Optimized Query Rewriting in OWL 2 QL

Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

School of Electrical and Computer Engineering,
National Technical University of Athens,
Zografou 15780, Athens, Greece
{achort, gstam}@cs.ntua.gr, despoina@image.ntua.gr

Abstract. The OWL 2 QL profile has been designed to facilitate query
answering via query rewriting. This paper presents an optimized query
rewriting algorithm which takes advantage of the special characteristics
of the query rewriting problem via first-order resolution in OWL 2 QL
and computes efficiently the set of the non redundant rewritings of a user
query, by avoiding blind and redundant inferences, as well as by reducing
the need for extended query subsumption checks. The evaluation shows
that in several cases the algorithm achieves a significant improvement
and better scalability if compared to other similar approaches.

Keywords: query answering, query rewriting, OWL 2 QL, DL-Lite.

1 Introduction

The use of ontologies in data access allows for semantic query answering, i.e. for
answering user queries expressed in terms of terminologies linked to the data [3,
5]. Queries are typically expressed in the form of conjunctive queries (CQ) and
terminologies in an ontological form. Unfortunately, the problem of answering
CQs in terms of ontologies axiomatized in expressive Description Logics (DL)
suffers from high worst-case complexity. The obvious way to overcome this ob-
stacle and develop practical systems is to reduce the expressivity of the ontology
language, otherwise either the soundness or the completeness of the algorithm
have to be sacrificed.

Late research in description logics introduced DL-Liter, which is the DL
ontology representation language that underpins the OWL 2 QL profile [1]. In
DL-Liteg, the CQ answering problem is tractable (from the data point of view).
It is proved that sound and complete CQ answering systems for DL-Liteg can
follow a strategy that splits the procedure into two independent steps [5, 1, 6]: the
query rewriting, in which the CQ is expanded into a union of CQs (UCQ) using
the ontology and the execution of the UCQ over the database. Apart from the
obvious advantage of using the mature relational database technology, rewriting
can be based on first order resolution-based reasoning algorithms [4] that are
widely studied in the literature [7, Ch.2]. The main restriction is that for large
terminologies and/or large queries, the algorithm becomes rather impractical,
since the exponential complexity in the query size affects the efficiency of the
system and may result to a very large number of rewritings.

2 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

Several CQ answering algorithms for DL-Litegr have been proposed in the
literature. In [2,8], the rewriting strategy, called PerfectRef, is based on refor-
mulating the conjuncts of the query according to the taxonomic information
of the ontology. Although the strategy is in general very effective, some of the
axioms of the terminology must be syntactically rewritten in terms of auxiliary
roles in order to cover the full expressivity of DL-Liter which may significantly
increase the size of the ontology. In [4] a resolution-based rewriting strategy,
called RQR, is proposed, which relaxes the above restriction. However, the un-
stratified saturation strategy may get tangled in long inference paths leading
either to redundant rewritings or to rewritings that are not in a CQ form (non
function-free). Such rewritings are discarded in the end, however their participa-
tion in the inference process and the increased number of required subsumption
checks degrades significantly the practical performance of the system (which
already suffers from an exponential worst-case complexity in the query size).
Finally, [6] follows a different approach, and instead of computing a set of CQs,
a non-recursive datalog program is constructed, deferring thus the main source
of complexity to the database system.

In this paper, we introduce a new query rewriting algorithm called Rapid,
which is optimized for the query rewriting problem of CQs posed over DL-Liteg
ontologies. Its efficiency is based on the selective and stratified application of res-
olution rules. Instead of applying indiscriminately the resolution rule saturating
the user query, we take advantage of the query structure and apply a restricted
sequence of resolutions that may lead to useful, hopefully redundant-free rewrit-
ing subsets. In this way, we avoid a large number of blind inference paths which
can be the cause of scalability issues, as well as the production of many redun-
dant rewritings and the need to perform extended query subsumption checks, i.e.
very costly operations. The effectiveness of the algorithm is demonstrated in its
practical evaluation, which shows clearly an optimized performance, especially
in the most problematic cases of large queries or large terminologies.

2 Preliminaries

A DL-Liteg ontology is a tuple (T ,.A), where T is the terminology, which repre-
sents the entities of the world, and A the assertional knowledge, which describes
the world objects in terms of the entities of 7. Formally, 7 is a set of axioms of
the form Cy C C5 or Ry £ Ry, where Cy, Cy are concept descriptions and R1, Ra
role descriptions, employing atomic concepts, atomic roles and individuals. A is
a finite set of assertions of the form A(a) or R(a,b), where a,b are individuals,
A an atomic concept and R an atomic role. A DL-Liter concept can be either
atomic or 3R.T. If it appears in the RHS, we assume that it may also be of the
form JR.A. Negations of concepts can be used only in the RHS of subsumption
axioms. A DL-Liteg role is either an atomic role R or its inverse R™.

A CQ @ has the form A < {B;}" ; (the sequence is meant as a conjunction),
where atom A is the head and atoms B; the body of Q). Wlog we assume that all
B, are distinct and denote the set of B;s by body @), and A by head Q. A CQ Q is

Optimized Query Rewriting in OWL 2 QL 3

posed over an ontology (T, .A) if the predicates of all atoms in body @ are entities
of 7 and have arities 1 or 2, depending on whether the respective entity is a con-
cept or a role. Hence, an atom A € body Q may be of the form A(t) or A(t, s), if
it is a concept or role atom, respectively. terms A (vars A, cons A) are the sets of
terms (variables, constants) that appear in A. For a set of atoms B we have that
terms B = [Jpcpterms A, for a CQ Q that terms Q) = terms ({head Q} Ubody Q),
and similarly for vars Q and cons Q). An atom or CQ is function free if it contains
no functional terms. User queries are always function free. The terms in a func-
tion free CQ @ can be characterized in some important ways: A term ¢ € terms)
is distinguished iff it appears in head QQ and non distinguished otherwise, bound iff
it is a constant or it is a variable that appears at least twice in {head Q} Ubody Q
and unbound otherwise, and disconnected iff there is a disconnected subgraph
(V',E") of (terms @, {{t,s} | R(t,s) or R(s,t) € body@}) such that t € V/ and
V' contains no distinguished variable. We denote the set of distinguished and
bound terms, and bound and unbound variables of @ by terms® Q, terms® Q,
vars® Q and varsVB Q, respectively. For simplicity and wlog we assume that the
user query () contains no disconnected terms, no distinguished constants, and
that all its distinguished variables appear also in body Q.

A tuple of constants a is a certain answer of a user CQ @ posed over the
ontology O = (T, A) iff OU{Q} | C(a), where C(a) is subsumed by head Q.
The set that contains all answers of @ over O is denoted by cert (@, O). It has
been proved [5,1] that for any CQ @ and DL-Liter ontology O, there is a set
Q of function free CQs (called query rewritings) such that cert(Q, (T, .A)) =
UQ,Echrt(Q’, (0, A)). The set of these rewritings may be computed by first
clausifying O, i.e. translating O into a set of first order clauses =(O) according
to table 1, and then performing resolution operations on =(0) and Q.

Table 1. Translation of DL-Liter axioms into clauses of Z(O) (reproduced from [4]).

Axiom Clause Axiom Clause

ACB B(zx) «+ A(x)

pos | Sy e Py pes | S@w <Py

JPC A A(z) + P(z,y) JPTCA A(m) P(y,x)

AL 3P P(x, 7 (x)) + A(x) AT 3P P(fp-(x),z) + A(z)
P(z, fp.p(x)) A(z) - (fp (@),) « A(z)

ACIEE T Biise) —a@ | AETTP] BUR L@) < A@)

Formally, a function free CQ Q' is a rewriting of a CQ Q posed over ontology
O, iff @ and Q' have the same head predicate and Z(O)U{Q} = Q’'. Nevertheless,
not all possible rewritings are needed for the complete computation of cert (Q), O),
since some of them may be equivalent or subsumed by others. We say that a
CQ Q subsumes a CQ Q' (or Q' is subsumed by Q) and write Q > @', iff there
is a substitution @ such that head (Qf) = head @' and body (Q8) C body Q’. If

4 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

Q@ and @’ are mutually subsumed they are equivalent, and we write Q = Q. If
Q is a set of CQs and for some CQ @ there is a Q' € Q such that Q = Q' we
write Q € Q. We define also the operation Q U {Q} = QU {Q} if Q ¢ Q, and
Q U {Q} = Q otherwise. Given a CQ Q, a set Q is a set of rewritings of Q over
O and is denoted by rewr (Q, Q) iff for each rewriting Q" of @ over O there is
a unique Q' € Q with Q' = Q”. If for some CQ Q there is a Q' € Q for which
Q' > Q, Q is called to be redundant in Q. Given a CQ Q, let Q' be the CQ
head Q@ < {B}gep for some B C body Q. If B is the smallest subset of body @
for which @' > Q, the atoms body @ \ B are called redundant and Q" minimal.
We denote the minimal CQ obtained from @ by min @. Obviously, min @ always
subsumes (. Because the redundant atoms of a non minimal CQ can be removed
without affecting its answers, in order to compute cert (Q, O), we are interested
in minimal, non redundant rewritings of Q. We say that Q' is a core rewriting
of a CQ Q over O, iff Q" = min Q" for some Q" & rewr (Q, O) (obviously we may
have Q' = Q" if Q" is already minimal) and there is no CQ Q" & rewr (Q, O)
such that min Q"' >Q’. The set of the core rewritings rewr® (Q, O) of Q over O is
defined in the same way as rewr (Q, O) by including in it all the core rewritings.

3 The Rapid Algorithm

Rapid computes rewr® (Q, O) for a user query @ in an efficient way. Its structure
is similar to that of RQR, but it introduces several optimizations and organizes
differently some tasks so as to reduce the inferences that lead to queries that
will eventually be discarded because they are not function free or redundant.
The strategy of Rapid is based on the distinguishing property of the bound and
unbound variables, namely that whenever a CQ @ is used as the main premise
in a resolution rule in which an atom A € body @) unifies with the head of the
side premise and the mgu 6 contains a binding v/t for some variable v € vars® Q,
the application of 6 affects several atoms of the query apart from A. This is not
the case if v € varsYB @, since unbound variables appear only once in a CQ. The
main premise in the resolution rules in Rapid is always @) or a rewriting of it.
Rapid consists of the following steps: (1) The clausification step, in which O is
transformed into =(O). (2) The shrinking step, in which the clauses of =Z(O) are
selectively used as side premises of resolution inference rules in order to compute
rewritings which differ from the user query @ in that they do not contain one
or more variables in vars® (), because the application of the resolution rule led
to their unification with a functional term which subsequently was eliminated.
(3) The unfolding step, which uses the results of the previous step to compute
the remaining rewritings of @), by applying the resolution rule without that the
bound variables of the main premise are affected. In principle, only unbound
variables are eliminated or introduced at this step. However, eventually some
bound variables of the main premise may also be eliminated, not through the
introduction and subsequent elimination of functional terms, but through the
removal of redundant atoms, i.e. while converting the conclusion to its minimal
form. (4) The redundancy removal step, in which redundant rewritings are re-

Optimized Query Rewriting in OWL 2 QL 5

moved. This step is in principle the same as in RQR, but is more efficient in two
ways: First, the previous steps produce much fewer redundant rewritings, and
second not every pair of rewritings has to be checked for subsumption, because,
as we will see in the sequel, some sets of rewritings that are produced at the
unfolding step are guaranteed to be redundant free.

Notwithstanding the above general description, Rapid optimizes the shrink-
ing and unfolding steps by not employing the resolution rule directly in its stan-
dard form. Instead, a shrinking and unfolding inference rule are defined, which
condensate into one a series of several successful resolution rule application steps.
In this way, we achieve that the resolution rule is applied only if it eventually
leads to a function free and hopefully also non redundant rewriting, avoiding
thus a large number of useless inferences. The shrinking and unfolding inference
rules are based on the notion of the unfolding and function set of an atom.

3.1 Atom Unfolding Sets
The saturation of Z(0) w.r.t. the resolution rule contains clauses of the form

A(z) < B(z), A(z) + B(z
Az, f(z)) + B(z), Az,
A(g(z), f(g(x))) < B(z), A(f(z), f(g 3?))) < B(z,y),
A(g(h(2)), f(g(h(2)))) « B(x), A(g(h(z)), f(g(h(z)))) < B(z,y), ...

as well as the respective clauses with the role atom arguments inverted. We note
that in the first two rows the non functional arguments appear both in the LHS
and the RHS of the clauses. Based on this remark and given that in the unfolding
step we want that bound variables do not unify with functional terms but be
preserved in the conclusion, we define the unfolding of an atom as follows:

Definition 1. Let A be a function free atom and T a non empty subset of
terms A. Atom B@' is an unfolding of A w.r.t. T iff 2(O) Er A6 < B for
some substitution 6 on vars A\ T, where 0" is a renaming of vars B\ T such that
forv € varsB\ T we have that v8’ ¢ vars A.

Essentially, B (up to the variable renaming ') is an unfolding of A w.r.t.
T if B is the body of a clause that can be inferred from =(0) having in its
head an atom A’ (of the same predicate as A) such that both B and A’ contain
unaltered all terms in 7" (which will normally be the bound variables of the
CQ in question). The renaming 6’ contains no essential information, so in order
to collect all distinct unfoldings of A w.r.t. some 7T, it suffices to collect only
B¢’ for any convenient ¢’ for each B such that £(0) E=r Af# <+ B. Having
this in mind, we define the unfolding set of atom A for T w.r.t. Z(0O) as the
set D(A;T) = {B | 5(0)U{A} =7 B}. We also define the set D(A;T) =
D(A;T) U {A}. By using table 2, it is easy to prove that given A and T we
have that Z(0O) = A6 < B iff B0’ € D(A;T). In the definition of D, J are the
following atom production rules:

6 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

T rule T rule
A(t) A(z) + B(x)
{t} B
{t} A(t) A](Dazl)f’;_) P(Ly) {t} A(t) AI(DQE)Z;_) P(yv .CL‘)
P(t,v) P(z, f(x)) + B(x) P(v,t) P(f(z),z) + B(x)
{t} B0 & B(1)
43| py s Pl e R] b bl .
{t, s} P(t,s) PI(%(;zyz)e R(z,y) {t, s} P(t,s) PI(%(;@;— R(y,z)
Fig. 1. The J(T) inference rules.

A T B¢’ A0+~ B 0 0
At | {t} B(t) A(t) «+ B(t) 0 0
At) | {t} | P(ty) / P(y,t) | At) < P(t,2) / < P(2,1) 0 {=/y}

P(t,v) | {t} B(t) P(t, f(t)) < B() {o/f@®)} 0
P(t,v) | {t} | R(t,y) / R(y,t) | P(t, f(t) < R(t, 2) / < R(z,t) | {v/f(O)} | {z/y}
P, t")| {t} |R@E,t) /R, t)| Ptt) « R(t,t') |« R(,t) 0 0
P(v,t) | {t} B(t) P(f(t),t) « B(1) {o/f@®)} 0
P(v,t) | {t} | R(t,y) / R(y,) P(f(t),t) < R(t,z) / « R(z,t) | {v/f()}|{z/y}
P t)| {t} |R{E,t) /R, t)| P, t)« R, t) /< R(t,t) 0 0
P(t,s) | {t,s}| R(t,s) / R(s,t) | P(t,s) < R(t,s) /] < R(s,t) 0 0

Table 2. Unfolding table

3.2 Atom Function Sets

As we have mentioned before, the saturation of =Z(O) contains clauses of the form
A(z, f(2)) + B(z), A(f(z),z) + B(z), and A(f(x)) < B(z), as well as of the
form A(g(z), f(g(x))) + B(z) and A(g(z), f(9(x))) + B(z,y). In contrast to
the case of the unfoldings, now we are interested in the behavior of the functional
term f(x), which is present in the LHS but not in the RHS of the clause. Hence,
if f(x) appears in an atom A of some rewriting, it could probably be eliminated
by using such clauses. Let funcs Z(O) be the set of all functions that appear
in Z(0). According to table 1, each axiom that has an existential quantifier in
the RHS introduces a distinct function f in Z(O). It follows that each function
f € funcs Z(0) is uniquely associated with the concept A that appears in the
LHS of the axiom that introduces f. We denote the concept associated with
function f by cn f. In order to group the functional term elimination clauses
through the use of cn f, we provide the following definition:

Definition 2. Let A be a function free atom, T a non empty subset of terms A
and v a variable in vars ANT. The function set F,(A;T) of all functions asso-
ciated with A in variable v w.r.t. T is defined as follows:

{f | B(v) € P(AT) and B(f(2)) + (en f)() € Z(O)} U
Fu(AiT) = {f | B(v,t) € D(A;T) and B(f(2),) + (cn f)(x)
{f | B(t.v) € D(A;T) and B(x, f(z)) (cn f)(x)

Optimized Query Rewriting in OWL 2 QL 7

It follows immediately that (a) if A is of the form A(v,t) then f € F,(A;T)
ift Z(0) =r A(f(t),s) < (cn f)(t), (b) if A is of the form A(¢,v) then f €
Fo(A;T) iff Z2(0) Er A(s, f(t)) < (cn f)(t), where in both cases s =t ift € T
otherwise either s = t, or s = g(f(t)) for some function g, and (c) if A is of the
form A(v) then f € F,(A;T) ifft Z(0) E=r A(f(t)) < (cn f)(1).

Ezample 1. Consider the ontology O = {B C A, dJR C A S C R,C
JR.A, 3T~ C C, D C 35}, from which we get =Z(0) = {A(z) < B(x), A(x)
R(z,y), Rzy) — S(.2), R, fi(z)) « C(2), A(fi(z)) « Clx), C(a)
T(y,z), S(x, fa(x)) + D(x)}. Table 3 shows the unfolding and function sets
for atoms A(x), C(z), R(z,y) and S(x,y) and several sets T.

T T n

AT || A(@); {2} Cz); {z}| R(z,y); {z}| Rz, y); {y}| R(z,y); {z,y}| S(=,y); {=}

B(z) | T(z1,2) | S(y,z) S(y,z) S(y,z) D(z)
R(z,z1) C(z) D(y)

D(A;T) || S(z1,2) T(z1,z)
C(z)
T(Z%x)

Fo(A;T)|| {f1, f2} 0 {fe} 0 {fe} 0

Fy(A;T) - - 0 {f1} {f1} -

Table 3. Unfolding and function sets for example 1.

3.3 Query Shrinking

The shrinking step computes rewritings that can be inferred from the user query
@ by eliminating one or more of its bound variables through their unification
with a functional term. Given that the rewritings in rewr (Q, Q) are function
free, if a function is introduced in some rewriting at some point in the standard
resolution-based inference process, subsequently it must be eliminated. However,
we know that each function appears only in at most two clauses of Z(Q), both
of which have as body the atom (cn f)(z). Now, f(z) can be introduced in a
CQ only if some inference led to the substitution of a bound variable v by f(x).
Hence, in order for f(x) to be eliminated, all atoms in which f(z) has been
introduced must contain f in their function sets, for the appropriate argument.
This is the intuition behind the following shrinking inference rule:

Definition 3. Let Q be a CQ and v a non distinguished bound variable of Q.
Write @ in the form A < Bq,...,By,Cq,...,C,, where B; are the atoms in
body Q that contain v, and C; the remaining atoms. Let also C = Ule consB;

and X = Ule(varsB Q N varsB;)\v. The shrinking rule S on Q has as follows:

A+ By,...,B;,Cy,...,C, fc ﬂle F,(Bi;termsB Q Nterms B;) A |C] < 1
min (A « (cn f)(t),C10,...,C,0)

where 0 = J cp{2/t}, and t = a if C = {a} otherwise t is a variable ¢ vars Q.

8 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

The shrinking rule changes the structure of @), in the sense that it eliminates
a bound variable, and hence the atoms that contained it. It is easy to prove that
S is a sound inference rule, i.e. that if Z(O)U{Q} s Q' then Z(0)U{Q} = Q’.

3.4 Query Unfolding

Let §*(Q) be the reflexive transitive closure of ¢ under the inference rule S. From
its computation, it follows that S*(Q) contains a ‘representative’ for all query
structures that can result from @ by eliminating one or more variables in vars® Q
by using functional terms. Moreover, this representative can be considered as a
‘top’ query, in the sense that in can produce several more CQs with no further
structural changes due to bindings of bound variables with functional terms.
Hence, the remaining rewritings can be obtained from $*(Q) by computing for
each Q' € §*(Q) all CQs inferred from @’ by replacing one or more of its atoms
by one of its unfoldings. In this way we can eventually compute all rewritings of
Q@. This can be achieved by applying the following unfolding inference rule:

Definition 4. Let Q be the CQ A < By,...,B,. The unfolding rule U on Q
has as follows:

A<+ By,....,B, CecD(B;terms®QNtermsB;)
min (A — Bl, .. .,Bi_l, C'Y7Bi+17 R 7Bn)

where 7y is a renaming of vars C \ vars® Q such that xvy ¢ U?Zl i varsBj for all
x € vars C \ vars® Q.

It follows immediately that I/ is a sound inference rule, i.e. that if Z(O) U
{Q} Euy Q' then Z(0O)U{Q} E @'. Rule U replaces one atom of @ by one of its
unfoldings. U can iteratively be applied on the conclusion to get more rewritings.
In order to facilitate the optimization of the combined application of ¢ on more
than one atoms at the same time, we define the combined unfolding inference
rule W which can replace in one step more than one atoms of @@ by one of their
unfoldings. In this way, any unfolding of @) can be obtained in one step.

Definition 5. An unfolding of CQ @Q : A «+ By,...,B,, is the conclusion of
any application of the following VW rule:

A+ By....B, C;e ﬁ(Bi;termsBQ NtermsB;) fori=1...n
min (A + Ci171,...,Cnvn)

where 7y; is a renaming of vars C; \ terms® Q such that xvy; ¢ U?:1 ;i vars (Cjvj)
for all x € varsC; \ terms® Q.

In the above definitions we have always taken the minimal form of the con-
clusion in order to remove possible redundant atoms. In the sequel, we will call
roew an unfolding given by U or W before converting it to the minimal form.

We denote the reflexive transitive closure of all possible applications of the
inference rule W on @ by W*(Q). By using the definitions of the shrinking and
unfolding rules we get the following theorem, which justifies the strategy followed
by Rapid to compute the set of non redundant rewritings of a user query Q.

Optimized Query Rewriting in OWL 2 QL 9

Theorem 1. Let @ be a CQ over a DL-Liter ontology O. We have that if
Q" € Ugres- (W (Q") then Q' € rewr (Q,0) (soundness), and that if Q' €

rewr® (Q, O) then Q' € Ugres-qy W (Q") (completeness).

Proof (Sketch). Soundness follows from the soundness of the S and W rules.
For completeness, if Q' is inferred by a sequence of resolution rule applications
with main premises Q, Q1, ..., Qi—1 and conclusions Q1, @2, ..., Q', it must be
shown that there is a sequence of shrinking rule applications with main premises
Q, Q1, ..., Q. _1 and conclusions QF, Q3, ..., Q] , and a sequence of unfold-
ing rule applications with main premises Qf , QY, ..., Q' _; and conclusions

YRy, ..., Q. CQs Q,...,Qi—1 may contain functional terms of the form
fi(- fx(t)) for k >0 (k is called depth). But Q and Q' are both function free,
hence any functional terms that appear in the intermediate steps are eventually
eliminated. The result can be proved by induction on the maximum depth d of the
intermediate queries Q1,...,Qm_1, by showing that the sequence of resolution
rule applications that led to the introduction of the functional term of depth d can
be rearranged so that only functional terms of depth 1 are introduced. Moreover,
these rules can be applied first, thus giving rise to the shrinking rules sequence,
on whose final conclusion the unfolding rules in order to get Q' are then applied.

4 Implementation

The practical implementation of Rapid follows the above strategy, however the
unfolding step includes additional optimizations that reduce the number of re-
dundant rewritings and hence the need for extended subsumption checks. The
Rapid system (algorithm 3) uses procedures SHRINK and UNFOLD (algorithms 1
and 2). SHRINK computes the closure $*(Q) by iteratively applying the shrink-
ing inference rule. Each rewriting computed by SHRINK is processed by UNFOLD,
which computes two disjoint sets of rewritings. We will now discuss their con-
tents, explaining at the same time the optimizations that have been employed.
If we apply exhaustively the W rule on a CQ @ in order to compute W*(Q),
we may end up with many redundant rewritings. Given that these are undesired,
we have two options: either to compute all rewritings and then remove the re-
dundant ones, or else try to apply W in a cleverer way, so as to get only non
redundant rewritings, or at least as few as possible. Because the subsumption
check operation is very costly, we choose the second option, i.e. we have to solve
the following problem: Given a CQ @ of the form A «+ B4,...,B,, compute
only the non redundant CQs that are conclusions of all possible applications of
W on @. For convenience, define B; = ﬁ(Bi;termsB Q NtermsB), so that we
have the sequence of the possibly non disjoint unfolding sets Bi,...,B,. For
simplicity, we can drop the substitutions «; that appear in the definition of W
by assuming that if some member of a set B; has been obtained by an inference
that introduced a new variable, that variable appears in no other element of
Ui, B;. If the sets B, are not disjoint, simply taking all possible combinations
of their elements in order to form the unfoldings of @, will certainly result in
several redundant rewritings, which we should then check for subsumption.

10 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

Algorithm 1 The query shrinking procedure.
procedure SHRINK(CQ @, ontology O)
OQres + 05 Qr < {Q}
for all Q' € Q. do
Q'res — Qres U {Ql}7 QT < QT \ {Q/}
for all v € vars® Q' \ vars® Q' do
F «+ funcs Z(0); X «+ 0; C+ 0; A+ 0
for all B € body Q' do
if v € vars B then
F + F N Fp(B;terms® Q' Nterms B)
X + X U (vars® Q' NvarsB); C < C U cons B
else
A<+ AU {B}
end if
end for
if |C| > 1 then
continue
else if |C| = {a} then
t<+a
else
t + a new variable not in vars Q’
end if
0 Ugfex{x/t}
Q; +U;cr{min (head Q"0 + (cf f)(t), {BO }Beca)}
end for
end for
return Q...
end procedure

For any B € (JI_, B;, define the set idxB = {j | B € B;} of the indices of
all the unfolding sets that contain B. We call the set A = {Aq,..., A} with
k < n a selection for Q iff (a) Ule idx A; = N,,, and (b) idx A; \ idx A; # 0 for
all 4,7 € Ng, i.e. if A contains at least one atom from each unfolding set and
we can consider that each unfolding set is represented in A by a single atom.
Clearly, a selection corresponds to an unfolding of @), in particular to head @ +
A4, ..., Ax. However, we are interested in minimal selections, which correspond
to non redundant rewritings. We call a selection for () minimal, iff there is no
selection A’ for) such that A" C A, i.e. if in addition to the above conditions,

we have that idx A; \ (Ule’j# idx Aj) # () for all i € Ny, i.e. if all atoms A;s

need to be present in A in order for Ule idx A; = N,, to hold. If this not was the
case, we could form the selection A" = {Aq,...,A;—1,A;11,Ar} C A, hence A
would not be minimal.

The unfolding step in Rapid computes efficiently the minimal selections for

a CQ @ by examining the contents of the sets idxB; for each candidate raw
unfolding given by the W rule. However, although the set of minimal selections

Optimized Query Rewriting in OWL 2 QL 11

Algorithm 2 The query unfolding procedure

procedure UNFOLD(CQ Q of the form A «+ By,...,B,, ontology O)
Q—0; Q0
fori=1...ndo
Bi + D(Bi;terms® Q Nterms B;); B; « 0
end for
for i =1...n and for all role atoms A € [;’1 do
for j=1...n,j # i and for all role atoms A’ € Bj do
if 30 on vars A’ \ vars® Q such that A’0 = A then
Bj — Bj U {A}
end if
end for
end for
for all selections Cy, ..., Cg from By U 1’5’1, ., Ba U l";’n do

if idx Ci \ U =, 4 ;2 1dxC; # 0 for all i, j then
if C; € B; for all i then
Q+«+ QU {Q}
elseA .
Q+ QU{Q}
end if
end if
end for
return [Q, Q]

end procedure

for some CQ @ corresponds to the set of all its non redundant unfoldings and
hence there is no need to perform subsumption checks within this set, the union
of the sets of the non redundant unfoldings of two distinct CQs @1 and Q-
(e.g. obtained at the shrinking step) may not be redundant free. The need for
subsumption check remains, however the number of required checks is much less,
since the unfoldings of ()7 have to be checked for subsumption only against the
unfoldings of Q)2 and vice versa, and not also against the unfoldings of Q.

The above procedure computes sets of non redundant, raw unfoldings, but
does not take into account possible redundant atoms that may appear in a raw
unfolding @’ of @ and are removed in min Q’. The removal of possible redundant
atoms, so as to get a candidate core rewriting, may change the structure of Q" and
make it subsume several other raw unfoldings given by the minimal selections
for). Because the redundant atoms removal process may involve the binding
of unbound variables to bound ones, this issue can be addressed by computing
all such bindings in advance and include them in the sets B;. In particular, if
for some i,j € N,, we have that A € B;, A’ € B; and there is a substitution
on vars A’ \ vars®) such that A’0 = A, we add A to B;. We call the minimal
selections for () that contain at least such an atom impure. Their inclusion in the
result does not affect soundness, since we have only replaced an unbound variable
of A’ by a bound variable of A. However, an impure selection may result in a
minimal unfolding that is subsumed by an unfolding given by another minimal

12 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

Algorithm 3 The Rapid algorithm

procedure RAPID(CQ @, ontology O)
Q=10
for all Qs € SHRINK(Q) do
[Q, Q] + UNFOLD(Qs); Qr <+ 0
for all Q' € 9, do
if minQ’ = Q’ then
Q: + Q:U{Q"}
else
Qr < QrU{{minQ'}}
end if
end for
Qs + QrUQtUUgrco{{minQ'}}
end for
return REMOVEREDUNDANT(Q))
end procedure

selection for @. For this reason, UNFOLD distinguishes between the two sets of
unfoldings and returns them in the sets Q and Q, which contain the unfoldings
that have resulted from the pure and impure minimal selections, respectively.
The final step of Rapid is the check for redundancies in the results of UNFOLD.
The check is done after first grouping the results into sets that are known not to
contain redundant rewritings. These are the sets of the pure unfoldings returned
by UNFOLD, excluding the unfoldings who did not coincide with their minimal
form. The minimal form of each of these queries, as well as each impure unfolding
forms a separate set. These sets are processed by REMOVEREDUNDANT which
removes any redundant rewritings by checking for subsumption across the several
sets only. We should also note that UNFOLD applies the combined unfolding rule
W only on its input @) and not iteratively also on the conclusions. This does
not affect completeness, because at the application of W bound terms may be
converted to unbound or eliminated only due to removal of redundant atoms.
This redundancy removal is the last step of the application of the W rule, hence
no rewriting is lost. However, it may be the case that an unbound variable v
of such a conclusion (which was bound in the main premise) can unify with
a functional term of some clause in Z(O) and hence be eventually eliminated.
If this is the case, variable v would have been eliminated also earlier at some
application of the shrinking rule, hence again completeness is not affected.

Ezample 2. Consider the CQ Q(z) + A(z), R(x,y), A(y), S(z, z) posed over the
ontology of example 1. We have vars® Q = {x}, vars® Q = {x,y} and varsVB Q =
{z}. From table 3 we get that F,(R(x,y);{z,y}) N Fy(A(y);{y}) = {f1} and
given that cn f; = C, the SHRINK procedure returns the rewritings @1 : Q(x) +
A(x), R(z,y), A(y), S(x, z) (the initial CQ) and Q2 : Q(z) + A(z),C(z), S(x, 2),
which are subsequently processed by the UNFOLD procedure. We have that
vars Q; = {z,y} and vars® Q, = {z}. The sets B; and B; for Q1 and Q- are
shown below (for convenience unbound variables have been replaced by).

Optimized Query Rewriting in OWL 2 QL 13

7 1 2 3 4 7 1 2 3
A(z) | R(z,y)™2] Ay) [S(z,*) A(x) C(x)™2 | S(x, *)
Bz) |S(y,2)"| By) | D) B(z) |T(+2)?| D()
B R(z,) R(y, *) B R(x, *)
S(x,z) S(*,y) S(x,x)
C(x) C(y) C(x)th?
L T(+.y) T(s,2) %
s || R(x,y)tH? A
Bil| sy, 02 Bi

For the atoms A for which |idx A| > 1 the above tables show the sets idx A
(in supersript). Because in both @7 and Qs for all atoms A in column 2 we
have idx A = {1, 2}, Rapid computes no unfoldings with atoms that appear only
in column 1, because they would be redundant (e.g. for Q2 the CQ Q(z) +
A(x),C(x),S(z,z) is subsumed by Q(x) «+ C(x),S(z,z). In this way 24 (=
2%6%2) rewritings are obtained from @7 and 4 (= 2%2) from Q5. The unfoldings
of @, are all impure (because they contain atoms in 5’1) while the ones of Q2
are all pure. All of them are finally checked for subsumptions, however the check
within the set of the rewritings of Qs is skipped because we know that it contains
no redundant rewritings. Finally, we get 28 core rewritings.

5 Evaluation

We evaluated Rapid by comparing it with Requiem (its greedy strategy), the
implementation of RQR. We used the same data sets as in [4], namely the V, S,
U, A, P5, UX, AX, P5X ontologies. (V models European history, S European
financial institutions, and A information about abilities, disabilities and devices.
U is a DL-Liteg version of the LUBM benchmark ontology. P5 is synthetic and
models graphs with paths of length 5. UX, AX and P5X were obtained from U, A
and P5, by rewriting them without qualified existential restrictions.) Rapid was
implemented in Java, as is Requiem. Tests were performed on a 3GHz processor
PC and the results are shown in table 4. For both Rapid and Requiem two times
(in hh:mm:ss.msec format) and rewriting sizes are given. T4 is the rewriting
computation time without the final redundancy removal step, and T is the total
time including this last step. Similarly, R4 is the size of the rewriting set when
omitting the redundancy removal step, and R the size of the core rewriting set.
As expected, both systems compute the same number of core rewritings.

The results show clearly the efficiency of Rapid. It is always faster and in
several cases the improvement is very significant. The efficiency is even more
evident if we compare the results before and after the redundancy removal step.
In most cases, the number of rewritings discarded as redundant in this step is
small. Hence, by omitting it we would still get a ‘good’ result, but gain possibly
a lot in time. The redundancy removal step is very expensive, although our op-
timizations significantly reduced its cost too. The most striking case is ontology
AX and query 5, in which Rapid completes the computation of the 32,921 core

14 Alexandros Chortaras, Despoina Trivela, and Giorgos Stamou

rewritings in about 43 seconds, while Requiem needs about 2 hours. Moreover,
Rapid needs only to 2.1 sec to compute a set containing only 35 redundant
rewritings and then about 41.2 sec to detect them, while Requiem computes
43,111 redundant rewritings and needs 1.5 hours to detect and remove them.

Rapid Requiem (greedy strategy)

O |Q Ta Tr Ra Rp Ta Tr Ra Rp
1 .001 .001 15 15 .001 .001 15 15

2 .001 .001 10 10 .001 .001 10 10

VvV |3 .001 .001 72 72 .016 .016 72 72
4 .015 .015 185 185 .031 .062 185 185

5 .016 .016 30 30 .001 .015 30 30

1 001 001 6 6 001 .001 6 6

2 001 001 2 2 031 .062 160 2

S 3 001 001 4 4 187 515 480 4
4 001 001 4 4 406 1.047 960 4

5 001 001 8 8 5.594 17.984|| 2,880 8

1 001 001 2 2 001 .001 2 2

2 001 001 1 1 031 .047 148 1

U |3 001 001 4 4 047 .109 224 4
4 001 001 2 2 .625 2.031 1,628 2

5 001 001 10 10 2.187 7.781|| 2,960 10

1 001 001 27 27 .031 047 121 27

2 001 001 54 50 .031 047 78 50

A |3 016 016 104 104 .047 063 104 104
4 031 031 320 224 078 156 304 224

5 062 078 624 624 .188 610 624 624

1 001 001 6 6 .001 001 6 6

2 001 001 10 10 .015 015 10 10

P5 |3 001 001 13 13 .047 047 13 13
4 015 015 15 15 .688 .688 15 15

5 015 015 16 16 16.453 16.453 16 16

1 .001 .001 14 14 .001 .001 14 14

2 .001 .001 25 25 .031 .031 7 25
P5X| 3 .015 .031 112 58 125 297 390 58
4 .062 .109 561 179 2.453 7.375|| 1,953 179

5 .344| 1.313| 2,805 718 1:10.141 3:48.690(|| 9,766 718

1 .001 .001 5 5 .001 .001 5 5

2 .001 .001 1 1 .031 .078 240 1
UXx |3 .001 .001 12 12 .391 1.125|| 1,008 12
4 .001 .001 5 5 5.187 19.375|| 5,000 5

5 .015 .015 25 25 15.125 57.672|| 8,000 25

1 .001 .001 41 41 .047 .063 132 41

2 .093 .140|| 1,546| 1,431 .703 2.781 1,632| 1,431
AX |3 .297 .672|| 4,466| 4,466 6.484 29.109|| 4,752| 4,466
4 219 .625(| 4,484| 3,159 5.282 23.516|| 4,960| 3,159

5 || 2.140| 43.374|| 32,956 32,921||| 27:04.006| 1:56:21.585|| 76,032| 32,921

Table 4. Evaluation results.

We comment on two cases that illustrate best the efficiency of the shrink-
ing and unfolding steps in Rapid. In ontology P5, where query ¢ asks for nodes
from which paths of length i start, the performance of Rapid is essentially un-
affected by the query size, unlike Requiem which is not scalable. This is due
to the efficiency of the shrinking inference rule, which fires only if it leads to
a valid rewriting. In RQR the saturation is performed undiscriminately, lead-
ing to a large number of non function free rewritings (exponential in the size
of funcs £(0)) that are eventually discarded. In ontology U, the superior per-

Optimized Query Rewriting in OWL 2 QL 15

formance of Rapid is due to the efficiency of the unfolding step, in particular
to the non computation of redundant unfoldings. In query 5, at the end of the
unfolding step Rapid has computed only 8 rewritings, which are the final core
rewritings. In contrast, Requiem computes 2,880, which need to be checked for
subsumption. In the general case the superior performance of Rapid is due to
the combined efficiency of the shrinking and unfolding steps.

Before concluding this section we should note, however, that Requiem, being
an L reasoner, is not optimized for DL-Liter. Nevertheless, in [4] which com-
pares Requiem with CGLLR, an implementation of the authors of the PerfectRef
algorithm, Requiem shows already a better performance.

6 Conclusions

We have presented Rapid, a new algorithm for the efficient computation of query
rewritings over DL-Liter ontologies. The general structure of Rapid is inspired
by a resolution-based process, however its steps are optimized and the appli-
cation of the first order resolution rule is replaced by specialized shrinking and
unfolding rules, which save the algorithm from many redundant rewritings, many
subsumption checks, as well as from blind resolution paths. The specialized in-
ference rules differentiate Rapid from pure resolution-based algorithms, however
it remains committed to the computation of query rewriting sets, unlike recent
approaches [6] which circumvent the exponential complexity of the query rewrit-
ing problem by computing datalog programs, deferring thus the complexity to
the underlying database systems. The experimental evaluation of Rapid showed
a significant performance benefit if compared to RQR, which in several prac-
tical cases can alleviate the exponential behavior of the system. An interesting
direction for future work is to apply the idea to more expressive DLs, like ELHT.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family
and relations. J. of Artificial Intelligence Research, 36-69, (2009).

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite Family.
J. of Automated Reasoning, (2007).

3. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. J. of Artificial Intelligence Research, 31:157-204, (2008).

4. H. Perez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for OWL 2.
In Procs of ISWC 2009, LNCS 5823:489-504, (2009).

5. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, 133-173, (2008).

6. R. Rosati and A. Almatelli, Improving Query Answering over DL-Lite Ontologies.
In Procs of KR 2010, (2010)

7. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2
volumes), Elsevier and MIT Press, (2001).

8. M. Stocker, and M. Smith. Owlgres: A scalable OWL reasoner. In Procs of OWLED
2008, (2008).

