Lecture Notes in Computer Science

6825

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Alfred Kobsa

University of California, Irvine, CA, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

TU Dortmund University, Germany

Madhu Sudan

Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

Pietro Liò Giuseppe Nicosia Thomas Stibor (Eds.)

Artificial Immune Systems

10th International Conference, ICARIS 2011 Cambridge, UK, July 18-21, 2011 Proceedings

Volume Editors

Pietro Liò

University of Cambridge, Computer Laboratory, William Gates Building 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

E-mail: pl219@cam.ac.uk

Giuseppe Nicosia

University of Catania, Department of Mathematics and Computer Science

Viale A. Doria, 6, 95125 Catania, Italy

E-mail: nicosia@dmi.unict.it

Thomas Stibor

Technische Universität München, Fakultät für Informatik

Boltzmannstraße 3, 85748 Garching, Germany

E-mail: thomas.stibor@in.tum.de

ISSN 0302-9743 ISBN 978-3-642-22370-9 DOI 10.1007/978-3-642-22371-6 e-ISSN 1611-3349 e-ISBN 978-3-642-22371-6

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011931422

CR Subject Classification (1998): I.6, I.2, J.3, F.1, F.2, I.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The subject of artificial immune systems (AIS) is a maturing area of research that bridges the disciplines of immunology, computer science, and engineering. The scope of AIS ranges from modelling and simulation of the immune system through to immune-inspired algorithms and engineering solutions. In recent years, algorithms inspired by theoretical immunology have been applied to a wide variety of domains, including machine learning, computer security, fault tolerance, bioinformatics, data mining, optimization, and synthetic biology. Increasingly, theoretical insight into aspects of artificial and real immune systems has been sought through mathematical and computational modelling and analysis. This vigorous field of research investigates how immunology can assist our technology, and along the way is beginning to help biologists understand their unique problems.

AIS researchers are now forming their own community and identity. The International Conference on Artificial Immune Systems is proud to be the premier conference in the area. As its organizers, we were honored to have such a variety of innovative and original scientific papers presented this year.

ICARIS 2011 was the tenth international conference dedicated entirely to the field of AIS. It was held in the UK, at the prestigious University of Cambridge, during July 18–21, 2011.

With respect to the previous editions, ICARIS 2011 had some new and exciting features. For this edition we organized and managed two distinct Programme Committees: Programme Committee for Computational Immunology and Immunoinformatics and Programme Committee for Immunological Computation, Immune-Inspired Engineering, Immune-Inspired Metaheuristics, comprising 117 Programme Committee members and 12 external reviewers.

There were five plenary lectures by Arup Chakraborty, MIT, USA; Jonathan Jones, Sainsbury Laboratory, UK; Andrew Phillips, Microsoft Research Cambridge, UK; Rino Rappuoli, Novartis, Italy; and Jon Timmis, University of York, UK. Moreover, the Organizing Committee devoted several special sessions to the topic of "Immunoinformatics and Computational Immunology." Immunoinformatics is a new discipline that aims to apply computer science techniques to molecules, cells, and organs of the immune system and to use bioinformatics and systems biology tools for a better understanding of the immune functions.

We had more submissions than ever this year, and each manuscript was independently reviewed by at least four members of the Programme Committee in a blind review process. In these proceedings there are 36 papers written by leading scientists in the field, from 38 different countries in 5 continents, describing an impressive array of ideas, technologies, algorithms, methods, and applications for AIS.

VI Preface

We could not have organized this conference without these researchers, so we thank them all for coming. We also could not have organized ICARIS without the excellent work of all of the Programme Committee members, stream leaders, Publicity Chairs, and Organizing Committee members.

We would like to express our appreciation to the key note and tutorial speakers who accepted our invitation, and to all authors who submitted research papers to ICARIS 2011.

July 2011

Pietro Liò Giuseppe Nicosia Thomas Stibor

Organization

ICARIS 2011 Committees

Conference Chairs

Pietro Liò University of Cambridge, UK Giuseppe Nicosia University of Catania, Italy

Thomas Stibor Technische Universität München, Germany

Stream Leaders

Immunoinformatics Giuseppe Nicosia, University of Catania, Italy

Theory Andy Hone, University of Kent, UK
Applications Jon Timmis, University of York, UK

Publicity Chairs

Giuseppe Narzisi New York University, USA Mario Pavone University of Catania, Italy Giovanni Stracquadanio Johns Hopkins University, USA

Organizing Committee

Claudio Angione University of Catania, Italy
Piero Conca University of York, UK
Jole Costanza University of Catania, Italy
Anil Sorathiya University of Cambridge, UK

Renato Umeton MIT, USA

Luca Zammataro University of Milan, Italy

Steering Committee

Peter Bentley University College London, UK

Hugues Bersini IRIDA, Belgium

Leandro de Castro Mackenzie University, Brazil Stephanie Forrest University of New Mexico, USA

Emma Hart Napier University, UK

Christian Jacob University of Calgary, Canada

Doheon Lee KAIST, Korea

Mark Neal University of Wales, Aberystwyth, UK

Giuseppe Nicosia University of Catania, Italy Jon Timmis (Chair) University of York, UK

Programme Committee for Immunoinformatics and Computational Immunology Stream

Colin C. Anderson University of Alberta, Canada Becca Asquith Imperial College London, UK

Sergio Baranzini University of California San Francisco, USA

Catherine Beauchemin Ryerson University, Canada

Gennady Bocharov Russian Academy of Sciences, Russia Julie Magarian Blander Mount Sinai School of Medicine, USA

Ulisses M. Braga-Neto Texas A&M University, USA

Salvador E. Caoili University of the Philippines Manila, Philippines

Gastone Castellani University of Bologna, Italy
Franco Celada New York University, USA
Chang-Zheng Chen Stanford University, USA
Cliburn Chan Duke University, USA

Tong Joo Chuan Institute for Infocomm Research, Singapore

Hilary Clark Genentech - Roche Group, USA Francesco Colucci University of Cambridge, UK Anne DeGroot University of Rhode Island, USA

David S. DeLuca Dana-Farber Cancer Institute, Harvard University,

USA

Omer Dushek University of Oxford, UK Darren Flower Aston University, UK

Bruno Andre Gaeta University of New South Wales, Australia Fernand Hayot Mount Sinai School of Medicine, USA

Yongqun He University of Michigan, USA Uri Hershberg University of Drexel, USA

John Iacomini Harvard Medical School, Harvard University, USA

Mikhail Ivanchenko University of Nizhniy Novgorod, Russia Can Kesmir Utrecht University, The Netherlands

Koichi S. Kobayashi Harvard Medical School, Harvard University, USA Klaus Ley La Jolla Institute for Allergy & Immunology, USA

Fabio Luciani University of New South Wales, Australia

Terry Lybrand Vanderbilt University, USA
Yoram Louzoun Bar Ilan University, Israel
Shev MacNamara University of Oxford, UK
Ernesto Marques University of Pittsburgh, USA
Steven Marsh University College London, UK
Andrew Martin University College London, UK
Piero Mastroeni University of Cambridge, UK

Polly Matzinger NIH, USA

Satoru Miyano University of Tokyo, Japan Carmen Molina-Paris University of Leeds, UK Simon Moon Imperial College London, UK

German Nudelman Mount Sinai School of Medicine, USA

Dimitri Perrin Osaka University, Japan

Bjoern Peters La Jolla Institute for Allergy & Immunology, USA

Nikolai Petrovskyv Flinders University, Australia

Philippe Pierre Centre d'Immunologie, University of Marseille,

France

G.P.S. Raghava Institute of Microbial Technology, India

Shoba Ranganathan Macquarie University, Australia

Timothy Ravasi University of California, San Diego, USA Pedro A. Reche Universidad Complutense de Madrid, Spain Christian Schönbach Kyushu Institute of Technology, Japan

Alessandro Sette La Jolla Institute for Allergy & Immunology, USA Johannes Sollner Emergentec Biodevelopment GmbH, Austria

Derek Smith University of Cambridge, UK

Daron Standley Osaka University, Japan

Stefan Stevanovic University of Tübingen, Germany

Stephen Taylor University of Oxford, UK

Rajat Varma NIH, USA

Elena Vigorito Babraham Institute and University of Cambridge,

UK

Gur Yaari Yale University, USA Luca Zammataro University of Milan, Italy

Guanglan Zhang Dana-Farber Cancer Institute, Harvard University,

USA

Programme Committee for Immunological Computation, Immune-Inspired Engineering, Immune-Inspired Metaheuristics Stream

Uwe AickelinNottingham University, UKPaul AndrewsUniversity of York, UKBruno ApolloniUniversity of Milan, ItalyRoberto BattitiUniversity of Trento, ItalyPeter BentleyUniversity College London, UK

Tadeusz Burczynski Cracow University of Technology, Poland

Carlos Coello Coello CINVESTAV-IPN, Mexico Piero Conca University of York, UK

Ernesto Costa University of Coimbra, Portugal

Paulo J. Costa Branco Universidade Tecnica de Lisboa, Portugal

Vincenzo Cutello University of Catania, Italy Dipankar Dasgupta University of Memphis, USA Leandro de Castro Mackenzie University, Brazil

Matteo De Felice University of Rome "Roma Tre", Italy

Benjamin Doerr Max-Planck-Institut für Informatik, Germany

Marco Dorigo Université Libre de Bruxelles, Belgium

X Organization

Fernando Esponda University of New Mexico, USA Stephanie Forrest University of New Mexico, USA

Simon Garrett Aispire Ltd., UK
Masoud Ghaffari GE Aviation, USA
Maoguo Gong Xidian University, China
Julie Greensmith University of Nottingham, UK
Walter Gutjahr University of Vienna, Austria

Emma Hart Napier University, UK Andy Hone University of Kent, UK

Christian Jacob University of Calgary, Canada Thomas Jansen University College Cork, Ireland

Licheng Jiao Xidian University, China
Colin Johnson University of Kent, UK
Natalio Krasnogor University of Nottingham, UK
Henry Lau University of Hong Kong, China

Doheon Lee KAIST, Korea

Jiming Liu Hong Kong Baptist University, Hong Kong

Chris McEwan Napier University, UK Giuseppe Narzisi New York University, USA

Frank Neumann Max-Planck-Institut für Informatik, Germany

Mark Neal University of Wales, Aberystwyth, UK

Peter Oliveto University of Birmingham, UK

Elisa Pappalardo University of Catania, Italy and University of

Florida, USA

Mario Pavone University of Catania, Italy Richard E. Overill King's College London, UK Andrea Roli University of Bologna, Italy Peter Ross Napier University, UK

Sven Schaust G.W. Leibniz Universität Hannover, Germany

Susan Stepney University of York, UK

Giovanni Stracquadanio John Hopkins University, USA
University of Birmingham, UK
Alexander Tarakanov St. Petersburg Institute, Russia
University of Lübeck, Germany

Jon Timmis University of York, UK Andy Tyrrell University of York, UK

Renato Umeton MIT, USA

Fernando J. Von Zuben State University of Campinas, Brazil Stefan Voss University of Hamburg, Germany

Carsten Witt Technical University of Denmark, Denmark
Christine Zarges Technical University of Dortmund, Germany

Keynote and Tutorial Speakers

Arup Chakraborty MIT, USA

Jonathan Jones Sainsbury Laboratory, UK

Andrew Phillips Microsoft Research Cambridge, UK

Rino Rappuoli Novartis, Italy

Jon Timmis University of York, UK

Sponsoring Institutions

University of Cambridge, Computer Laboratory, UK Tao Science Research Center, Italy

Table of Contents

Part I: Immunoinformatics and Computational Immunology

The Value of Inflammatory Signals in Adaptive Immune Responses Soumya Banerjee, Drew Levin, Melanie Moses, Frederick Koster, and Stephanie Forrest	1
Large Scale Agent-Based Modeling of the Humoral and Cellular Immune Response	15
Logic-Based Representation of Connectivity Routes in the Immune System	30
Refitting Harel Statecharts for Systemic Mathematical Models in Computational Immunology	44
In Silico Investigation into CD8Treg Mediated Recovery in Murine Experimental Autoimmune Encephalomyelitis	51
Classification of MHC I Proteins According to Their Ligand-Type Specificity Eduardo Martínez-Naves, Esther M. Lafuente, and Pedro A. Reche	55
Towards Argument-Driven Validation of an in silico Model of Immune Tissue Organogenesis	66
Simulating the Dynamics of T Cell Subsets throughout the Lifetime Stephanie J. Foan, Andrew M. Jackson, Ian Spendlove, and Uwe Aickelin	71
Modelling Containment Mechanisms in the Immune System for Applications in Engineering (Extended Abstract)	77

Systems Dynamics or Agent-Based Modelling for Immune Simulation?	81
·	
Implementation of a Computational Model of the Innate Immune System	95
Relevance of Pattern Recognition in a Non-deterministic Model of Immune Responses	108
Part II: Theory of Immunological Computation	
On the Analysis of the Immune-Inspired B-Cell Algorithm for the Vertex Cover Problem	117
Variation in Artificial Immune Systems: Hypermutations with Mutation Potential	132
Stochastic Search with Locally Clustered Targets: Learning from T Cells	146
An AIS-Based Mathematical Programming Method	160
Quiet in Class: Classification, Noise and the Dendritic Cell Algorithm Feng Gu, Jan Feyereisl, Robert Oates, Jenna Reps, Julie Greensmith, and Uwe Aickelin	173
A Lymphocyte-Cytokine Network Inspired Algorithm for Data Analysis	187
Part III: Applied Immunological Computation	
Inferring Systems of Ordinary Differential Equations via Grammar-Based Immune Programming	198
Applying Antigen-Receptor Degeneracy Behavior for Misbehavior Response Selection in Wireless Sensor Networks	212

Rentian Huang, Hissam Tawfik, and Atulya Nagar

Nikolay Korablev and Irina Sorokina

Immune Approach for Neuro-Fuzzy Systems Learning Using

Multiantibody Model.....

395

XVI Table of Contents

The Danger Theory Applied to Vegetal Image Pattern Classification Esma Bendiab and Mohamed Khirreddine Kholladi	406
Further Exploration of the Fuzzy Dendritic Cell Method Zeineb Chelly and Zied Elouedi	419
Author Index	433