th International Conference,
UM 2005. pp. 347�356 (Edinburgh, Scotland, UK, July 24-29, 2005 2005)

5. Conati, C., Gertner, A., VanLehn, K.: Using Bayesian networks to manage uncer-
tainty in student modeling. User Modeling and User-Adapted Interaction 12(4),
371�417 (2002)

6. Desmarais, M.C., Meshkinfam, P., Gagnon, M.: Learned student models with item
to item knowledge structures. User Modeling and User-Adapted Interaction 16(5),
403�434 (2006)

7. Desmarais, M.C., Pu, X.: A bayesian inference adaptive testing framework and its
comparison with Item Response Theory. International Journal of Arti�cial Intelli-
gence in Education 15, 291�323 (2005)

8. Doignon, J.P., Falmagne, J.C.: Knowledge Spaces. Springer-Verlag, Berlin (1999)



9. Falmagne, J.C., Cosyn, E., Doignon, J.P., Thiéry, N.: The assessment of knowledge,
in theory and in practice. In: Missaoui, R., Schmid, J. (eds.) ICFCA. Lecture Notes
in Computer Science, vol. 3874, pp. 61�79. Springer (2006)

10. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classi�ers. Machine
Learning 29(2-3), 131�163 (1997)

11. Heller, J., Hockemeyer, C., Albert, D.: Applying competence structures for peer
tutor recommendations in CSCL environments. In: Kinshuk, Looi, C., Sutinen, E.,
Sampson, D., Aedo, I., Uden, L., Kähkönen, E. (eds.) The 4th IEEE International
Conference on Advanced Learning Technologies. pp. 1050�1051. IEEE Computer
Society, Los Alamitos, CA (2004)

12. Heller, J., Steiner, C., Hockemeyer, C., Albert, D.: Competence�based knowledge
structures for personalised learning. International Journal on E�Learning 5(1), 75�
88 (2006)

13. Hockemeyer, C., Held, T., Albert, D.: Rath - a relational adaptive tutoring hyper-
text www-environment based on knowledge space theory (1997)

14. Hornik, K., Buchta, C., Hothorn, T., Meyer, D., Zeileis, A.: The RWeka package
(2006)

15. Liu, C.L.: A simulation-based experience in learning structures of bayesian net-
works to represent how students learn composite concepts. I. J. Arti�cial Intelli-
gence in Education 18(3), 237�285 (2008)

16. Pavlik, P.I., Cen, H., Koedinger, K.R.: Learning factors transfer analysis: Using
learning curve analysis to automatically generate domain models. In: Barnes, T.,
Desmarais, M.C., Romero, C., Ventura, S. (eds.) Educational Data Mining - EDM
2009, Cordoba, Spain, July 1-3, 2009. Proceedings of the 2nd International Confer-
ence on Educational Data Mining. pp. 121�130. www.educationaldatamining.org
(2009)

17. Rizopoulos, D.: ltm: An r package for latent variable modelling and item response
theory analyses. Journal of Statistical Software 17(5), 1�25 (2006)

18. Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T.: Rocr: visualizing clas-
si�er performance in r. Bioinformatics 21(20), 3940�3941 (2005), http://

bioinformatics.oxfordjournals.org/content/21/20/3940.abstract

19. Stamper, J.C., Barnes, T., Croy, M.J.: Extracting student models for intelligent
tutoring systems. In: AAAI 2007. pp. 1900�1901. AAAI Press (2007)

20. Tatsuoka, K.K.: Rule space: An approach for dealing with misconceptions based
on item response theory. Journal of Educational Measurement 20, 345�354 (1983)

21. van der Linden, W.J., Hambleton, R.K. (eds.): Handbook of Modern Item Response
Theory. Springer-Verlag (1997)

22. VanLehn, K., Niu, Z., Siler, S., Gertner, A.S.: Student modeling from conventional
test data: A Bayesian approach without priors. In: ITS'98: Proceedings of the 4th
International Conference on Intelligent Tutoring Systems. pp. 434�443. Springer-
Verlag, London, UK (1998)

23. Vomlel, J.: Bayesian networks in educational testing. International Journal of Un-
certainty, Fuzziness and Knowledge Based Systems 12, 83�100 (2004)

24. Witten, I.H., Frank, E.: Data mining. Morgan Kaufmann, Los Altos, US (2000)


