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Abstract. In this paper we introduce a new method for solving systems of linear
inequalities. The algorithm incorporates many state-of-the-art techniques from
DPLL-style reasoning. We prove soundness, completeness and termination of the
method.

1 Introduction
There are several well-known methods for linear programming and solving systems of
linear inequalities over the rational or real numbers. These are the Fourier-Motzkin vari-
able elimination method, simplex, the interior point method (see, [7] for an overview),
a recent conflict resolution method [2] and the GDPLL method [5]. In this paper we in-
troduce a new method. Interestingly, this method is rather different from the previously
known methods in that it incorporates ideas recently developed in the SAT solving
community: namely, DPLL [1], unit propagation, dynamic variable ordering, lemma
learning and backjumping [4], see also [6] for the state-of-the-art exposition of DPLL
related techniques.

The method works by assigning values to variables and using the assigned values
to derive bounds on other variables, using bound propagation. The process of assign-
ing values either terminates with a solution, or results in inconsistent bounds derived by
bound propagation. In the latter case we learn a new inequality, which we call a collaps-
ing inequality, which is also used to derive a bound on a variable excluding a previously
done assignment. After that we either obtain inconsistent bounds, which means that the
system is unsatisfiable or change the assignment to conform to the new bound. The
algorithm incorporates many ideas developed in SAT solving, such as clause learning,
backjumping and dynamic variable ordering. Another interesting property of the algo-
rithm is that the number of inequalities at each stage can be kept linear in the number
of variables and the number of input inequalities.

For those familiar with DPLL, the informal description of the method above may
look familiar. However, there are fundamental differences between the two methods.
Firstly, it turns out that bound propagation can be non-terminating, so we have to im-
pose some restrictions on it. Secondly, unlike propositional DPLL, there exists an infi-
nite possible number of bounds and values for a variable, so making an algorithm that
terminates is highly non-trivial.
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The rest of this paper is organised as follows. Section 2 introduces definitions related
to systems of linear inequalities. We define notions of bound (on a variable), context as
a set of bounds, and inference rules of resolution and bound-resulting resolution on lin-
ear inequalities. We also introduce bound propagation as a sequence of bound-resulting
resolution inferences. Section 3 introduces a fundamental notion of collapsing inequal-
ity. We give an algorithm for extracting collapsing inequalities from resolution proofs.
We show that, in the case of bound propagation, the extracted collapsing inequality can
be used to collapse a bound propagation derivation into a single inference by bound-
resulting resolution.

In Section 4 we introduce our algorithm for solving systems of linear inequalities
using bound propagation and other rules. Section 5 gives an example of how this al-
gorithm works. In Section 6 we show soundness, completeness and termination of the
algorithm. Proofs that did not fit can be found in the full version of this paper [3].

2 Preliminaries
We will denote variables by x, rational constants by c and positive rational constants
by d, maybe with indices. We call a literal a variable x or its negation −x and denote
literals by l. Literals of the forms x and −x are said to be complementary. A literal
complementary to a literal l will be denoted by l̄. Note that every linear inequality can
be written in the form

d1l1 + · · ·+ dnln + c ≥ 0. (1)

where the variables of the li’s are pairwise different. Note that all the constants di’s are
positive by our choice of notation. We say that inequality (1) contains literals l1, . . . , ln.
An inequality is called trivial if it contains no variables. It is straightforward to adapt all
our considerations to systems also containing strict inequalities and equalities, which
for simplicity we do not consider in this paper.

We define an assignment σ over a set of variables X as a mapping from X to the
set of real numbers R, i.e. σ : X → R.

For a linear term q over X , denote by qσ the value of q after replacing all variables
x ∈ X by the corresponding values σ(x). An assignment σ is called a solution of a lin-
ear inequality q ≥ 0 if qσ ≥ 0 is true; it is a solution of a system of linear inequalities if
it is a solution of every inequality in the system. If σ is a solution of a linear inequality I
(or a system L of such inequalities), we also say that σ satisfies I (respectively, L), de-
noted by σ |= I (respectively, σ |= L), otherwise we say that σ violates I (respectively,
L). A system of linear inequalities is said to be satisfiable if it has a solution.

We will denote inequalities as I, J, G, possibly with indexes and the corresponding
linear terms as I, J,G respectively, so I = (I ≥ 0), J = (J ≥ 0) and so on. Two
linear inequalities are equivalent if one can be obtained from another by multiplying
by a positive constant. When we deal with linear inequalities, we will not distinguish
equivalent linear inequalities. That is, we assume that the order of linear terms dili in
a linear expression is irrelevant and that we can multiply the inequality by any positive
rational. We also assume that a trivial inequality is either −1 ≥ 0 or 0 ≥ 0.

For an inequality I, let var(I) denote the set of all variables with non-zero co-
efficients in I. Similarly, for a system of inequalities L, let var(L) denote the set
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SAT this paper
variable variable
literal literal
clause linear inequality
unit clause bound
resolution resolution
unit-resulting resolution bound-resulting resolution
unit propagation bound propagation

Table 1. Correspondence between the SAT terminology and our terminology

∪I∈Lvar(I). We say that a system of inequalities L implies an inequality I, if every
solution to L is also a solution to I. We say that an inequality I is a non-negative linear
combination of inequalities I1, . . . , Ik, if I is of the form α1I1 + · · ·+αkIk ≥ 0 where
αi ≥ 0 for 1 ≤ i ≤ k, in this case we also write I = α1I1 + · · · + αkIk. It is easy to
see that any non-negative linear combination of inequalities from L is implied by L. An
inequality I of the form d1l1 + · · ·+ dnln + c ≥ 0 improves an inequality I′ if either I
is −1 ≥ 0 or I′ is of the form d1l1 + · · ·+ dnln + c′ ≥ 0 and c′ ≥ c.

LEMMA 2.1 If an inequality I improves I′ then I implies I′.

Proof Let I be of the form d1l1 + · · ·+ dnln + c ≥ 0. If I is −1 ≥ 0 then the lemma
trivially holds. Assume I is not−1 ≥ 0 and I′ is of the form d1l1 + · · ·+dnln +c′ ≥ 0,
where c′ ≥ c. Then I′ = I + (c′ − c ≥ 0), hence I implies I′. o

DEFINITION 2.2 (BOUNDS) A bound on a literal l is an inequality of the form l+ c ≥
0. A pair of bounds l + c1 ≥ 0 and l̄ + c2 ≥ 0 on two complementary literals is
contradictory if c1 +c2 < 0, in this case we will also say that l+c1 ≥ 0 contradicts l̄+
c2 ≥ 0. A bound is either a bound on a literal, or a trivial inequality. Trivial inequalities
will also be called trivial bounds. A bound l+c1 ≥ 0 is said to strictly improve a bound
l + c2 ≥ 0 if c2 > c1. o

DEFINITION 2.3 (CONTEXT) Let B be a finite set of non-trivial bounds. B is called
a context if it contains no contradictory pair of bounds. A bound b is called redundant
in B if some bound in B strictly improves b. We say that a bound b contradicts to a
context B if some bound in B contradicts b. o

By our definition contexts are always satisfiable. It is easy to see that a bound b is
implied by a context B if and only if either b ∈ B or b is redundant in B.

Our aim now is to introduce an inference system on linear inequalities. This infer-
ence system will have inference rules similar to those used in the resolution calculus.
To emphasise the analogy to the resolution calculus we will use terminology similar to
the one used in the theory of resolution.

For the readers familiar with the resolution calculus for propositional logic and the
DPLL method we define a correspondence between the notions introduced in this paper
and those used in propositional satisfiability in Table 1.
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DEFINITION 2.4 (Resolution) Let I1, I2 be linear inequalities such that I1 has the form
d1x+ I ′1 ≥ 0 and I2 has the form −d2x+ I ′2 ≥ 0 for some variable x. We say that the
linear inequality

d2I
′
1 + d1I

′
2 ≥ 0

is a resolvent of I1 and I2 upon x. We consider resolvent as a symmetric relation, that
is, a resolvent of I1 and I2 upon x is also a resolvent of I2 and I1 upon x. Resolution
is the inference rule deriving a resolvent from two linear inequalities. o

For example, consider two clauses x1 + 2x2 + x3 + 3 ≥ 0 and −2x1 − 3x2 + 5 ≥ 0.
Then their resolvent upon x1 is x2 + 2x3 + 11 ≥ 0 and their resolvent upon x2 is
−x1 + 3x3 + 19 ≥ 0. Note that any resolvent of two inequalities is a consequence of
these inequalities. Also note that resolution is compatible with equivalence on linear
inequalities. That is if we replace inequalities in the premise of a resolution inference
by equivalent inequalities then the conclusion of the new inference will be equivalent
to the conclusion of the original inference.

Any application of resolution to a bound b and a linear inequality I eliminates a
variable from I in the following sense: the variables of the resolvent are the variables of
I minus the variable of b. Thus, if we repeatedly apply resolution to a linear inequality
of n variables x1, . . . , xn and bounds on variables x2, . . . , xn, all variables except x1
in I will be eliminated and we will obtain a bound on x1. We will formalise such
repeated applications of resolution to a linear inequality and a sequence of bounds in
the following definition.

DEFINITION 2.5 (Bound-Resulting Resolution) Consider any linear inequality I of the
form (1). Let bi be bounds of the form l̄i + ci ≥ 0, where i = 2, . . . , n, on literals com-
plimentary to literals in I. Then one can derive (by a sequence of resolution inferences)
from b2, . . . , bn and I the following bound b on l1:

l1 + (c+ d2c2 + . . .+ dncn)/d1 ≥ 0.

We will say that b is obtained by bound-resulting resolution from b2, . . . , bn and I.
Likewise, let bi be bounds of the form l̄i + ci ≥ 0, where i = 1, . . . , n, on lit-

erals complimentary to literals in I. Then one can derive (by a sequence of resolution
inferences) from b1, . . . , bn and I the following trivial inequality:

c+ d1c1 + d2c2 + . . .+ dncn ≥ 0.

In this case we will also say that this trivial inequality is obtained by bound-resulting
resolution from b1, . . . , bn and I. o

We can consider resolution and bound-resulting resolution as inference rules and
put together sequences of resolution steps to form a derivation, that is, a tree consisting
of inferences. For example, the following

x4 − 1 ≥ 0 x3 − x4 + 1 ≥ 0
x3 ≥ 0 −x2 ≥ 0 x4 − 1 ≥ 0 x1 + x2 − x3 − x4 ≥ 0

x1 − 1 ≥ 0
(2)
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is a derivation of the bound x1 − 1 ≥ 0 from two bounds x4 − 1 ≥ 0 and −x2 ≥ 0 and
two inequalities x3− x4 + 1 ≥ 0 and x1 + x2− x3− x4 ≥ 0. This derivation uses two
bound propagation inferences.

By repeated applications of bound-resulting resolution we can repeatedly derive
new bounds. Such repeated applications are formalised in the following definition.

DEFINITION 2.6 (Bound Propagation) Let B be a context and L a system of linear
inequalities. A bound propagation from B and L is a sequence of bounds b1, . . . , bn,
such that

1. n > 0.
2. For all k such that 1 ≤ k ≤ n, the bound bk is not implied by B ∪ {b1, . . . , bk−1}.
3. For all k such that 1 ≤ k ≤ n, the bound bk is obtained by bound-resulting resolu-

tion from B ∪ {b1, . . . , bk−1} and an inequality in L.

We will also use this definition in the case when bn is a trivial inequality. o

By collecting all inferences in a tree one can regard bound propagation as a derivation
of the bound (or a trivial inequality) bn from B and L.

3 Collapsing Inequalities
In the DPLL procedure unit propagation always terminates since there is only a finite
number of literals that can be derived. In the case of linear equalities the number of
bounds is infinite, which may result in bound propagation of unrestricted length, deriv-
ing better and better bounds. This is illustrated by the following example.

EXAMPLE 3.1 Consider the context {x1 ≥ 0} and the following two linear inequalities

x2 − x1 ≥ 0 (3)
x1 − x2 − 1 ≥ 0 (4)

Using x1 ≥ 0 and (3) one can derive a new bound x2 ≥ 0, from which, using (4) one
can derive an improved bound x1− 1 ≥ 0 on x1. In a similar way from x1− 1 ≥ 0 one
can derive in two steps x1 − 2 ≥ 0, then x1 − 3 ≥ 0 etc. o

In this section we will analyse bound propagation. First, we will show that any
derivation consisting of bound propagation steps using a collection of inequalities can
be collapsed into a single bound-resulting resolution inference by adding a new inequal-
ity, called a collapsing inequality.

To explain the idea of collapsing inequalities consider derivation (2). It uses two
inferences to derive the bound x1−1 ≥ 0 from the contextB = {x4−1 ≥ 0,−x2 ≥ 0}.
It also derives the bound x3 ≥ 0 on the variable x3. If we resolve the inequalities
x1 +x2−x3−x4 ≥ 0 and x3−x4 + 1 ≥ 0 used in the derivation upon the variable x3
we obtain a new inequality x1 + x2 − 2x4 + 1 ≥ 0. This inequality has the following
interesting property: we can obtain the bound x1 − 1 ≥ 0 from the context B using a
single inference
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x4 − 1 ≥ 0 −x2 ≥ 0 x1 + x2 − 2x4 + 1 ≥ 0
x1 − 1 ≥ 0 .

Thus, the new inequality x1 + x2 − 2x4 + 1 ≥ 0 makes derivation (2) collapse into a
single inference.

Let us prove a general result on collapsing inequalities and then show how to extract
collapsing inequalities from resolution and bound-resulting resolution proofs. We will
use Farkas’s Theorem stated in the following form.

THEOREM 3.2 (Farkas) Let L be a system of linear inequalities. If L implies a lin-
ear inequality I then there is a linear non-negative combination of inequalities from L
improving I. o

For a proof we refer to [7].

THEOREM 3.3 (Collapsing Inequalities) Let L1 and L2 be two systems of linear in-
equalities such that L1 ∪ L2 implies a linear inequality I. Then there exist two linear
inequalities I1 and I2 such that

1. L1 implies I1 and L2 implies I2;
2. the system {I1, I2} implies I.

Proof By Theorem 3.2, if L1 ∪ L2 implies a linear inequality I then there is a non-
negative linear combination of inequalities from L1 ∪L2 which implies I. This combi-
nation can be represented in the form

α1J1 + · · ·+ αkJk + β1G1 + · · ·+ βmGm,

where Ji ∈ L1, αi ≥ 0 for 1 ≤ i ≤ k and Gi ∈ L2, βi ≥ 0 for 1 ≤ i ≤ m.
We define I1 = α1J1+· · ·+αkJk and I2 = β1G1+· · ·+βmGm. It is straightforward

to check that I1 and I2 satisfy conditions 1–2 of the theorem. o

We will call inequalities I1 and I2 satisfying the conditions of Theorem 3.3 collapsing
for I w.r.t. L1 and L2 respectively.

Let us show how to effectively extract collapsing inequalities from resolution proofs.

THEOREM 3.4 Let L1 and L2 be two systems of linear inequalities and Π be a reso-
lution (or a bound-resulting resolution) derivation of an inequality I from inequalities
in L1 ∪ L2. Then inequalities I1 and I2, collapsing for I w.r.t. L1 and L2 respectively,
can be constructed in time polynomial in the size of Π .

Proof Since any bound-resulting resolution derivation can be considered as a special
case of a resolution derivation, we will only prove this theorem for resolution deriva-
tions.

The proof is by induction on the depth of Π . We will prove a slightly stronger, yet
equivalent statement: our construction will also imply I = I1 + I2.

Base case. Suppose Π has I as the (only) leaf, then I ∈ L1 ∪ L2. If I ∈ L1 then
we define I1

def
= I and I2

def
= (0 ≥ 0). The case I ∈ L2 is similar.
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Inductive case. Let I be a conclusion of an inference in Π with premises J and G:

Π1
J

Π2
G

I
.

By the induction hypothesis, we can construct pairs of collapsing inequalities J1, J2
for Π1 and G1, G2 for Π2. Since I is obtained by resolution from J and G, we have
that I = αJ + βG for some coefficients α > 0 and β > 0. Define I1

def
= αJ1 + βG1

and I2
def
= αJ2 + βG2. By the induction hypothesis, L1 implies {J1, G1}, hence L1

implies I1. Likewise, we have L2 implies I2. By the induction hypothesis we also have
J = J1 + J2 and G = G1 + G2. It remains to prove I1 + I2 = I. To this end, note that
I1 + I2 = (αJ1 + βG1) + (αJ2 + βG2) = α(J1 + J2) + β(G1 + G2) = αJ + βG = I.

Let us note that with additional bookkeeping we can obtain an explicit representa-
tion for the collapsing inequalities I1 and I2 as non-negative combinations of inequali-
ties from L1 (L2 respectively). o

Let us now consider bound-resulting resolution inferences between a context B and
a set of inequalities L.

THEOREM 3.5 Let b be a (possibly trivial) bound derived from a contextB and a set L
of linear inequalities by bound propagation. Then there exists a linear inequality I such
that

1. L implies I, and
2. either (i) I is −1 ≥ 0, or (ii) there is a bound b′ improving b which can be derived

from B and I by a single bound-resulting resolution inference.

Moreover, the bound b′ and inequality I can be constructed in time polynomial in the
size of the derivation by bound propagation. o

The proof is given in Appendix A. Let us only note that we can take I to be a collapsing
inequality for b w.r.t. L, which by Theorem 3.4, can be computed in polynomial time
from the bound-resulting resolution proof of b.

4 Bound Propagation Algorithm
In this section we introduce the bound propagation algorithm for solving systems of
linear inequalities, called BPA. BPA will be presented using a system of derivation
(transition) rules which are applied to states of BPA. A state is a triple (S,L, ε) where
S is a sequence of annotated bounds, called bound stack, L is a system of inequalities
and ε is either the empty set or a set consisting of one bound, called conflicting bound.
We denote a state (S,L, ε) as S ‖ L, ε and in the case when ε = ∅ as S ‖ L. The bounds
in S are annotated with information reflecting on how the bounds were introduced. Each
bound b in S is either:

– a decision bound, denoted bd, or
– a propagation bound, denoted as bp.
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We say that a bound b in S is below a bound b′ in S if b occurs before b′ (in the
order of their occurrences in S), in this case b′ is also called above b. In other words,
we consider the stack as growing upwards.

Every propagation bound in the stack will be obtained by bound propagation from
bounds below it and linear inequalities in L. Consider a bound stack S. Let b be a
propagation bound in the stack. We refer to the corresponding bound-resulting resolu-
tion derivation of b from bounds below it as Πb. Based on Theorems (3.4–3.5) we can
calculate a collapsing inequality from Πb, which we call the collapsing inequality for b
under S and denote by CIb, such that (i) CIb is implied by L and (ii) a bound improving
b can be derived by a single bound-resulting resolution inference from CIb and decision
bounds in S below b.

An initial state of BPA is a state of the form S0 ‖ L0 where S0 is the empty
sequence, and L0 is the system of inequalities we want to solve. Let us state invariants
on BPA states which will be preserved by BPA derivations. These invariants either
trivially follow from the BPA rule definitions or will be proved later. Consider a BPA
state S ‖ L, ε which is obtained from an initial state by a sequence of applications of
BPA derivation rules.

Invariant 1. The set of all bounds in S is consistent. In other words, we can consider
S as a context.

We call a sequence consisting of a pair of bounds 〈x − c ≥d 0,−x + c ≥d 0〉 a
decision pair on x with the decision value c. To simplify the notation we will also write
such a decision pair as xc. If a stack contains a decision pair on x, we will call x a
decision variable of this stack.

Invariant 2. S is of the form U0 x
c1
1 U1 . . . x

ck
k Uk where k ≥ 0 and (i) all

xc11 , . . . , x
ck
k are decision pairs, (ii) each Ui contains no decision bounds for 0 ≤ i ≤ k,

(iii) for any variable x there is at most one decision pair on x in S. We say that bounds
in Ui are implied bounds of the decision level i for 0 ≤ i ≤ k, and the decision level of
S is k.

Denote a restriction of the stack S to bounds below a decision pair xc as S<xc

(including xc as S≤xc ), or simply S<l (S≤l, respectively) when we are not concerned
with the decision value and var(l) = x.

Invariant 3. Any propagation bound b in S is not implied by the set of the bounds
below b.

Let us note that Invariants (2, 3) imply that if S contains a decision pair on a variable
x then there are no bounds on x above this decision pair.

A bound b is called decision-derived from an inequality I and a stack S if either (i)
both I and b are −1 ≥ 0, or (ii) I is of the form l + I ≥ 0, where all variables in I

are decision variables in S≤l, and b either coincides with I, or is obtained by a single
bound-resulting resolution inference from I and decision bounds in S<l.

With each decision pair xc in S we associate a pair of sets BCI x = 〈USx,LSx〉
called a bounding collapsing interval on x with the following properties. The set LSx

(respectively, USx) is either empty or consists of a single inequality Lx (respectively,
Ux) of the form x + I ≥ 0 (−x + I ≥ 0, respectively), where all variables in I are
decision variables in S<x. We denote by lbx the bound on x decision-derived from Lx
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and S, called the lower collapsing bound on x and similarly by ubx the bound on x
decision-derived from Ux and S, called the upper collapsing bound on x.

Invariant 4. For any decision pair xc in S with the associated bounding collapsing
pair BCI x, inequalities in BCI x are implied by L.

For example, consider a system of inequalities L:

−y + x− 2z + 3 ≥ 0
y − x− 3z + 1 ≥ 0

z ≥ 0

and a stack

S = 〈z ≥p 0, x1, y2〉.

Assume that with the first decision pair we associated a bounding collapsing pair
consisting of empty sets, and with the second the pair 〈{−y+x+3 ≥ 0}, {y−x+1 ≥
0}〉. Invariant 4 is satisfied since both −y + x+ 3 ≥ 0 and y − x+ 1 ≥ 0 are implied
by L. Note that the assignment {y 7→ 2} satisfies the corresponding upper and lower
collapsing bounds uby = (−y + 4 ≥ 0) and lby = (y ≥ 0).

Invariant 5. If ε consists of a conflicting bound b then b contradicts to a decision
bound in S. With each conflicting bound bwe associate a conflicting collapsing inequal-
ity CCIb satisfying the following. Conflicting collapsing inequality CCIb is implied by
L, and b is the bound decision-derived from CCIb and S.

We define the bound-propagation depth of bounds in a bound-propagation deriva-
tion w.r.t. S inductively as follows. If a bound b is a decision bound in S or a bound
in L then the bound propagation depth of b is bpd(b) = 0. If a bound b is obtained by
a bound-resulting resolution inference from bounds b1, . . . , bk and an inequality in L
then the bound-propagation depth of b is bpd(b) = max{bpd(bi) | 1 ≤ i ≤ k}+ 1.

Invariant 6. We restrict bound-propagation depth of propagation bounds in S by an
a priory fixed constant denoted D ≥ 0.

During backjumping (rules (LBBC) and (UBBC)) we can resolve collapsing in-
equalities. In order to show that the number of such resolvents is finite we need a notion
of the resolution rank.

The resolution rank of inequalities is defined by induction as follows. The set of
inequalities of rank 0, denoted RI 0, consists of all inequalities in L together with all
collapsing inequalities obtained from bound-propagation derivations of depth ≤ D +
1, from L and a set of bounds. Assume that RI k is defined then RI k+1 consists of
all inequalities in RI k together with all inequalities obtained by a single resolution
inference from inequalities in RI k.

LEMMA 4.1 For any (finite) set of inequalities L and any non-negative integers D and
k, the set RI k is finite. o

The proof is given in Appendix B.
Invariant 7. Consider the conflicting collapsing inequality CCIb associated with

a conflicting bound b of the form l + c ≥ 0. Denote the number of all variables
in L as |var(L)| and the number of decision variables in S≤l as |vard(S≤l)|. Then
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CCIb ∈ RI |var(L)|−|vard(S≤l)|. Similarly, if xc is a decision variable in S then BCI x ∈
RI |var(L)|−|vard(S≤x)|.

We define a contradictory BPA state as a special state denoted as⊥. Now we define
the BPA derivation rules. When defining the rules, we assume by induction, that all
invariants above are satisfied on the BPA states to which the rules are applied. Initial
BPA states trivially satisfy the invariants.

Bound Propagation (BP):

S ‖ L ⇒BP S bp ‖ L, where

1. b is in L, or obtained by bound propagation from S and L,
2. bpd(b) ≤ D,
3. b is consistent with S,
4. b is not implied by S.

Decide (D):
S ‖ L ⇒D S xc ‖ L, where

1. xc is a decision pair 〈x− c ≥d 0,−x+ c ≥d 0〉, such that
2. x is a variable in L,
3. x is not a decision variable in S,
4. bounds x− c ≥ 0 and −x+ c ≥ 0 are consistent with S and at least one bound in
xc is not implied by S.

In the Decide rule above, we associate with the introduced decision pair xc a bound-
ing collapsing pair BCI x = 〈USx,LSx〉 where USx and LSx are defined as follows.
If there is no lower bound on x in S then LSx is the empty set. Otherwise, let x−c′ ≥ 0
be a lower bound on x in S which is not implied by any other bound in S. Note that
x − c′ ≥ 0 is a propagation bound, since by conditions on the applicability of Decide,
x is not a decision variable in S. Therefore x − c′ ≥ 0 is derived from L and decision
bounds in S by bound propagation (of depth ≤ D). We define LSx = {CI(x−c′≥0)}.
The set USx is defined similarly.

Conflicting Bound (CB):

S ‖ L ⇒CB S ‖ L, {b}, where

1. (−1 ≥ 0) is obtained by bound-resulting resolution from S and L,
2. CI(−1≥0) is the collapsing inequality for (−1 ≥ 0) under S, and
3. b is decision-derived from CI(−1≥0) and S.

In the Conflicting Bound rule above, we associate with the bound b the conflicting
collapsing inequality CCIb = CI(−1≥0).

Contradiction (⊥):

S ‖ L, {−1 ≥ 0} ⇒⊥ ⊥
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The next set of rules deals with the case when the conflicting bound b is a lower
bound, i.e., of the form x+ c ≥ 0, these rules are (LBBV) and (LBBC). The case when
the conflicting bound is of the form −x+ c ≥ 0 is similar and the corresponding rules
are (UBBV) and (UBBC).

Lower Bound Backjump Value (LBBV):

V xuU ‖ L, {x+ c ≥ 0} ⇒LBBV V xv ‖ L, where

1. CCI(x+c≥0) is of the form x+ I ≥ 0,
2. x+ c ≥ 0 is consistent with the upper bound ubx,
3. define BCI ′x = 〈USx, {CCI(x+c≥0)}〉,
4. xv is consistent with ub′x and lb′x corresponding to BCI ′x.

In the (LBBV) rule above, with the new decision pair xv we associate the bounding
collapsing pair BCI ′x.

We use the following notation. Consider two inequalities of the form I = (x+ I ≥
0) and J = (−x+J ≥ 0). Then the resolvent of I and J on x will be denoted as I⊗x J.

Lower Bound Backjump Conflict (LBBC):

V xuU ‖ L, {x+ c ≥ 0} ⇒LBBC V ‖ L, {b}, where

1. CCI(x+c≥0) is of the form x+ I ≥ 0,
2. x+ c ≥ 0 is inconsistent with the upper bound ubx,
3. b is decision-derived from CCI(x+c≥0) ⊗x Ux.

In the (LBBC) rule above, with the new decision conflicting bound b we associate
the conflicting collapsing inequality CCI(x+c≥0) ⊗x Ux.

The rules (UBBV) and (UBBC) below are defined similarly to (LBBV) and (LBBC).

Upper Bound Backjump Value (UBBV):

V xuU ‖ L, {−x+ c ≥ 0} ⇒UBBV V xv ‖ L, where

1. CCI(−x+c≥0) is of the form −x+ I ≥ 0,
2. −x+ c ≥ 0 is consistent with the lower bound lbx,
3. define BCI ′x = 〈{CCI(−x+c≥0)},LSx〉,
4. xv is consistent with ub′x and lb′x corresponding to BCI ′x.

In the (UBBV) rule above, with the new decision pair xv we associate the bounding
collapsing pair BCI ′x.

Upper Bound Backjump Conflict (UBBC):

V xuU ‖ L, {−x+ c ≥ 0} ⇒UBBC V ‖ L, {b}, where

1. CCI(−x+c≥0) is of the form −x+ I ≥ 0,
2. −x+ c ≥ 0 is inconsistent with the lower bound lbx,
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3. b is decision-derived from CCI(−x+c≥0) ⊗x Lx.

In the (UBBC) rule above, with the new decision conflicting bound b we associate
the conflicting collapsing inequality CCI(−x+c≥0) ⊗x Lx.

A BPA transition is a transition by one of the BPA rules above, denoted as ⇒. A
BPA derivation is a sequence of BPA transitions starting from an initial state.

Let us remark on some properties of the BPA derivations. First we note that the set
of inequalities L is never changed during the BPA derivations. Secondly, the number of
inequalities at each state is linear in the number of variables and the number of input
inequalities. Indeed, the only inequalities in a state are the input inequalities, inequali-
ties in bounding collapsing pairs, which are at most double in the number of variables
and at most one conflicting collapsing inequality. Thirdly, the order of variables is not
fixed and can be dynamically changed during the BPA derivations. Fourthly, we can
note that bounding collapsing pairs are used only during backjumping rules. Therefore
in an implementation instead of computing BCI ’s for each decision variable, we can
compute BCI ’s on demand during backjumping.

5 Example
We use a simplified notation for bounds: upper bounds of the form −x− c ≥ 0 will be
denoted as −x ≥ c and lower bounds of the form x− c ≥ 0 as x ≥ c.

Let us apply our BPA algorithm to the following set of inequalities L.

x0 − 2x1 − 1 ≥ 0 (5)
x0 + 2x1 − 1 ≥ 0 (6)
−x0 + x1 ≥ 0 (7)

We have the following possible BPA derivation.

‖ L ⇒D

〈x00〉 ‖ L ⇒(6)
BP

〈x00, x1 ≥p 1/2〉 ‖ L ⇒(5)
CB (CCI(x0≥1) = (x0 ≥ 1))

〈x00, x1 ≥p 1/2〉 ‖ L, {x0 ≥ 1} ⇒LBBV (BCI ′ = 〈∅, {x0 ≥ 1}〉)
〈x10〉 ‖ L ⇒(7)

BP

〈x10, x1 ≥p 1〉 ‖ L ⇒(5)
CB (CCI(−x0≥1) = (−x0 ≥ 1))

〈x10, x1 ≥p 1〉 ‖ L, {−x0 ≥ 1} ⇒UBBC (CCI(−x0≥1) ⊗x (x0 ≥ 1) = (−1 ≥ 0))
‖ L, {−1 ≥ 0} ⇒⊥ ⊥

Let us informally explain the derivation steps. There are no bounds inL available for
bound propagation, therefore only the Decide rule is applicable to the initial state, which
adds decision bounds x0 ≥d 0 and −x0 ≥d 0 to the bound stack. With this decision
pair we associate the empty bounding collapsing interval (BCI x0 = 〈∅, ∅〉). Now, the
Bound Propagation rule is applicable resulting in a propagation bound x1 ≥p 1/2,
derived from the decision bound −x0 ≥d 0 and inequality (6). Next, the contradictory
bound −1 ≥ 0 is derivable by bound-resulting resolution from bounds −x0 ≥d 0,
x1 ≥p 1/2 and inequality (5) (transition⇒CB).
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We construct a collapsing inequality for this bound as in the proof of Theorem 3.4,
in this case CI(−1≥0) = (x0 ≥ 1). Let us note that x0 ≥ 1 is implied by L (without
using any decision bounds) and all variables in x0 ≥ 1 are decision variables in our
bound stack. From x0 ≥ 1 we decision-derive the conflicting bound b, which in this
case coincides with x0 ≥ 1. We associate with b the conflicting collapsing inequality
CCI(x0≥1) = (x0 ≥ 1).

By Invariant 5, the conflicting bound b contradicts to one of the decision bounds,
in this case −x0 ≥d 0. Next we backjump to the decision that contradicts to b and try
to modify the decision value within the bounding collapsing interval, such that the new
decision bounds would not contradict to the conflicting inequality (transition⇒LBBV ).
This is possible by taking a decision value for x0 satisfying the new lower collapsing
bound lb′x0

= (x0 ≥ 1), which is decision-derived from the new collapsing interval
BCI ′ = 〈∅, CCI(x0≥1)〉. The new stack consists of the decision bounds x0 ≥d 1 and
−x0 ≥d −1.

We apply the Bound Propagation rule adding x1 ≥p 1 to the stack. Next, the con-
tradictory bound −1 ≥ 0 is derivable and we analyse it as above. In this case it is not
possible to modify the value of the decision variable x0 in such a way as to satisfy both
the conflicting inequality and collapsing bounds on x0. This results in application of the
(UBBC) rule which resolves the conflicting inequality (CCI(−x0≥1) = (−x0 ≥ 1)) with
the corresponding inequality from the bounding collapsing interval (Lx0

= (x0 ≥ 1)).
The resulting conflicting collapsing inequality is CCI(−x0≥1) ⊗x0 Lx0 = (−1 ≥ 0).
The corresponding conflicting bound is also (−1 ≥ 0).

After this step, the only applicable rule is the Contradiction rule. Note that conflict-
ing collapsing inequalities are implied by L, and therefore at the last step we have L
implies −1 ≥ 0, i.e., L is indeed unsatisfiable.

6 Correctness of BPA
LEMMA 6.1 In any BPA derivation S0 ⇒ · · · ⇒ Sn ⇒ · · ·, all states S0, . . . ,Sn, . . .
satisfy Invariants (1–7).

Proof We prove this lemma by induction on the length of the BPA derivation. Initial
states satisfy the invariants since at these states the stack is empty and there are no
conflicting bounds. Assume that the invariants hold for states S0, . . . ,Sn−1. Let us show
that the invariants also hold for Sn = S ‖ L, ε.

Invariants (1–3) trivially follow from the definition of the BPA derivation rules.
Invariant (4) states that for any decision pair xc in S, inequalities in BCI x are

implied by L. This follows from the fact that inequalities in BCI x are either collapsing
inequalities for L, or obtained from collapsing inequalities by a sequence of resolution
inferences in both cases these inequalities are implied by L.

Let us show that Invariant (5) holds at the state Sn. First, let us note the conflicting
collapsing inequality CCIb is either a collapsing inequality w.r.t. L, or obtained from
collapsing inequalities by a sequence of resolution inferences, in both cases CCIb is
implied by L. Now we show that the conflicting bound b contradicts to a decision
bound in S. The only non-trivial cases are when Sn is obtained by one of the BPA
rules (CB), (LBBC) or (UBBC). First we consider the (CB) rule. If b is of the form
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−1 ≥ 0 then obviously b is itself contradictory. Assume that b is of the form l + c ≥ 0
and b is decision-derived from CI(−1≥0) of the form l + I ≥ 0, where all variables
in CI(−1≥0) are decision variables. Let l̄ + c′ ≥ 0 be the decision bound in S which
is used in the single bound-resulting inference deriving −1 ≥ 0 from CI(−1≥0). It is
easy to see that b is contradictory with l̄ + c′ ≥ 0 and hence Invariant (5) is satisfied.
Now we consider the (LBBC) rule. We have Sn−1 is of the form V xuU ‖ L, {x +
c ≥ 0} and Sn is of the form V ‖ L, {b}. From the conditions on applicability of
(LBBC) we have x + c ≥ 0 is inconsistent with the upper bound ubx on x and b is
decision-derived from CCI(x+c≥0)⊗xUx. We have CCI(x+c≥0) is of the form x+I ≥ 0,
Ux is of the form −x + U ≥ 0. The bound (x + c ≥ 0) is decision-derived from
CCI(x+c≥0) and inconsistent with the bound ubx, decision-derived from Ux. Therefore,
CCI(x+c≥0)⊗xUx is inconsistent with decision bounds in V . Since b is decision-derived
from CCI(x+c≥0) ⊗x Ux, b is inconsistent with a decision bound in V . The case of the
(UBBC) rule is similar. Therefore Invariant (5) holds at the state Sn.

Invariant 6 holds by conditions in the definition of the (BP) rule.
Let us show that Invariant 7 holds at Sn. We need to consider the case when Sn

is obtained by one of the following BPA rules: (D), (CB), (LBBV), (UBBV), (LBBC)
and (UBBC). Note that by Invariant 6, bound propagation depth of all bounds in S
is less or equal to D . Consider the (D) rule. In this case, all inequalities in BCI x are
collapsing inequalities obtained from bound propagation derivations of depth ≤ D.
Therefore ineqaulities in BCI x are in RI 0 and Invariant 6 is satisfied. Consider the
(CB) rule. The bound propagation depth of the derived (−1 ≥ 0) is less or equal to
D + 1. Hence, CCIb = CI(−1≥0) is in RI 0 and Invariant 6 is satisfied. In the case
of the rules (LBBV) and (UBBV) one of the bounding inequalities is replaced by a
conflicting collapsing inequality which is by induction assumed to be of the required
resolution rank. Now we consider the case of the rule (LBBC). We have Sn−1 is of the
form V xuU ‖ L, {x+ c ≥ 0} and Sn is of the form V ‖ L, {b}. Denote S′ = V xuU .
Let the conflicting bound b be of the form l+c′ ≥ 0 where var(l) is a decision variable
in V . The conflicting collapsing inequality associated with b is CCI(x+c≥0) ⊗x Ux.
By the induction hypothesis, CCI(x+c)≥0 and Ux are in RI |var(L)|−|vard(S′≤x

)|. Hence,
CCI(x+c≥0)⊗xUx ∈ RI |var(L)|−|vard(S′≤x

)|+1. Since V≤l contains at least one decision
variable less than S′≤x, namely x, we have |var(L)| − |vard(S′≤x)|+ 1 ≤ |var(L)| −
|vard(V≤l)|. Therefore, CCI(x+c≥0) ⊗x Ux ∈ RI |var(L)|−|vard(V≤l)| and Invariant 6 is
satisfied. The case of the rule (UBBC) is similar. o

THEOREM 6.2 (Termination) Any BPA derivation terminates. o

The proof is given in Appendix C.

THEOREM 6.3 (Soundness) If a BPA derivation terminates in a contradictory state ⊥
then the initial system of inequalities L is unsatisfiable.

Proof Let us note that the system of inequalities L does not change during BPA deriva-
tions. A BPA derivation can result in the contradictory state ⊥ only by applying the
Contradiction rule (⊥). We have that the last step in such derivation is of the form
S ‖ L, {−1 ≥ 0} ⇒⊥ ⊥. But in this case the conflicting collapsing inequality as-
sociated with −1 ≥ 0 is contradictory, i.e., CCI(−1≥0) = (−1 ≥ 0). By Invariant 5,
CCI(−1≥0) is implied by L, and therefore L is unsatisfiable. o
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Before stating the Completeness theorem let us observe the following. Any BPA
derivation that finishes at a state with a conflicting bound, i.e., of the form S ‖ L, {b},
can be extended by applying one of the following rules: (⊥), (LBBV), (LBBC), (UBBV)
or (UBBC).

THEOREM 6.4 (Completeness) Consider a BPA derivation ‖ L ⇒ S1 ⇒ · · · ⇒ Sn
such that Sn is a non-contradictory state of the form S ‖ L and neither the Decide rule
(D) nor the Conflicting Bound rule (CB) is applicable to Sn. Then the initial system of
inequalities L is satisfiable.

Proof Since the Decide rule is not applicable at the state Sn = S ‖ L, for any variable
x in L, x is either (i) a decision variable in S, or (ii) there are two implied bounds in S
of the form x− c ≥ 0 and −x+ c ≥ 0, called value-implying bounds. In the latter case
we call c the implied value of x in S. Let us note that by Invariant 1, S is consistent.
Therefore each variable has a unique decision or implied value. Define an assignment
σ, mapping each variable into the corresponding decision/implied value. Let us show
that σ satisfies each inequality in L. Assume otherwise, and let I be an inequality in L
which is not satisfied by σ. It is easy to see that in this case (−1 ≥ 0) can be obtained
by a bound-resulting resolution inference from I and the bounds in S, resolving all
literals in I with the corresponding decision/value-implying bounds in S. Therefore the
Conflicting Bound rule is applicable to the state S ‖ L, contradicting to our assumption.

o

7 Conclusions
We presented a new method for solving systems of linear inequalities. The method
incorporates DPLL-style techniques such as backjumping, lemma learning and bound
propagation, which can be seen as an analogue of unit propagation in DPLL. Unlike unit
propagation, bound-propagation can easily lead to non-termination if applied naively.
We showed that our method is sound, complete and terminating.
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A Proof of Theorem 3.5
THEOREM Let b be a (possibly trivial) bound derived from a context B and a set L of
linear inequalities by bound propagation. Then there exists a linear inequality I such
that

1. L implies I, and
2. either (i) I is −1 ≥ 0, or (ii) there is a bound b′ improving b which can be derived

from B and I by a single bound-resulting resolution inference.

Moreover, the bound b′ and inequality I can be constructed in time polynomial in the
size of the derivation by bound propagation.

Proof By Theorem 3.4 one can find, in polynomial time, inequalities I and J collapsing
w.r.t. b for L and B respectively.

Let us show that I satisfies our theorem. Condition 1 is satisfied because I is collaps-
ing for L. Let us show that Condition 2 is also satisfied. If I is −1 ≥ 0 then Condition
2 is trivially satisfied and we are done. Assume that I is different from−1 ≥ 0. Since I
and J are collapsing w.r.t. b we have that {I, J} implies b. Therefore, by Theorem 3.2,
there are non-negative α and β such that

αI + βJ = b0 (8)

where b0 improves b. Let us note that α > 0 and var(I) 6= ∅. Indeed, otherwise B
would imply b which contradicts to the condition that b is derived by bound propagation
from B and L. Let us also note that J can be represented as a non-negative linear
combination

J = β1G1 + . . .+ βmGm (9)

where Gi ∈ B and βi ≥ 0 for 1 ≤ i ≤ m. Let us show that there is a single bound-
resulting resolution inference between I and bounds in B deriving a bound improving
b0. For this we construct a sequence I0, J0, . . . , Ik, Jk where k = |var(I)|− |var(b0)|
if var(b0) ⊆ var(I) and k = |var(I)| otherwise. Let bi denote Ii + Ji for 1 ≤ i ≤ k.
Define I0 = αI and J0 = βJ (hence I0 + J0 = b0). For each i, 0 < i ≤ k, Ii and Ji
will satisfy the following conditions.

1. Ii can be obtained by a single resolution inference from Ii−1 and a bound in B.
Moreover var(Ii) = var(Ii−1) \ {xi}, where xi ∈ var(Ii−1) \ var(bi−1).

2. Ji is a non-negative linear combination of bounds in B.
3. bi is a bound improving bi−1.
4. Ik is a bound which is either inconsistent with B or improves bk.

Let us assume that we have constructed I0, J0, . . . Ii, Ji satisfying conditions 1–3,
for some i, 1 ≤ i < k. Let us show how to construct Ii+1, Ji+1. First note that by
Condition 1, |var(Ii)| = |var(I0)| − i. Let xi+1 be a variable in var(Ii) \ var(bi).
Then Ii can be represented as dl + I ′i ≥ 0 where var(l) = {xi+1} and I ′i does not
contain xi+1. From Conditions (2–3) it follows that Ji can be represented as β1(l̄ +
c1) + β2(l + c2) + J ′i ≥ 0 where (i) J ′i ≥ 0 is a non-negative linear combination of
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bounds in B, (ii) J ′i does not contain xi+1, (iii) β1 > 0, β2 ≥ 0, (iv) (l̄ + c1 ≥ 0) ∈ B,
and (v) if β2 6= 0 then (l + c2 ≥ 0) ∈ B.

Define Ii+1 to be dc1 + I ′i ≥ 0 and Ji+1 to be J ′i ≥ 0. Let us check that conditions
1–3 are satisfied by Ii+1 and Ji+1. We need to show that inequality Ii+1 can be obtained
by a bound-resulting resolution inference from I and bounds in B. Indeed, by (iv) we
have (l̄ + c1 ≥ 0) ∈ B. It is straightforward to check that inequality Ii+1 can be
obtained by a bound-resulting resolution inference with premises Ii ≥ 0 and l̄+c1 ≥ 0.
Therefore Condition 1 is satisfied. Condition 2 follows immediately from (i).

Let us show that Condition 3 is satisfied. Since xi+1 ∈ var(Ii) \ var(bi) and
bi = Ii + Ji we have Ii + Ji does not contain xi+1 and therefore (vi) β1 = β2 + d. We
consider two possible cases: β2 = 0 and β2 > 0. Assume β2 = 0. Then β1 = d and
therefore bi+1 = Ii+1 + Ji+1 = Ii + Ji = bi, hence bi+1 improves bi. Now assume
β2 > 0 and therefore by (v), (l + c2 ≥ 0) ∈ B. We have

bi = Ii + Ji = dl + I ′i + β1(l̄ + c1) + β2(l + c2) + J ′i
(vi)
= β1c1 + β2c2 + I ′i + J ′i ,

bi+1 = Ii+1 + Ji+1 = dc1 + I ′i + J ′i

The claim follows if we show that β1c1 + β2c2 ≥ dc1. Indeed, by (vi) we have
β1c1+β2c2 = (d+β2)c1+β2c2 = β2(c1+c2)+dc1. Since both l̄+c1 ≥ 0 and l+c2 ≥ 0
are in B and B is consistent we have c1 + c2 ≥ 0. Therefore, β1c1 + β2c2 ≥ dc1 and
Condition 3 is satisfied.

Now we show that Ik satisfies Condition 4. We have |var(Ik)| = |var(I0)|−k ≤ 1
and therefore Ik is a bound. Since Ik + Jk = bk and Jk is a non-negative linear
combination of bounds from B, we have that bk is implied by Ik and B. There are
three possible cases. The first case: Ik is −1 ≥ 0, and in this case Ik trivially improves
bk. Assume otherwise. By the bound propagation condition B does not imply b and
hence does not imply bk. Therefore Ik is either a bound inconsistent with a bound in B
or Ik improves bk. In all cases Condition 4 is satisfied.

To finish the proof of the theorem let us summarise the obtained. We have L implies
I and therefore implies I0 = αI. By a sequence of resolutions with I0 and bounds
in B we can obtain the bound Ik and therefore Ik can be obtained by a single bound
resulting resolution inference from I0 and B. Since I and I0 are equivalent we can
obtain a bound equivalent to Ik by a single bound resulting resolution inference from I

and B. The bound Ik is either (i) −1 ≥ 0, or (ii) is inconsistent with B and therefore
by a single bound resulting resolution inference from I and B we can obtain −1 ≥ 0,
or (iii) Ik implies bk improving b0, hence improving b. In all cases the conclusion of
the theorem holds. o

B Proof of Lemma 4.1
LEMMA For any (finite) set of inequalities L and any non-negative integers D and k,
the set of all inequalities of resolution rank ≤ k is finite. o

Proof We prove this lemma by induction on k. Let us first show that the set of all
inequalities of resolution rank 0 is finite. From the proof of Theorem 3.4 it follows
that the collapsing inequality extracted from a bound-propagation derivation does not
depend on the value of the bounds used in that derivation. From this it follows that
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the number of collapsing inequalities extracted from bound-propagation derivations of
depth D is finite. Now we assume that the number of inequalities of resolution rank
≤ k−1 is finite. Then the number of inequalities of rank≤ k is bounded by the number
of inequalities of rank ≤ k − 1 plus the number of all possible one step resolution
inferences from inequalities of rank ≤ k − 1, which is a finite number. o

C Proof of Theorem 6.2

THEOREM Any BPA derivation terminates. o

Proof Assume the contrary that there is an infinite BPA derivation S0 ‖ L, ε0 ⇒ . . .⇒
Sn ‖ L, εn ⇒ . . . Let us first note that there is a constant C such that for each i ≥ 0 the
length of Si is less than C. Indeed, this follows from the fact that each bound in a stack
is either a decision bound or obtained from a decision bounds by bound propagation of
depth ≤ D .

Let us show that starting from some i ≥ 0 the sub-derivation Si ⇒ Si+1 . . . ⇒
Sn ⇒ . . . is of the form

V xc1U1 ‖ L, ε1 ⇒ V xc2U2 ‖ L, ε2 ⇒ . . .⇒ V xcnUn ‖ L, εn ⇒ . . . . (10)

In other words, starting from i there is no backjumping beyond the decision variable x.
Since the bound-propagation depth is bounded by D , at some state i ≥ 0 the Decide
rule is applied first time, say on a variable x. Let us show that the sub-derivation starting
from i satisfies our condition. The only rules that allow to backjump beyond variable x
are (LBBC) and (UBBC) with the conflicting bounds of the form x+ c ≥ 0, −x+ c ≥
0 respectively. Let us consider the case of the (LBBC) rule, the case of (UBBC) is
similar. We have a sub-derivation of the form V xuU ‖ L, {x + c ≥ 0} ⇒LBBC V ‖
L, {b}, where there is no decision variables in V . But then by Invariant 5, b should be
contradictory, i.e., of the form −1 ≥ 0. After this step the only applicable rule is the
Contradiction rule, and therefore our initial derivation would be terminating.

Consider a sub-derivation D of the form (10) where the fixed prefix V has the great-
est number of decision variables among such sub-derivations. Let us note that in D there
are no transitions by (LBBC) nor by (UBBC) with a conflicting bound on the decision
variable x. Let us show that starting from some state in D there will be no transitions
by (LBBV) nor by (UBBV) with the conflicting bound on x. We consider only the
case of the (LBBV) rule, the case of (UBBV) is similar. First we note that after each
application of the (LBBV) rule with a conflicting bound on x, the new lower collaps-
ing bound on x strictly improves the old one. Indeed, consider an (LBBV) transition
V xuU ‖ L, {x + c ≥ 0} ⇒LBBV V xv ‖ L. By Invariant 5, x + c ≥ 0 contradicts
to −x + u ≥ 0. On the other hand −x + u ≥ 0 is consistent with lbx. Therefore
lb′x = (x + c ≥ 0) strictly improves lbx. Invariant 7 implies that the resolution rank
of inequalities in BCI x is bounded by k = |var(L)| − |vard(V≤x)| which is a fixed
constant during the sub-derivation D. By Lemma 4.1 there are only a finite number of
different inequalities of rank ≤ k. Therefore it is not possible to strictly improve the
lower collapsing bound on x infinitely many times. This shows that starting from some
state in D there will be no transitions by (LBBV) with the conflicting bound on x.
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Let D′ be an infinite sub-derivation of D for which there are no transitions by
(LBBV) nor by (UBBV) with the conflicting bound on x. Since D′ is infinite, the Deci-
sion rule is applied at some step. Therefore we have a transition in D′ of the following
form V xcU ‖ L ⇒D V xcUyv ‖ L. Starting from this state we have an infinite sub-
derivation of the form: V xcUyv1U1 ‖ L ⇒ V xcUyv2U2 ‖ L ⇒ . . ., where the prefix
V xcU is fixed. But this contradicts our condition that V is the fixed prefix with the
maximal number of decision variables. o


