Skip to main content

The Value of Inflammatory Signals in Adaptive Immune Responses

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6825))

Abstract

Cells of the immune system search among billions of healthy cells to find and neutralize a small number of infected cells before pathogens replicate to sufficient numbers to cause disease or death. The immune system uses information signals to accomplish this search quickly. Ordinary differential equations and spatially explicit agent-based models are used to quantify how capillary inflammation decreases the time it takes for cytotoxic T lymphocytes to find and kill infected cells. We find that the inflammation signal localized in a small region of infected tissue dramatically reduces search times, suggesting that these signals play an important role in the immune response, especially in larger animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, S., Moses, M.E.: A hybrid agent based and differential equation model of body size effects on pathogen replication and immune system response. In: Andrews, P.S., Timmis, J., Owens, N.D.L., Aickelin, U., Hart, E., Hone, A., Tyrrell, A.M. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 14–18. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Banerjee, S., Moses, M.: Modular RADAR: An immune system inspired search and response strategy for distributed systems. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 116–129. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Banerjee, S., Moses, M.: Scale Invariance of Immune System Response Rates and Times: Perspectives on Immune System Architecture and Implications for Artificial Immune Systems. Swarm Intelligence 4(4), 301–318 (2010)

    Article  Google Scholar 

  4. Beauchemin, C., Dixit, N., Perelson, A.: Characterizing T Cell Movement within Lymph Nodes in the Absence of Antigen. The Journal of Immunology 178, 5505–5512 (2007)

    Article  Google Scholar 

  5. Calder, W.: Size, Function and Life History. Dover Publications, New York (1984)

    Google Scholar 

  6. La Gruta, N., Doherty, P.: Influenza Virology Current Topics. In: chap. Quantitative and qualitative characterization of the CD8+ T cell response to influenza virus infection. Caister Academic Press (2006)

    Google Scholar 

  7. Macey, R.I., Oster, G.: Berkeley Madonna, version 8.0. Tech. rep. University of California, Berkeley, California (2001)

    Google Scholar 

  8. Miao, H., Hollenbaugh, J., Zand, M., Holden, W., Mosmann, T.R., Perelson, A., Wu, H., Topham, D.: Quantifying the Early Immune Response and Adaptive Immune Response Kinetics in Mice Infected with Influenza A Virus. Journal of Virology 84(13), 6687–6698 (2010)

    Article  Google Scholar 

  9. Mitchell, H., et al.: Higher replication efficiency of 2009 (h1n1) pandemic influenza than seasonal and avian strains: kinetics from epithelial cell culture and computational modeling. Journal of Virology, JVI, 01722–10 (2010)

    Google Scholar 

  10. Moser, B., Loetscher, P.: Lymphocyte Traffic Control by Chemokines. Nature Immunology 2, 123–128 (2001)

    Article  Google Scholar 

  11. Moses, M., Banerjee, S.: Biologically Inspired Design Principles for Scalable, Robust, Adaptive, Decentralized Search and Automated Response (RADAR). In: IEEE Symposium Series in Computational Intelligence, (SSCI) (2011)

    Google Scholar 

  12. Paz, T., Letendre, K., Burnside, W., Fricke, G., Moses, M.: How Ants Turn Information into Food. In: IEEE Symposium Series in Computational Intelligence, (SSCI) (2011)

    Google Scholar 

  13. Peters, R.: The ecological implications of body size. Cambridge University Press, Cambridge (1983)

    Book  Google Scholar 

  14. Saenz, R., et al.: Dynamics of Influenza Virus Infection and Pathology. Journal of Virology 84(8), 3974–3983 (2010)

    Article  Google Scholar 

  15. Warrender, C.: CyCells (Open source software) (2003), http://sourceforge.net/projects/cycells

  16. Warrender, C.: Modeling intercellular interactions in the peripheral immune system. Ph.D. thesis, University of New Mexico (2004)

    Google Scholar 

  17. Weibel, E.R.: Scaling of structural and functional variables in the respiratory system. Annual Review of Physiology 49, 147–159 (1987)

    Article  Google Scholar 

  18. West, G., Brown, J., Enquist, B.: A general model for the origin of allometric scaling laws in biology. Science 276(5309), 122–126 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banerjee, S., Levin, D., Moses, M., Koster, F., Forrest, S. (2011). The Value of Inflammatory Signals in Adaptive Immune Responses. In: Liò, P., Nicosia, G., Stibor, T. (eds) Artificial Immune Systems. ICARIS 2011. Lecture Notes in Computer Science, vol 6825. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22371-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22371-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22370-9

  • Online ISBN: 978-3-642-22371-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics