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Abstract. OWL 2 has been standardized by the World Wide Web Con-
sortium (W3C) as a family of ontology languages for the Semantic Web.
The most expressive of these languages is OWL 2 Full, but to date no
reasoner has been implemented for this language. Consistency and en-
tailment checking are known to be undecidable for OWL 2 Full. We
have translated a large fragment of the OWL 2 Full semantics into first-
order logic, and used automated theorem proving systems to do reasoning
based on this theory. The results are promising, and indicate that this
approach can be applied in practice for effective OWL reasoning, beyond
the capabilities of current Semantic Web reasoners.
This is an extended version of a paper with the same title that has
been published at CADE 2011, LNAI 6803, pp. 446–460. The extended
version provides appendices with additional resources that were used in
the reported evaluation.
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1 Introduction

The Web Ontology Language OWL 2 [16] has been standardized by the World
Wide Web Consortium (W3C) as a family of ontology languages for the Semantic
Web. OWL 2 includes OWL 2 DL [10], the OWL 2 RL/RDF rules [9], as well as
OWL 2 Full [12]. The focus of this work is on reasoning in OWL 2 Full, the most
expressive of these languages. So far, OWL 2 Full has largely been ignored by the
research community, and no reasoner has been implemented for this language.

OWL 2 Full does not enforce any of the numerous syntactic restrictions of the
description logic-style language OWL 2 DL. Rather, OWL 2 Full treats arbitrary
RDF graphs [7] as valid input ontologies, and can safely be used with weakly
structured RDF data as is typically found on the Web. Further, OWL 2 Full
provides for reasoning outside the scope of OWL 2 DL and the OWL 2 RL/RDF
rules, including sophisticated reasoning based on meta-modeling. In addition,
OWL 2 Full is semantically fully compatible with RDFS [5] and also with the
OWL 2 RL/RDF rules, and there is even a strong semantic correspondence [12]

? Partially supported by the projects SEALS (European Commission, EU-IST-2009-
238975) and THESEUS (German Federal Ministry of Economics and Technology,
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with OWL 2 DL, roughly stating that any OWL 2 DL conclusion can be reflected
in OWL 2 Full. This makes OWL 2 Full largely interoperable with the other
OWL 2 languages, and allows an OWL 2 Full reasoner to be combined with
most existing OWL reasoners to provide higher syntactic flexibility and semantic
expressivity in reasoning-enabled applications.

Due to its combination of flexibility and expressivity, OWL 2 Full is compu-
tationally undecidable with regard to consistency and entailment checking [8].
While there cannot be any complete decision procedure for OWL 2 Full, the
question remains to what extent practical OWL 2 Full reasoning is possible.
This paper presents the results of a series of experiments about reasoning in
OWL 2 Full using first-order logic (FOL) theorem proving. A large fragment of
the OWL 2 Full semantics has been translated into a FOL theory, and auto-
mated theorem proving (ATP) systems have been used to do reasoning based on
this theory. The primary focus of these experiments was on the question of what
can be achieved at all; a future study may shift the focus to efficiency aspects.

The basic idea used in this work is not new. An early application of this
approach to a preliminary version of RDF and a precursor of OWL was reported
by Fikes et al. [2]. That work focused on identifying technical problems in the
original language specifications, rather than on practical reasoning. Hayes [4]
provided fairly complete translations of RDF(S) and OWL 1 Full into Common
Logic, but did not report on any reasoning experiments. This gap was filled
by Hawke’s reasoner Surnia [3], which applied an ATP system to an FOL ax-
iomatisation of OWL 1 Full. For unknown reasons, however, Surnia performed
rather poorly on reasoning tests [17]. Comparable studies have been carried
out for ATP-based OWL DL reasoning, as for Hoolet [15], an OWL DL rea-
soner implemented on top of a previous version of the Vampire ATP system
(http://www.vprover.org). The work of Horrocks and Voronkov [6] addresses
reasoning over large ontologies, which is crucial for practical Semantic Web rea-
soning. Finally, [1] reports on some historic knowledge representation systems
using ATP for description logic-style reasoning, such as Krypton in the 1980s.

All these previous efforts are outdated, in that they refer to precursors of
OWL 2 Full, and appear to have been discontinued after publication. The work
reported in this paper refers to the current specification of OWL 2 Full, and
makes a more extensive experimental evaluation of the FOL-based approach
than any previous work. Several aspects of OWL 2 Full reasoning have been
studied: the degree of language coverage of OWL 2 Full; semantic conclusions
that are characteristic specifically of OWL 2 Full; reasoning on large data sets;
and the ability of first-order systems to detect non-entailments and consistent
ontologies in OWL 2 Full. The FOL-based results have been compared with
the results of a selection of well-known Semantic Web reasoners, to determine
whether the FOL-based approach is able to add significant value to the state-of-
the-art in Semantic Web reasoning.

This paper is organized as follows: Section 2 provides an introduction to the
technologies used in this paper. Section 3 describes the FOL-based reasoning
approach. Section 4 describes the evaluation setting, including the test data,

http://www.vprover.org
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the reasoners, and the computers used in the experiments. The main part of
the paper is Section 5, which presents the results of the experiments. Section 6
concludes, and gives an outlook on possible future work. The appendices present
the raw result data underlying the evaluation results (A); the complete test suite
of “characteristic OWL 2 Full conclusions” that has been used in the evaluation
(B); and an example showing how RDF data and the semantics of OWL 2 Full
have been translated into the first-order logic formalism (C).

2 Preliminaries

2.1 RDF and OWL 2 Full

OWL 2 Full is specified as the language that uses the OWL 2 RDF-Based Se-
mantics [12] to interpret arbitrary RDF graphs. RDF graphs are defined by the
RDF Abstract Syntax [7]. The OWL 2 RDF-Based Semantics is defined as a
semantic extension of the RDF Semantics [5].

According to the RDF Abstract Syntax, an RDF graph G is a set of RDF
triples: G = {t1, . . . , tn}. Each RDF triple t is given as an ordered ternary
tuple t = s p o of RDF nodes. The RDF nodes s, p, and o are called the subject,
predicate, and object of the triple t, respectively. Each RDF node is either a URI,
a (plain, language-tagged or typed) literal, or a blank node.

The RDF Semantics is defined on top of the RDF Abstract Syntax as a model
theory for arbitrary RDF graphs. For an interpretation I and a domain U , a URI
denotes an individual in the domain, a literal denotes a concrete data value (also
considered a domain element), and a blank node is used as an existentially quan-
tified variable indicating the existence of some domain element. The meaning of
a triple t = s p o is a truth value of the relationship 〈I(s), I(o)〉 ∈ IEXT(I(p)),
where IEXT is a mapping from domain elements that are properties to associated
binary relations. The meaning of a graph G = {t1, . . . , tn} is a truth value deter-
mined by the conjunction of the meaning of all the triples, taking into account
the existential semantics of blank nodes occurring in G. If an RDF graph G is
true under an interpretation I, then I satisfies G. An RDF graph G is consistent
if there is an interpretation I that satisfies G. An RDF graph G entails another
RDF graph H if every interpretation I that satisfies G also satisfies H.

Whether an interpretation satisfies a given graph is primarily determined by
a collection of model-theoretic semantic conditions that constrain the mapping
IEXT. There are different sets of model-theoretic semantic conditions for the
different semantics defined by the RDF Semantics specification. For example,
the semantics of class subsumption in RDFS is defined mainly by the semantic
condition defined for the RDFS vocabulary term rdfs:subClassOf:

〈c, d〉 ∈ IEXT(I(rdfs:subClassOf))⇒ c, d ∈ IC ∧ ICEXT(c) ⊆ ICEXT(d)

where “c” and “d” are universally quantified variables. Analogous to the map-
ping IEXT, the mapping ICEXT associates classes with subsets of the domain.
The two mappings are responsible for the metamodeling capabilities of RDFS
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and its semantic extensions: Although the quantifiers in the RDFS semantic
conditions range over exclusively domain elements, which keeps RDFS in the
realm of first-order logic, the associations provided by the two mappings allow
domain elements (properties and classes) to indirectly refer to sets and binary
relations. This enables a limited but useful form of higher order-style modeling
and reasoning.

The OWL 2 RDF-Based Semantics, i.e. the semantics of OWL 2 Full, extends
the RDF Semantics specification by additional semantic conditions for the OWL-
specific vocabulary terms, such as owl:unionOf and owl:disjointWith.

2.2 FOL, the TPTP language, and ATP

The translation of the OWL 2 Full semantics is to classical untyped first-order
logic. The concrete syntax is the TPTP language [14], which is the de facto stan-
dard for state-of-the-art ATP systems for first-order logic. The ATP systems used
in the evaluation were taken from their web sites (see Section 4.3) or from the
archives of the 5th IJCAR ATP System Competition, CASC-J5 (http://www.
tptp.org/CASC/J5/). Most of the systems are also available online as part of the
SystemOnTPTP service (http://www.tptp.org/cgi-bin/SystemOnTPTP/).

3 Approach

Each of the model-theoretic semantic conditions of the OWL 2 Full semantics
is translated into a corresponding FOL axiom. The result is an axiomatization
of OWL 2 Full. The RDF graphs to reason about are also converted into FOL
formulae. In the case of consistency checking there is a single RDF graph that
is converted into a FOL axiom, for which satisfiability needs to be checked. In
the case of entailment checking, there is a premise graph that is converted into
a FOL axiom, and a conclusion graph that is converted into a FOL conjecture.
The FOL formulae (those representing the input RDF graphs and those building
the FOL axiomatization of the OWL 2 Full semantics) are passed to an ATP
system, which tries to prove the conclusion or establish consistency.

We apply a straight-forward translation of the semantic conditions, making
use of the fact that all semantic conditions have the form of FOL formulae. A se-
mantic relationship of the form “〈s, o〉 ∈ IEXT(p)” that appears within a seman-
tic condition is converted into an atomic FOL formula of the form “iext(p, s, o)”.
Likewise, a relationship “x ∈ ICEXT(c)” is converted into “icext(c, x)”. Apart
from this, the basic logical structure of the semantic conditions is retained. For
example, the semantic condition specifying RDFS class subsumption shown in
Section 2.1 is translated into

∀c, d : [ iext(rdfs:subClassOf, c, d)⇒
( ic(c) ∧ ic(d) ∧ ∀x : (icext(c, x)⇒ icext(d, x)) ) ]

The translation of RDF graphs amounts to converting the set of triples “s p o”
into a conjunction of corresponding “iext(p, s, o)” atoms. A URI occurring in an

http://www.tptp.org/CASC/J5/
http://www.tptp.org/CASC/J5/
http://www.tptp.org/cgi-bin/SystemOnTPTP/
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RDF graph is converted into a constant. An RDF literal is converted into a func-
tion term, with a constant for the literal’s lexical form as one of its arguments.
Different functions are used for the different kinds of literals: function terms for
plain literals have arity 1; function terms for language-tagged literals have a con-
stant representing the language tag as their second argument; function terms for
typed literals have a constant for the datatype URI as their second argument.
For each blank node, an existentially quantified variable is introduced, and the
scope of the corresponding existential quantifier is the whole conjunction of the
“iext” atoms. For example, the RDF graph

:x rdf:type foaf:Person .

:x foaf:name "Alice"^^xsd:string .

which contains the blank node “ :x”, the typed literal “"Alice"^^xsd:string”,
and the URIs “rdf:type”, “foaf:Person”, and “foaf:name”, is translated into
the FOL formula

∃x : [ iext(rdf:type, x, foaf:Person)∧
iext(foaf:name, x, literaltyped(Alice, xsd:string)) ]

4 Evaluation Setting

This section describes the evaluation setting: the OWL 2 Full axiomatization,
the test cases, the reasoners, and the computing resources. Supplementary mate-
rial including the axiomatizations, test data, raw results, and the software used
for this paper can be found online at:
http://www.fzi.de/downloads/ipe/schneid/cade2011-schneidsut-owlfullatp.zip.

4.1 The FOL Axiomatization and RDF Graph Conversion

Following the approach described in Section 3, most of the normative semantic
conditions of the OWL 2 Full semantics have been converted into the correspond-
ing FOL axioms, using the TPTP language [14]. The main omission is that most
of the semantics concerning reasoning on datatypes has not been treated, as we
were only interested in evaluating the “logical core” of the language. All other
language features of OWL 2 Full were covered in their full form, with a restriction
that was sufficient for our tests: while OWL 2 Full has many size-parameterized
language features, for example the intersection of arbitrarily many classes, our
axiomatization generally supports these language feature schemes only up to a
size of 3. The resulting FOL axiomatization consists of 558 formulae. The ax-
iom set is fully first-order with equality, but equality accounts for less than 10%
of the atoms. The first-order ATP systems used (see Section 4.3) convert the
formulae to clause normal form. The resultant clause set is non-Horn. Almost
all the clauses are range-restricted, which can result in reasoning that produces
mostly ground clauses.

In addition, a converter from RDF graphs to FOL formulae was implemented.
This allowed the use of RDF-encoded OWL test data in the experiments, without
time consuming and error prone manual conversion.

http://www.fzi.de/downloads/ipe/schneid/cade2011-schneidsut-owlfullatp.zip
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4.2 Test Data

Two complementary test suites were used for the experiments: one test suite
to evaluate the degree of language coverage of OWL 2 Full, and another suite
consisting of characteristic conclusions for OWL 2 Full reasoning. For scalability
experiments a large set of RDF data was also used.

The Language Coverage Test Suite. For the language coverage experiments,
the test suite described in [13] was used.3 The test suite was created specifically
as a conformance test suite for OWL 2 Full and its main sub languages, including
RDFS and the OWL 2 RL/RDF rules. The test suite consists of one or more test
cases for each of the semantic conditions of the OWL 2 RDF-Based Semantics,
i.e., the test suite provides a systematic coverage of OWL 2 Full at a specification
level. Most of the test cases are positive entailment and inconsistency tests, but
there are also a few negative entailment tests and positive consistency tests.
The complete test suite consists of 736 test cases. A large fraction of the test
suite deals with datatype reasoning. As the FOL axiomatization has almost no
support for datatype reasoning, only the test cases that cover the “logical core”
of OWL 2 Full were used. Further, only the positive entailment and inconsistency
tests were used. The resultant test suite has 411 test cases.

OWL 2 Full-characteristic Test Cases. In order to investigate the extent of
the reasoning possible using the FOL axiomatization, a set of test cases that are
characteristic conclusions of OWL 2 Full was created. “Characteristic” means
that the test cases represent OWL 2 Full reasoning that cannot normally be
expected from either OWL 2 DL reasoning or from reasoners implementing
the OWL 2 RL/RDF rules. The test suite consists of 32 tests, with 28 en-
tailment tests and 4 inconsistency tests. There are test cases probing semantic
consequences from meta-modeling, annotation properties, the unrestricted use
of complex properties, and consequences from the use of OWL vocabulary terms
as regular entities (sometimes called “syntax reflection”).

Bulk RDF Data. For the scalability experiments, a program that generates
RDF graphs of arbitrary size (“bulk RDF data”) was written. The data consist
of RDF triples using URIs that do not conflict with the URIs in the test cases.
Further, no OWL vocabulary terms are used in the data sets. This ensures that
adding this bulk RDF data to test cases does not affect the reasoning results.

4.3 Reasoners

This section lists the different reasoning systems that were used in the experi-
ments. The idea behind the selection was to have a small number of represen-

3 There is an official W3C test suite for OWL 2 at http://owl.semanticweb.org/

page/OWL_2_Test_Cases (2011-02-09). However, it does not cover OWL 2 Full suffi-
ciently well, and was not designed in a systematic way that allows easy determination
of which parts of the language specification are not supported by a reasoner.

http://owl.semanticweb.org/page/OWL_2_Test_Cases
http://owl.semanticweb.org/page/OWL_2_Test_Cases
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tative systems for (i) first-order proving, (ii) first-order model finding, and (iii)
OWL reasoning. Details of the ATP systems can be found on their web sites,
and (for most) in the system descriptions on the CASC-J5 web site. The OWL
reasoners were tested to provide comparisons with existing state of the art Se-
mantic Web reasoners. Unless explicitly stated otherwise, the systems were used
in their default modes.

Systems for first-order theorem proving

– Vampire 0.6 (http://www.vprover.org). A powerful superposition-based
ATP system, including strategy scheduling.

– Vampire-SInE 0.6 A variant of Vampire that always runs the SInE strat-
egy (http://www.cs.man.ac.uk/~hoderk/sine/desc/) to select axioms that
are expected to be relevant.

– iProver-SInE 0.8 (http://www.cs.man.ac.uk/~korovink/iprover). An
instantiation-based ATP system, using the SInE strategy, and including
strategy scheduling.

Systems for first-order model finding

– Paradox 4.0 (http://www.cse.chalmers.se/~koen/code/). A finite model
finder, based on conversion to propositional form and the use of a SAT solver.

– DarwinFM 1.4.5 (http://goedel.cs.uiowa.edu/Darwin). A finite model
finder, based on conversion to function-free first-order logic and the use of
the Darwin ATP system.

Systems for OWL reasoning

– Pellet 2.2.2 (http://clarkparsia.com/pellet). An OWL 2 DL reasoner
that implements a tableaux-based decision procedure.

– HermiT 1.3.2 (http://hermit-reasoner.com). An OWL 2 DL reasoner
that implements a tableaux-based decision procedure.

– FaCT++ 1.5.0 (http://owl.man.ac.uk/factplusplus). An OWL 2 DL
reasoner that implements a tableaux-based decision procedure.

– BigOWLIM 3.4 (http://www.ontotext.com/owlim). An RDF entailment-
rule reasoner that comes with predefined rule sets. The OWL 2 RL/RDF
rule set (owl2-rl) was used. The commercial “BigOWLIM” variant of the
reasoning engine was applied, because it provides inconsistency checking.

– Jena 2.6.4 (http://jena.sourceforge.net). A Java-based RDF frame-
work that supports RDF entailment-rule reasoning and comes with prede-
fined rule sets. The most expressive rule set, OWL MEM RULE INF, was used.

– Parliament 2.6.9 (http://parliament.semwebcentral.org). An RDF
triple store with some limited OWL reasoning capabilities. Parliament can-
not detect inconsistencies in ontologies.

http://www.vprover.org
http://www.cs.man.ac.uk/~hoderk/sine/desc/
http://www.cs.man.ac.uk/~korovink/iprover
http://www.cse.chalmers.se/~koen/code/
http://goedel.cs.uiowa.edu/Darwin
http://clarkparsia.com/pellet
http://hermit-reasoner.com
http://owl.man.ac.uk/factplusplus
http://www.ontotext.com/owlim
http://jena.sourceforge.net
http://parliament.semwebcentral.org
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4.4 Evaluation Environment

Testing was done on computers with a 2.8GHz Intel Pentium 4 CPU, 2GB mem-
ory, running Linux FC8. A 300s CPU time limit was imposed on each run.

5 Evaluation Results

This section presents the results of the following reasoning experiments: a lan-
guage coverage analysis, to determine the degree of conformance to the language
specification of OWL 2 Full; “characteristic” OWL 2 Full reasoning experiments
to determine the extent to which distinguishing OWL 2 Full reasoning is possible;
some basic scalability testing ; and several model finding experiments to deter-
mine whether first-order model finders can be used in practice for the recognition
of non-entailments and consistent ontologies. The following markers are used in
the result tables to indicate the outcomes of the experiments:

– success (‘+’): a test run that provided the correct result.
– wrong (‘−’): a test run that provided a wrong result, e.g., when a reasoner

claims that an entailment test case is a non-entailment.
– unknown (‘?’): a test run that did not provide a result, e.g., due to a

processing error or time out.

This section also presents comparative evaluation results for the OWL rea-
soners listed in Section 4.3. This illustrates the degree to which OWL 2 Full
reasoning can already be achieved with existing OWL reasoners, and the added
value of our reasoning approach compared to existing Semantic Web technology.
This means, for example, that an OWL 2 DL reasoner will produce a wrong
result if it classifies an OWL 2 Full entailment test case as a non-entailment.
However, this negative evaluation result refers to only the level of conformance
with respect to OWL 2 Full reasoning, i.e., the reasoner may still be a compliant
implementation of OWL 2 DL.

5.1 Language Coverage

This experiment used the FOL axiomatization with the 411 test cases in the
language coverage suite described in Section 4.2. The results of the experiment
are shown in Table 1. iProver-SInE succeeded on 93% of the test cases, and
Vampire succeeded on 85%. It needs to be mentioned that the results were not
perfectly stable. Over several runs the number of successes varied for iProver-
SInE between 382 and 386. This is caused by small variations in the timing of
strategy changes within iProver-SInE’s strategy scheduling.

Figure 1 shows the runtime behavior of the two systems, with the times
for successes sorted into increasing order. Both systems take less than 1s for
the majority of their successes. Although Vampire succeeded on less cases than
iProver-SInE, it is typically faster in the case of a success.
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Fig. 1. Language coverage: ordered system times of ATPs.

An analysis of the 28 test cases for which both Vampire and iProver-SInE
did not succeed revealed that 14 of them require support for OWL 2 Full lan-
guage features not covered by the FOL axiomatization, including certain forms
of datatype reasoning and support for the RDF container vocabulary [5]. A fu-
ture version of the axiomatization will encode these parts of the OWL 2 Full
semantics, which might lead to improved results. For each of the remaining
14 test cases, subsets of axioms sufficient for a solution were hand-selected from
the FOL axiomatization. These axiom sets were generally very small, with up
to 16 axioms, and in most cases less than 10 axioms. iProver-SInE succeeded
on 13 of these 14 test cases. The remaining test case is a considerably complex
one, involving the semantics of qualified cardinality restrictions. It was solved
by Vampire. Thus, all test cases were solved except for the 14 that are beyond
the current axiomatization.

For comparison, the OWL reasoners listed in Section 4.3 were also tested.
The results are shown in Table 2. The OWL 2 DL reasoners Pellet and HermiT
both succeeded on about 60% of the test cases. A comparison of the individual
results showed that the two reasoners succeeded mostly on the same test cases.
Interestingly, although most of the test cases are formally invalid OWL 2 DL
ontologies, reasoning rarely resulted in a processing error. Rather, in ca. 40%
of the cases, the reasoners wrongly reported a test case to be a non-entailment
or a consistent ontology. The third OWL 2 DL reasoner, FaCT++, signaled a
processing error more often, and succeeded on less than 50% of the test cases.

The OWL 2 RL/RDF rule reasoner BigOWLIM succeeded on roughly 70%
of the test cases. Although the number of successful tests was larger than for

Reasoner Success Wrong Unknown

Vampire 349 0 62

iProver-SInE 383 0 28

Table 1. Language coverage: ATPs with OWL 2 Full axiom set.
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Reasoner Success Wrong Unknown

Pellet 237 168 6

HermiT 246 157 8

FaCT++ 190 45 176

BigOWLIM 282 129 0

Jena 129 282 0

Parliament 14 373 24

Table 2. Language coverage: OWL reasoners.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

PE + + + − − − − − + + − − − − + − − − − + + − − − − + − − ? − − −
HE + ? + − − ? − + + + − − − − + − − − − + + − − + ? + − − ? − − −
FA + ? ? ? ? ? ? − ? + − − − ? + ? − − − + + ? ? ? ? + − ? ? − − ?

BO + − − + − − + + − − + + − − + − − + + − − − − − − − − − − − − −
JE + − − − − + + + − − + − − − − − − + − − − − + − − + − − − − − +

PA + − − − − − − + − − ? − − − − − − − ? − − − − − − − − − − ? ? −

Table 3. Characteristic conclusions: OWL reasoners. PE=Pellet, HE=HermiT,
FA=FaCT++, BO=BigOWLIM, JE=Jena, PA=Parliament.

all the OWL 2 DL reasoners, there was a considerable number of test cases for
which the OWL 2 DL reasoners were successful but not BigOWLIM, and vice
versa. The Jena OWL reasoner, which is an RDF entailment rule reasoner like
BigOWLIM, succeeded on about only 30% of the test cases, which is largely due
to missing support for OWL 2 features. Finally, Parliament succeeded on only
14 of the test cases. In particular, it did not solve any of the inconsistency test
cases. The low success rate reflects the style of “light-weight reasoning” used in
many reasoning-enabled RDF triple stores.

5.2 Characteristic OWL 2 Full Conclusions

The test suite of characteristic OWL 2 Full conclusions focuses on semantic
consequences that are typically beyond the scope of OWL 2 DL or RDF rule
reasoners. This is reflected in Table 3, which presents the results for the OWL
reasoning systems. The column numbers correspond to the test case numbers in
the test suite. In general, the OWL reasoners show significantly weaker perfor-
mance on this test suite than on the language coverage test suite. Note that the
successful test cases for the OWL 2 DL reasoners (Pellet, HermiT and FaCT++)
have only little overlap with the successful test cases for the RDF rule reasoners
(BigOWLIM and Jena). Parliament succeeded on only two test cases.

The first two rows of Table 4 show that the ATP systems achieved much
better results than the OWL reasoners, using the complete OWL 2 Full ax-
iomatization. iProver-SInE succeeded on 28 of the 32 test cases, and Vampire
succeeded on 23. As was done for the language coverage test cases, small sub-
sets of axioms sufficient for each of the test cases were hand-selected from the
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Fig. 2. Characteristic conclusions: ordered system times of ATPs.

FOL axiomatization. As the last two rows of Table 4 show, both ATP systems
succeeded on all these simpler test cases.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

VA/c + + + + + + + + + ? + ? ? + + + + + + ? ? ? + + ? + ? ? + + + +

IS/c + + + + + + + + + + + ? ? + + + + + + ? ? + + + + + + + + + + +

VA/s + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

IS/s + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Table 4. Characteristic conclusions: ATPs with complete and small axiom
sets. VA/c=Vampire/complete, IS/c=iProver-SInE/complete, VA/s=Vampire/small,
IS/s=iProver-SInE/small.

Figure 2 shows the runtime behavior of the two systems. For the complete
axiomatization, Vampire either succeeds in less than 1s or does not succeed. In
contrast, iProver’s performance degrades more gracefully. The reasoning times
using the small-sufficient axiom sets are generally up to several magnitudes lower
than for the complete axiomatization. In the majority of cases they are below 1s.

5.3 Scalability

The Semantic Web consists of huge data masses, but single reasoning results
presumably often depend on only a small fraction of that data. As a basic test
of the ATP systems’ abilities to ignore irrelevant background axioms, a set of
one million “bulk RDF axioms” (as described in Section 4.2) was added to the
test cases of characteristic OWL 2 Full conclusions. This was done using the
complete FOL axiomatization, and also the small-sufficient sets of axioms for
each test case.

Table 5 shows the results. The default version of Vampire produced very
poor results, as is shown in the first and fourth rows of the table. (Strangely,
Vampire had two more successes with the complete axiomatization than with the
small-sufficient axiom sets. That can be attributed to differences in the strategies
selected for the different axiomatizations.) In contrast, as shown in the second,
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01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

VA/c + + + ? ? ? ? ? ? ? ? ? ? ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

VS/c + + + + + + ? + ? ? + ? ? ? + + ? + + ? ? ? + ? ? + ? ? ? + ? +

IS/c + + + + + + + + + + + ? ? + + + + + + ? ? + + + + + + + + + + +

VA/s + ? + ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

VS/s + + + + + + ? + + + + + ? + + + ? + + ? ? + + + + + + ? + + ? +

IS/s + + + + + + + + + + + + ? + + + + + + + + + + + + + + + + + + +

Table 5. Scalability: ATPs with complete and small axiom sets,
1M RDF triples. VA/c=Vampire/complete, VS/c=Vampire-SInE/complete,
IS/c=iProver-SInE/complete, VA/s=Vampire/small, VS/s=Vampire-SInE/small,
IS/s=iProver-SInE/small.
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Fig. 3. Scalability: ordered system times of ATPs, 1M RDF triples.

third, fifth and sixth rows, the version of Vampire-SInE and iProver-SInE did
much better. The use of the SInE strategy for selecting relevant axioms clearly
helps.

Figure 3 shows the runtime behavior of the systems. The bulk axioms evi-
dently add a constant overhead of about 20s to all successes, which is believed to
be taken parsing the large files. In an application setting this might be done only
once at the start, so that the time would be amortized over multiple reasoning
tasks. The step in iProver’s performance at the 20th problem is an artifact of
strategy scheduling.

The bulk axioms were designed to have no connection to the FOL axiomati-
zation or the RDF graphs. As such, simple analysis of inference chains from the
conjecture [11] would be sufficient to determine that the bulk axioms could not
be used in a solution. This simplistic approach is methodologically an appropri-
ate way to start testing robustness against irrelevant axioms, and potentially not
too far off the reality of Semantic Web reasoning. However, future work using
axioms that are not so obviously redundant would properly exercise the power
of the SInE approach to axiom selection.

5.4 Model Finding

This section presents the results from experiments concerning the detection of
non-entailments and consistent ontologies w.r.t. OWL 2 Full and two of its sub
languages: ALCO Full [8] and RDFS [5]. ALCO Full is interesting because it is
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01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

PA/A + + + + + + ? + + + + + ? ? ? ? + ? ? ? + + ? +

PA/R + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

DF/R + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Table 6. Model Finding: ATPs with ALCO Full and RDFS axiom sets.
The black entries indicate positive entailments or inconsistent ontologies.
PA/A=Paradox/ALCO Full, PA/R=Paradox/RDFS, DF/R=DarwinFM/RDFS.

a small fragment of OWL 2 Full that is known to be undecidable [8]. RDFS is
interesting because it is a minimally meaningful language that shares the main
characteristics of OWL 2 Full. The RDFS axioms included the “extensional”
semantic extension, as non-normatively defined in Section 4.2 of [5]. Similarly,
the original definition of ALCO Full was extended to include extensional RDFS.
No report is given for the OWL reasoners, as only the OWL 2 DL reasoners have
model-finding capabilities, and not for any of the three languages considered
here.

Consistency checking for an RDF graph G w.r.t. some ontology language L
corresponds to consistency checking for the combination of a complete axioma-
tization of L and the FOL translation of G. Hence, a minimum requirement is
to confirm that the FOL axiomatization of OWL 2 Full is consistent. Unfortu-
nately, for the OWL 2 Full axiomatization no model finder was able to confirm
consistency.4

For the ALCO Full axioms, Paradox found a finite model of size 5 in ca. 5s
CPU time, while DarwinFM timed out. Paradox was then used on the charac-
teristic OWL 2 Full test cases, with the OWL 2 Full axiomatization replaced by
the ALCO Full axioms. As ALCO Full is a sub language of OWL 2 Full, 24 of
the 32 test cases are either non-entailments or consistent ontologies, out of which
15 were correctly recognized by Paradox. iProver-SInE was used to confirm that
the remaining 8 test cases are positive entailments or inconsistent ontologies.
The results are shown in the first row of Table 6.

For the RDFS axioms, analogous experiments were done. Paradox found a
finite model of the axioms, of size 1, in about 1s. The consistency was confirmed
by DarwinFM in less than 1s. With the OWL 2 Full axiomatization replaced
by the RDFS axioms, 29 of the 32 characteristic test cases are non-entailments
or consistent ontologies. Paradox and Darwin confirmed all of these, mostly in
ca. 1s, with a maximum time of ca. 2s. iProver-SInE confirmed that the remaining
3 test cases are positive entailments or inconsistent ontologies. These results are
shown in the second and third rows of Table 6.

4 This raised the question of whether our positive entailment reasoning results were
perhaps due to an inconsistent axiomatization. However, none of the theorem provers
was able to establish inconsistency. In addition, the model finders confirmed the
consistency of all the small-sufficient axiom sets mentioned in Section 5.2. Hence, it
is at least ensured that those positive reasoning results are achievable from consistent
subsets of the OWL 2 Full axiomatization.
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An interesting observation made during the model finding experiments was
that finite model finders were effective, e.g., the results of Paradox and Dar-
winFM above. In contrast, other model finders such as iProver-SAT (a variant
of iProver tuned for model finding) and Darwin (the plain Model Evolution core
of DarwinFM) were less effective, e.g., taking 80s and 37s respectively to confirm
the satisfiability of the RDFS axiom set.

6 Conclusions and Future Work

This paper has described how first order ATP systems can be used for reasoning
in the OWL 2 Full ontology language, using a straight-forward translation of the
underlying model theory into a FOL axiomatization. The results were obtained
from two complementary test suites, one for language coverage analysis and one
for probing characteristic conclusions of OWL 2 Full. The results indicate that
this approach can be applied in practice for effective OWL reasoning, and offers
a viable alternative to current Semantic Web reasoners. Some scalability testing
was done by adding large sets of semantically unrelated RDF data to the test
case data. While the ATP systems that include the SInE strategy effectively
ignored this redundant data, it was surprising that other ATP systems did not
use simple reachability analysis to detect and ignore this bulk data – this suggests
an easy way for developers to adapt their systems to such problems.

In contrast to the successes of the ATP systems proving theorems, model
finders were less successful in identifying non-entailments and consistent ontolo-
gies w.r.t. OWL 2 Full. However, some successes were obtained for ALCO Full.
Since ALCO Full is an undecidable sub-language of OWL 2 Full, there is hope
that the failures were not due to undecidability but rather due to the large num-
ber of axioms. This needs to be investigated further. Model finding for RDFS
worked quite efficiently, which is interesting because we do not know of any tool
that detects RDFS non-entailments.

In the future we plan to extend the approach to datatype reasoning, which is
of high practical relevance in the Semantic Web. It may be possible to take advan-
tage of the typed first-order or typed higher-order form of the TPTP language to
effectively encode the datatypes, and reason using ATP systems that take advan-
tage of the type information. Another topic for further research is to develop tech-
niques for identifying parts of the FOL axiomatization that are relevant to a given
reasoning task. It is hoped that by taking into account OWL 2 Full specific knowl-
edge, more precise axiom selection than offered by the generic SInE approach
will be possible. An important area of development will be query answering, i.e.,
the ability to obtain explicit answers to users’ questions. For future OWL 2 Full
reasoners this will be a very relevant reasoning task, particularly with respect
to the current extension of the standard RDF query language SPARQL to-
wards “entailment regimes” (http://www.w3.org/TR/sparql11-entailment).
This topic is also of growing interest in the ATP community, with a proposal
being considered for expressing questions and answers in the TPTP language
(http://www.tptp.org/TPTP/Proposals/AnswerExtraction.html).

http://www.w3.org/TR/sparql11-entailment
http://www.tptp.org/TPTP/Proposals/AnswerExtraction.html
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A Detailed Raw Result Data

This appendix provides detailed raw result data that underlies the experimental
results reported in Section 5. The data is given in tables, which present the
names of the test cases in the first column, and the results of individual reasoning
experiments in the other columns. The result of each experiment consists of one
of the possible outcomes defined at the beginning of Section 5 and, optionally,
the duration of the reasoning experiment, given as the number of seconds it took.
All result data presented here is also available in electronic form as part of the
supplementary material for this paper (see the download link at the beginning
of Section 4).

A.1 Language Coverage Results

The following tables provide the raw result data that underlies the aggregated
results for the language coverage experiments, as reported in Section 5.1. Table 7
contains the result data that was obtained from evaluating the Semantic Web
reasoners and from the FOL theorem provers when used with the complete
OWL 2 Full axiomatization; the corresponding aggregated results were reported
in Tables 2 and 1, respectively. The remaining tables provide the raw results from
testing the FOL reasoners on those test cases where they had failed originally,
now using small but sufficient subaxiomatizations that were manually crafted
for each of the test cases.

Table 7: Result data of the language coverage experiments for Semantic Web reasoners and
for FOL theorem provers when used with the complete OWL 2 Full axiomatization. Time val-
ues have only be measured for the FOL reasoners. PE=Pellet, HE=HermiT, FA=FaCT++,
BO=BigOWLIM, JE=Jena, PA=Parliament, VA=Vampire, IS=iProver-SInE

Test Case PE HE FA BO JE PA VA IS

rdfbased-sem-bool-complement-data - - ? - - - + (0.07) + (0.16)

rdfbased-sem-bool-complement-ext + + + - - - + (0.33) + (0.61)

rdfbased-sem-bool-complement-inst + + + + - ? + (0.28) + (0.29)

rdfbased-sem-bool-demorgan + + + - - - ? (300.00) ? (300.00)

rdfbased-sem-bool-intersection-data-localize + + ? - - - + (0.60) + (38.46)

rdfbased-sem-bool-intersection-ext + + + - - - ? (300.00) ? (300.00)

rdfbased-sem-bool-intersection-inst-comp + + + + + - + (0.83) + (69.73)

rdfbased-sem-bool-intersection-inst-expr + + + + + - + (0.60) + (74.89)

rdfbased-sem-bool-intersection-localize + + + + + - + (0.87) + (73.54)

rdfbased-sem-bool-intersection-term + + + + + - + (1.07) + (81.20)

rdfbased-sem-bool-tollens + + + - - - + (0.41) + (0.57)

rdfbased-sem-bool-union-data-localize + + ? - - - + (0.54) + (79.34)

rdfbased-sem-bool-union-ext + + + - - - ? (300.00) ? (300.00)

rdfbased-sem-bool-union-inst-comp + + + + + - + (0.71) + (7.52)

rdfbased-sem-bool-union-inst-expr + + + - - - ? (300.00) + (74.41)

rdfbased-sem-bool-union-localize + + + + + - + (0.85) + (79.08)

rdfbased-sem-bool-union-term + + + + + - + (1.10) + (82.89)

rdfbased-sem-chain-def + + + + - - + (0.50) + (75.35)

rdfbased-sem-chain-ext ? + + - - - ? (300.00) ? (300.00)

rdfbased-sem-chain-localize + + + - - - + (0.50) + (31.96)

rdfbased-sem-chain-subprop ? + + - - - ? (300.00) + (7.58)

rdfbased-sem-char-asymmetric-ext + + + - - - + (0.36) + (108.43)

rdfbased-sem-char-asymmetric-inst + + + + - ? + (0.19) + (0.09)

rdfbased-sem-char-asymmetric-term + + + + - ? + (0.24) + (0.09)

rdfbased-sem-char-functional-ext + + + - + - + (0.36) + (108.24)

rdfbased-sem-char-functional-inst + + + + + + + (0.37) + (0.40)

rdfbased-sem-char-inversefunc-data + + - + + + + (0.38) + (0.40)

rdfbased-sem-char-inversefunc-ext + + + - + - + (0.47) + (109.98)

rdfbased-sem-char-inversefunc-inst + + + + + + + (0.41) + (0.39)

rdfbased-sem-char-inversefunc-term + + + - + - + (1.08) + (6.65)

rdfbased-sem-char-irreflexive-ext + + + - - - + (0.44) + (78.75)

rdfbased-sem-char-irreflexive-inst + + + + - ? + (0.03) + (0.08)

rdfbased-sem-char-irreflexive-term + + + - - ? + (0.03) + (0.17)

rdfbased-sem-char-reflexive-ext - - ? - - - + (0.40) + (10.01)
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rdfbased-sem-char-reflexive-inst + + + - - - + (0.04) + (0.15)

rdfbased-sem-char-symmetric-ext + + + - - - + (0.82) + (131.46)

rdfbased-sem-char-symmetric-inst + + + + + + + (0.18) + (0.09)

rdfbased-sem-char-transitive-ext + + + - - - ? (300.00) + (131.03)

rdfbased-sem-char-transitive-inst + + + + + + + (0.39) + (0.11)

rdfbased-sem-char-transitive-term - ? ? - - - + (0.41) + (2.30)

rdfbased-sem-class-alldifferent-ext - - ? + - - + (0.03) + (0.16)

rdfbased-sem-class-alldifferent-type + + + + - - + (0.02) + (0.17)

rdfbased-sem-class-alldisjointclasses-ext - - ? + - - + (0.03) + (0.10)

rdfbased-sem-class-alldisjointclasses-type + + + + - - + (0.02) + (0.11)

rdfbased-sem-class-alldisjointproperties-ext - - ? + - - + (0.03) + (0.10)

rdfbased-sem-class-alldisjointproperties-type + + + + - - + (0.02) + (0.10)

rdfbased-sem-class-annotation-ext - - ? + - - + (0.03) + (0.08)

rdfbased-sem-class-annotation-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-class-annotationproperty-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-class-asymmetricproperty-ext - - ? + - - + (0.37) + (0.18)

rdfbased-sem-class-asymmetricproperty-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-class-axiom-ext - - ? + - - + (0.03) + (0.09)

rdfbased-sem-class-axiom-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-class-datarange-ext - - ? + - - + (0.32) + (0.16)

rdfbased-sem-class-datarange-type + + + + - - + (0.02) + (0.08)

rdfbased-sem-class-datatype-ext - - ? + - - + (0.28) + (0.16)

rdfbased-sem-class-datatype-type + + + + + - + (0.04) + (0.08)

rdfbased-sem-class-datatypeproperty-type + + + + + - + (0.03) + (0.12)

rdfbased-sem-class-deprecatedclass-ext - - ? + - - + (0.32) + (0.15)

rdfbased-sem-class-deprecatedclass-type + + + + - - + (0.02) + (0.08)

rdfbased-sem-class-deprecatedproperty-ext - - ? + - - + (0.41) + (0.18)

rdfbased-sem-class-deprecatedproperty-type + + + + - - + (0.03) + (0.09)

rdfbased-sem-class-functionalproperty-ext - - ? + + - + (0.34) + (0.42)

rdfbased-sem-class-functionalproperty-type + + + + + - + (0.02) + (0.14)

rdfbased-sem-class-inversefunctionalproperty-ext - - ? + + - + (0.41) + (0.39)

rdfbased-sem-class-inversefunctionalproperty-type + + + + + - + (0.02) + (0.15)

rdfbased-sem-class-irreflexiveproperty-ext - - ? + - - + (0.40) + (0.18)

rdfbased-sem-class-irreflexiveproperty-type + + + + - - + (0.03) + (0.09)

rdfbased-sem-class-literal-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-class-namedindividual-ext - + ? + - - + (0.36) + (0.10)

rdfbased-sem-class-namedindividual-type + + + + - - + (0.02) + (0.08)

rdfbased-sem-class-negativepropertyassertion-ext - - ? + - - + (0.02) + (0.08)

rdfbased-sem-class-negativepropertyassertion-type + + + + - - + (0.03) + (0.09)

rdfbased-sem-class-nothing-ext + + + + + ? + (0.03) + (0.12)

rdfbased-sem-class-nothing-term + + + + - - + (0.42) + (0.41)

rdfbased-sem-class-nothing-type + + - + + - + (0.03) + (0.10)

rdfbased-sem-class-objectproperty-ext - - ? + + - + (0.33) + (0.18)

rdfbased-sem-class-objectproperty-type + + + + + - + (0.03) + (0.08)

rdfbased-sem-class-ontology-type + + + + + - + (0.02) + (0.09)

rdfbased-sem-class-ontologyproperty-type + + + + + - + (0.02) + (0.09)

rdfbased-sem-class-owlclass-ext - - ? + + - + (0.36) + (0.15)

rdfbased-sem-class-owlclass-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-class-property-ext - - ? + - - + (0.38) + (0.18)

rdfbased-sem-class-property-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-class-rdfsclass-ext - - ? + - - + (0.42) + (0.16)

rdfbased-sem-class-rdfsclass-type + + + + + - + (0.03) + (0.08)

rdfbased-sem-class-reflexiveproperty-ext - - ? + - - + (0.38) + (0.16)

rdfbased-sem-class-reflexiveproperty-type + + + + - - + (0.02) + (0.09)

rdfbased-sem-class-resource-ext - + ? + - - + (0.31) + (0.13)

rdfbased-sem-class-resource-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-class-restriction-ext - - ? + + - + (0.40) + (0.24)

rdfbased-sem-class-restriction-type + + + + + - + (0.02) + (0.16)

rdfbased-sem-class-symmetricproperty-ext - - ? + + - + (0.44) + (0.19)

rdfbased-sem-class-symmetricproperty-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-class-thing-ext - - ? - + - + (0.03) + (0.08)

rdfbased-sem-class-thing-term + + + + + - + (0.35) + (0.22)

rdfbased-sem-class-thing-type + + - + + - + (0.03) + (0.09)

rdfbased-sem-class-transitiveproperty-ext - - ? + + - + (0.32) + (0.18)

rdfbased-sem-class-transitiveproperty-type + + + + + - + (0.03) + (0.08)

rdfbased-sem-enum-data-localize + + - - - - + (0.56) + (108.48)

rdfbased-sem-enum-ext + + + - - - ? (300.00) ? (300.00)

rdfbased-sem-enum-inst-closed + + - - - - + (0.48) + (107.23)

rdfbased-sem-enum-inst-included + + + + + - + (0.48) + (74.77)

rdfbased-sem-eqdis-different-ext + + + - - - + (0.36) + (1.99)

rdfbased-sem-eqdis-different-irrflxv - - - - - ? + (0.04) + (0.14)

rdfbased-sem-eqdis-different-sameas + + + + + ? + (0.30) + (0.15)

rdfbased-sem-eqdis-different-sym + + + - + - + (0.04) + (0.20)

rdfbased-sem-eqdis-disclass-eqclass + + + + + ? + (0.34) + (0.42)

rdfbased-sem-eqdis-disclass-ext + + + - - - + (0.38) + (110.98)

rdfbased-sem-eqdis-disclass-inst + + + + + ? + (0.34) + (0.21)

rdfbased-sem-eqdis-disclass-irrflxv - ? - + + ? + (0.06) + (0.20)

rdfbased-sem-eqdis-disclass-sym + + + - + - + (0.41) + (0.09)

rdfbased-sem-eqdis-disjointunion-composite ? + + - - - ? (300.00) + (136.00)

rdfbased-sem-eqdis-disjointunion-disjoint + + + - - - + (0.85) + (79.84)

rdfbased-sem-eqdis-disjointunion-localize + + + - - - + (1.13) + (39.35)

rdfbased-sem-eqdis-disjointunion-union + + + - - - ? (300.00) + (116.83)

rdfbased-sem-eqdis-disprop-eqprop + + + + - ? + (0.34) + (0.09)

rdfbased-sem-eqdis-disprop-ext + + + - - - + (0.49) + (108.55)
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rdfbased-sem-eqdis-disprop-inst + + + + - ? + (0.31) + (0.07)

rdfbased-sem-eqdis-disprop-irrflxv - - - + - ? + (0.27) + (0.08)

rdfbased-sem-eqdis-disprop-sym + + + - - - + (0.41) + (0.09)

rdfbased-sem-eqdis-eqclass-ext + + + - + - + (1.80) + (30.22)

rdfbased-sem-eqdis-eqclass-inst + + + + + - + (0.41) + (0.28)

rdfbased-sem-eqdis-eqclass-rflxv + + + + + - + (0.42) + (0.57)

rdfbased-sem-eqdis-eqclass-subclass-1 + + + + + - + (0.41) + (0.68)

rdfbased-sem-eqdis-eqclass-subclass-2 + + + + + - + (0.45) + (0.60)

rdfbased-sem-eqdis-eqclass-subst + + + + - - + (0.44) + (3.19)

rdfbased-sem-eqdis-eqclass-sym + + + + + - + (0.41) + (0.33)

rdfbased-sem-eqdis-eqclass-trans + + + + + - + (0.41) + (1.89)

rdfbased-sem-eqdis-eqprop-ext + + + - - - ? (300.00) + (116.80)

rdfbased-sem-eqdis-eqprop-inst + + + + + - + (0.33) + (0.07)

rdfbased-sem-eqdis-eqprop-rflxv + + + + - - + (0.43) + (0.72)

rdfbased-sem-eqdis-eqprop-subprop-1 + + + + + - + (0.45) + (0.37)

rdfbased-sem-eqdis-eqprop-subprop-2 + + + + + - ? (300.00) + (0.58)

rdfbased-sem-eqdis-eqprop-subst + + + + + - + (0.46) + (0.75)

rdfbased-sem-eqdis-eqprop-sym + + + + + - + (0.43) + (0.10)

rdfbased-sem-eqdis-eqprop-trans + + + + + - ? (300.00) + (0.13)

rdfbased-sem-eqdis-sameas-ext + + ? - - - + (0.43) + (10.88)

rdfbased-sem-eqdis-sameas-rflxv + + + + - - + (0.04) + (0.51)

rdfbased-sem-eqdis-sameas-subst - - ? + + - + (0.34) + (0.53)

rdfbased-sem-eqdis-sameas-sym + + ? + + - + (0.05) + (0.29)

rdfbased-sem-eqdis-sameas-trans + + ? + + - + (0.09) + (0.62)

rdfbased-sem-facet-def ? ? ? - - - ? (300.00) ? (285.37)

rdfbased-sem-facet-empty ? - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-facet-localize - - - - - - ? (285.09) ? (300.00)

rdfbased-sem-facet-sub - - ? - - - ? (300.00) ? (182.76)

rdfbased-sem-facet-unknown - - - - - ? ? (300.00) ? (235.41)

rdfbased-sem-inv-ext + + + - - - ? (300.00) + (278.71)

rdfbased-sem-inv-inst + + + + + + + (0.35) + (0.07)

rdfbased-sem-inv-sym + + + - + - + (0.34) + (0.10)

rdfbased-sem-inv-trans + + + - - - ? (300.00) + (1.05)

rdfbased-sem-key-def + + ? + - - ? (300.00) + (74.85)

rdfbased-sem-key-ext ? + ? - - - ? (300.00) ? (284.78)

rdfbased-sem-key-localize + + ? - - - + (0.56) + (74.17)

rdfbased-sem-ndis-alldifferent-bw + + + - - - + (0.44) + (82.32)

rdfbased-sem-ndis-alldifferent-bw-distinctmembers + + + - - - + (0.92) + (80.11)

rdfbased-sem-ndis-alldifferent-fw - - - + - ? + (0.40) + (72.50)

rdfbased-sem-ndis-alldifferent-fw-distinctmembers + + + - + ? + (0.56) + (67.88)

rdfbased-sem-ndis-alldisjointclasses-bw + + + - - - ? (300.00) + (74.11)

rdfbased-sem-ndis-alldisjointclasses-fw + + + + - ? + (0.41) + (73.69)

rdfbased-sem-ndis-alldisjointclasses-localize + + + + - - + (0.39) + (36.59)

rdfbased-sem-ndis-alldisjointproperties-bw - ? ? - - - ? (300.00) + (73.86)

rdfbased-sem-ndis-alldisjointproperties-fw + + + + - ? + (0.57) + (72.29)

rdfbased-sem-ndis-alldisjointproperties-localize + + + + - - + (0.46) + (13.37)

rdfbased-sem-npa-dat-bw + + + - - - ? (300.00) ? (300.00)

rdfbased-sem-npa-dat-dnpa + + + - - - ? (300.00) ? (214.25)

rdfbased-sem-npa-dat-fw - - - + - ? + (0.41) + (0.17)

rdfbased-sem-npa-dat-localize + + - - - - + (0.31) + (0.56)

rdfbased-sem-npa-dat-npa + + + - - - + (0.36) + (0.88)

rdfbased-sem-npa-ind-bw + + + - - - + (0.11) + (2.75)

rdfbased-sem-npa-ind-fw - - - + - ? + (0.35) + (0.16)

rdfbased-sem-parts-annotationproperties-instance - - ? - - - + (0.02) + (0.09)

rdfbased-sem-parts-annotationproperties-super + + + + - - + (0.03) + (0.10)

rdfbased-sem-parts-classes-instance - - ? + + - + (0.02) + (0.08)

rdfbased-sem-parts-classes-super - - ? + + - + (0.03) + (0.08)

rdfbased-sem-parts-datatypeproperties-instance - - ? - - - + (0.05) + (0.66)

rdfbased-sem-parts-datatypeproperties-super + + + + + - + (0.03) + (0.14)

rdfbased-sem-parts-datatypes-instance - - ? - - - + (0.03) + (0.35)

rdfbased-sem-parts-datatypes-super + + ? + + - + (0.02) + (0.15)

rdfbased-sem-parts-individuals-nonempty - - ? - - - + (0.03) + (0.07)

rdfbased-sem-parts-literals-super - - ? + + - + (0.02) + (0.08)

rdfbased-sem-parts-ontologies-super - - ? + + - + (0.03) + (0.07)

rdfbased-sem-parts-ontologyproperties-instance + + + - - - + (0.16) + (0.66)

rdfbased-sem-parts-ontologyproperties-super + + + + + - + (0.03) + (0.10)

rdfbased-sem-parts-properties-instance - - ? - - - + (0.02) + (0.09)

rdfbased-sem-parts-properties-super - - ? + + - + (0.03) + (0.08)

rdfbased-sem-prop-allvaluesfrom-ext - - ? + - - + (0.43) + (0.87)

rdfbased-sem-prop-allvaluesfrom-type + + + + - - + (0.03) + (0.14)

rdfbased-sem-prop-annotatedproperty-ext - - ? + - - + (0.35) + (0.25)

rdfbased-sem-prop-annotatedproperty-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-prop-annotatedsource-ext - - ? + - - + (0.36) + (0.24)

rdfbased-sem-prop-annotatedsource-type + + + + - - + (0.02) + (0.08)

rdfbased-sem-prop-annotatedtarget-ext - - ? + - - + (0.36) + (0.26)

rdfbased-sem-prop-annotatedtarget-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-prop-assertionproperty-ext - - ? + - - + (0.37) + (1.10)

rdfbased-sem-prop-assertionproperty-type + + + + - - + (0.03) + (0.12)

rdfbased-sem-prop-backwardcompatiblewith-ext + + - + + - + (0.42) + (0.44)

rdfbased-sem-prop-backwardcompatiblewith-type-annot + + - + - - + (0.03) + (0.08)

rdfbased-sem-prop-backwardcompatiblewith-type-onto - - ? + - - + (0.03) + (0.08)

rdfbased-sem-prop-bottomdataproperty-ext-hi + + ? + - - + (0.40) + (0.75)

rdfbased-sem-prop-bottomdataproperty-ext-lo + + ? - - - + (0.36) + (0.52)

rdfbased-sem-prop-bottomdataproperty-term - - ? - - - + (0.35) + (1.59)



Reasoning in OWL 2 Full using First-Order ATP 19

rdfbased-sem-prop-bottomdataproperty-type + + - + - - + (0.02) + (0.12)

rdfbased-sem-prop-bottomobjectproperty-ext-hi + + + + - - + (0.32) + (0.24)

rdfbased-sem-prop-bottomobjectproperty-ext-lo + + ? - - - + (0.39) + (0.40)

rdfbased-sem-prop-bottomobjectproperty-term + + ? - - - + (0.35) + (0.18)

rdfbased-sem-prop-bottomobjectproperty-type + + - + - - + (0.03) + (0.12)

rdfbased-sem-prop-cardinality-ext - - ? + - - + (0.58) + (1.61)

rdfbased-sem-prop-cardinality-type + + + + - - + (0.03) + (0.17)

rdfbased-sem-prop-comment-ext + + - + - - + (0.02) + (0.08)

rdfbased-sem-prop-comment-type + + - + - - + (0.02) + (0.08)

rdfbased-sem-prop-complementof-ext - - ? + - - + (0.38) + (0.65)

rdfbased-sem-prop-complementof-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-prop-datatypecomplementof-ext - - ? + - - + (0.43) + (0.62)

rdfbased-sem-prop-datatypecomplementof-type + + + + - - + (0.02) + (0.08)

rdfbased-sem-prop-deprecated-ext + + - + - - + (0.35) + (0.40)

rdfbased-sem-prop-deprecated-type + + - + - - + (0.02) + (0.08)

rdfbased-sem-prop-differentfrom-ext - + ? + - - + (0.36) + (0.41)

rdfbased-sem-prop-differentfrom-type + + + + + - + (0.03) + (0.15)

rdfbased-sem-prop-disjointunionof-ext - - ? + - - + (0.35) + (1.59)

rdfbased-sem-prop-disjointunionof-type + + + + - - + (0.02) + (0.09)

rdfbased-sem-prop-disjointwith-ext - - ? + + - + (0.42) + (0.45)

rdfbased-sem-prop-disjointwith-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-prop-distinctmembers-ext - - ? + - - + (0.42) + (1.91)

rdfbased-sem-prop-distinctmembers-type + + + + - - + (0.03) + (0.15)

rdfbased-sem-prop-equivalentclass-ext - - ? + + - + (0.17) + (0.58)

rdfbased-sem-prop-equivalentclass-type + + + + + - + (0.02) + (0.08)

rdfbased-sem-prop-equivalentproperty-ext - - ? + - - + (0.37) + (0.89)

rdfbased-sem-prop-equivalentproperty-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-prop-haskey-ext - - ? + - - + (0.42) + (2.19)

rdfbased-sem-prop-haskey-type + + + + - - + (0.03) + (0.15)

rdfbased-sem-prop-hasself-ext - - ? + - - + (0.41) + (0.65)

rdfbased-sem-prop-hasself-type + + + + - - + (0.02) + (0.15)

rdfbased-sem-prop-hasvalue-ext - - ? + - - + (0.36) + (0.64)

rdfbased-sem-prop-hasvalue-type + + + + - - + (0.02) + (0.14)

rdfbased-sem-prop-imports-ext - - ? + + - + (0.41) + (0.48)

rdfbased-sem-prop-imports-type - - ? + + - + (0.02) + (0.08)

rdfbased-sem-prop-incompatiblewith-ext + + - + + - + (0.38) + (0.45)

rdfbased-sem-prop-incompatiblewith-type-annot + + - + - - + (0.03) + (0.08)

rdfbased-sem-prop-incompatiblewith-type-onto - - ? + - - + (0.03) + (0.10)

rdfbased-sem-prop-intersectionof-ext - - ? + - - + (0.43) + (1.08)

rdfbased-sem-prop-intersectionof-type + + + + + - + (0.03) + (0.10)

rdfbased-sem-prop-inverseof-ext - - ? + - - + (0.37) + (0.89)

rdfbased-sem-prop-inverseof-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-prop-isdefinedby-ext + + - + - - + (0.02) + (0.08)

rdfbased-sem-prop-isdefinedby-type + + - + - - + (0.03) + (0.08)

rdfbased-sem-prop-label-ext + + - + - - + (0.02) + (0.08)

rdfbased-sem-prop-label-type + + - + - - + (0.02) + (0.08)

rdfbased-sem-prop-maxcardinality-ext - - ? + - - + (0.49) + (1.14)

rdfbased-sem-prop-maxcardinality-type + + + + - - + (0.02) + (0.16)

rdfbased-sem-prop-maxqualifiedcardinality-ext - - ? + - - + (0.58) + (1.33)

rdfbased-sem-prop-maxqualifiedcardinality-type + + + + - - + (0.03) + (0.17)

rdfbased-sem-prop-members-ext - - ? + - - + (0.31) + (1.11)

rdfbased-sem-prop-members-type + + + + - - + (0.03) + (0.17)

rdfbased-sem-prop-mincardinality-ext - - ? + - - + (0.58) + (5.87)

rdfbased-sem-prop-mincardinality-type + + + + - - + (0.03) + (0.17)

rdfbased-sem-prop-minqualifiedcardinality-ext - - ? + - - + (0.62) + (6.54)

rdfbased-sem-prop-minqualifiedcardinality-type + + + + - - + (0.02) + (0.17)

rdfbased-sem-prop-onclass-ext - - ? + - - + (0.30) + (1.04)

rdfbased-sem-prop-onclass-type + + + + - - + (0.03) + (0.16)

rdfbased-sem-prop-ondatarange-ext - - ? + - - + (0.43) + (1.01)

rdfbased-sem-prop-ondatarange-type + + + + - - + (0.02) + (0.17)

rdfbased-sem-prop-ondatatype-ext - - ? + - - + (0.35) + (0.51)

rdfbased-sem-prop-ondatatype-type + + + + - - + (0.02) + (0.09)

rdfbased-sem-prop-oneof-ext - - ? + - - + (0.33) + (1.01)

rdfbased-sem-prop-oneof-type + + + + + - + (0.02) + (0.14)

rdfbased-sem-prop-onproperty-ext - - ? + - - + (0.35) + (1.23)

rdfbased-sem-prop-onproperty-type + + + + + - + (0.02) + (0.17)

rdfbased-sem-prop-priorversion-ext + + - + + - + (0.37) + (0.45)

rdfbased-sem-prop-priorversion-type-annot + + - + - - + (0.02) + (0.09)

rdfbased-sem-prop-priorversion-type-onto - - ? + - - + (0.02) + (0.09)

rdfbased-sem-prop-propertychainaxiom-ext - - ? + - - + (0.33) + (1.54)

rdfbased-sem-prop-propertychainaxiom-type + + + + - - + (0.02) + (0.10)

rdfbased-sem-prop-propertydisjointwith-ext - - ? + - - + (0.41) + (1.14)

rdfbased-sem-prop-propertydisjointwith-type + + + + - - + (0.02) + (0.09)

rdfbased-sem-prop-qualifiedcardinality-ext - - ? + - - + (0.65) + (1.30)

rdfbased-sem-prop-qualifiedcardinality-type + + + + - - + (0.02) + (0.18)

rdfbased-sem-prop-sameas-ext - + ? + - - + (0.36) + (0.40)

rdfbased-sem-prop-sameas-type + + + + + - + (0.03) + (0.15)

rdfbased-sem-prop-seealso-ext + + - + - - + (0.02) + (0.07)

rdfbased-sem-prop-seealso-type + + - + - - + (0.02) + (0.09)

rdfbased-sem-prop-somevaluesfrom-ext - - ? + - - + (0.37) + (0.83)

rdfbased-sem-prop-somevaluesfrom-type + + + + - - + (0.02) + (0.15)

rdfbased-sem-prop-sourceindividual-ext - - ? + - - + (0.37) + (0.64)

rdfbased-sem-prop-sourceindividual-type + + + + - - + (0.02) + (0.12)

rdfbased-sem-prop-targetindividual-ext - - ? + - - + (0.42) + (0.34)
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rdfbased-sem-prop-targetindividual-type + + + + - - + (0.02) + (0.09)

rdfbased-sem-prop-targetvalue-ext - - ? + - - + (0.44) + (1.08)

rdfbased-sem-prop-targetvalue-type + + + + - - + (0.03) + (0.12)

rdfbased-sem-prop-topdataproperty-ext-hi + + ? + - - + (0.44) + (0.99)

rdfbased-sem-prop-topdataproperty-ext-lo + + + - - - + (0.04) + (0.44)

rdfbased-sem-prop-topdataproperty-term - - ? - - - + (0.40) + (2.26)

rdfbased-sem-prop-topdataproperty-type + + - + - - + (0.02) + (0.11)

rdfbased-sem-prop-topobjectproperty-ext-hi + + + + - - + (0.32) + (0.21)

rdfbased-sem-prop-topobjectproperty-ext-lo + + + - - - + (0.04) + (0.11)

rdfbased-sem-prop-topobjectproperty-term + + ? - - - + (0.38) + (0.20)

rdfbased-sem-prop-topobjectproperty-type + + - + - - + (0.03) + (0.14)

rdfbased-sem-prop-unionof-ext - - ? + - - + (0.39) + (4.83)

rdfbased-sem-prop-unionof-type + + + + - - + (0.03) + (0.09)

rdfbased-sem-prop-versioninfo-ext + + - + - - + (0.34) + (0.42)

rdfbased-sem-prop-versioninfo-type + + - + + - + (0.02) + (0.08)

rdfbased-sem-prop-versioniri-ext - - ? + - - + (0.43) + (0.47)

rdfbased-sem-prop-versioniri-type - - ? + - - + (0.03) + (0.09)

rdfbased-sem-prop-withrestrictions-ext - - ? + - - + (0.44) + (1.85)

rdfbased-sem-prop-withrestrictions-type + + + + - - + (0.03) + (0.08)

rdfbased-sem-rdf-container-highval-axiom + + + + - - ? (300.00) ? (181.83)

rdfbased-sem-rdf-container-initval-axiom + + + + - - + (0.02) + (0.07)

rdfbased-sem-rdf-list-axiom + + + + + - + (0.02) + (0.17)

rdfbased-sem-rdf-reify-axiom + + + + + - + (0.02) + (0.21)

rdfbased-sem-rdf-type-axiom + + + + + - + (0.03) + (0.07)

rdfbased-sem-rdf-type-cond + + + + + - + (0.03) + (0.19)

rdfbased-sem-rdf-value-axiom + + + + - - + (0.02) + (0.07)

rdfbased-sem-rdf-xmlliteral-type - - ? - - - ? (300.00) ? (181.71)

rdfbased-sem-rdfs-annotate-axiom + + - + - - + (0.02) + (0.08)

rdfbased-sem-rdfs-class + + + + + - + (0.19) + (0.12)

rdfbased-sem-rdfs-container-cond - - ? - + - + (0.03) + (0.11)

rdfbased-sem-rdfs-container-highval-axiom - - ? + - - ? (300.00) ? (220.78)

rdfbased-sem-rdfs-container-initval-axiom - - ? + - - + (0.02) + (0.07)

rdfbased-sem-rdfs-container-static-axiom - - ? + - - + (0.02) + (0.08)

rdfbased-sem-rdfs-data-cond - - ? - - - + (0.03) + (0.10)

rdfbased-sem-rdfs-datatype-axiom - - ? + + - + (0.02) + (0.07)

rdfbased-sem-rdfs-domain-axiom - - ? + + - + (0.02) + (0.07)

rdfbased-sem-rdfs-domain-cond + + + + + - + (0.19) + (0.23)

rdfbased-sem-rdfs-list-axiom - - ? + - - + (0.04) + (0.15)

rdfbased-sem-rdfs-plain-notag-type - - ? - - - ? (300.00) ? (196.34)

rdfbased-sem-rdfs-plain-tagged-type - - ? - - - ? (300.00) ? (202.44)

rdfbased-sem-rdfs-range-axiom - - ? + + - + (0.02) + (0.07)

rdfbased-sem-rdfs-range-cond + + + + + - + (0.20) + (0.21)

rdfbased-sem-rdfs-reify-axiom - - ? + - - + (0.03) + (0.06)

rdfbased-sem-rdfs-resource - - ? - - - + (0.02) + (0.14)

rdfbased-sem-rdfs-subclass-axiom - - ? + + - + (0.02) + (0.07)

rdfbased-sem-rdfs-subclass-cond + + + + + + + (0.34) + (0.35)

rdfbased-sem-rdfs-subclass-resource - - ? - + - + (0.03) + (0.10)

rdfbased-sem-rdfs-subclass-rflxv - + ? + + - + (0.03) + (0.11)

rdfbased-sem-rdfs-subclass-trans + + + + - + + (0.33) + (0.10)

rdfbased-sem-rdfs-subprop-axiom - - ? + + - + (0.02) + (0.08)

rdfbased-sem-rdfs-subprop-cond + + + + + + + (0.33) + (0.10)

rdfbased-sem-rdfs-subprop-rflxv - + ? + + - + (0.02) + (0.10)

rdfbased-sem-rdfs-subprop-trans + + + + + + + (0.33) + (0.09)

rdfbased-sem-rdfs-type-axiom - - ? + - - + (0.02) + (0.07)

rdfbased-sem-rdfs-value-axiom - - ? + - - + (0.02) + (0.07)

rdfbased-sem-rdfs-xmlliteral-axiom-type + + + + + - + (0.02) + (0.07)

rdfbased-sem-rdfs-xmlliteral-axiom-value - - ? + - - + (0.02) + (0.06)

rdfbased-sem-rdfs-xmlliteral-illtyped - ? ? - - ? ? (300.00) ? (300.00)

rdfbased-sem-rdfsext-domain-ext + + + - - - + (1.11) + (65.94)

rdfbased-sem-rdfsext-domain-subprop + + + + + - + (0.25) + (2.40)

rdfbased-sem-rdfsext-domain-superclass + + + + + - + (0.39) + (39.92)

rdfbased-sem-rdfsext-range-ext + + + - + - ? (300.00) + (43.53)

rdfbased-sem-rdfsext-range-subprop + + + + + - + (0.43) + (6.21)

rdfbased-sem-rdfsext-range-superclass + + + + + - + (0.32) + (11.90)

rdfbased-sem-rdfsext-subclass-ext + + + - - - + (0.87) + (107.13)

rdfbased-sem-rdfsext-subprop-ext + + + - - - + (0.49) + (111.26)

rdfbased-sem-restrict-allvalues-cmp-class - - ? + - - ? (300.00) + (56.84)

rdfbased-sem-restrict-allvalues-cmp-prop - - ? + - - ? (300.00) + (73.76)

rdfbased-sem-restrict-allvalues-inst-obj - - ? + + - + (0.77) + (5.21)

rdfbased-sem-restrict-allvalues-inst-subj - - ? - + - + (1.05) + (14.89)

rdfbased-sem-restrict-exactcard-inst-obj-two - ? ? - - - + (0.79) + (1.08)

rdfbased-sem-restrict-exactcard-inst-subj-two - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-exactqcr-data-localize + + - - - - + (0.66) + (0.78)

rdfbased-sem-restrict-exactqcr-inst-obj-two - ? ? - - - ? (300.00) + (15.62)

rdfbased-sem-restrict-exactqcr-inst-subj-two - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-hasself-cmp-prop - - ? - - - ? (300.00) + (12.41)

rdfbased-sem-restrict-hasself-inst-obj - - ? - - - + (0.49) + (0.76)

rdfbased-sem-restrict-hasself-inst-subj - - ? - - - + (0.82) + (0.46)

rdfbased-sem-restrict-hasvalue-cmp-prop - - ? + - - + (27.08) + (2.00)

rdfbased-sem-restrict-hasvalue-inst-obj - - ? + + - + (0.42) + (0.86)

rdfbased-sem-restrict-hasvalue-inst-subj - - ? + + - + (0.67) + (0.40)

rdfbased-sem-restrict-maxcard-cmp-card - - ? - - - ? (300.00) + (112.57)

rdfbased-sem-restrict-maxcard-cmp-prop - - ? - - - ? (300.00) ? (285.29)

rdfbased-sem-restrict-maxcard-inst-obj-one - - - + + - + (0.92) + (0.85)
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rdfbased-sem-restrict-maxcard-inst-obj-zero - - - + + ? + (0.65) + (0.84)

rdfbased-sem-restrict-maxcard-inst-subj-one - - ? - + - ? (300.00) + (276.12)

rdfbased-sem-restrict-maxcard-inst-subj-zero - - ? - - - + (0.67) + (1.61)

rdfbased-sem-restrict-maxqcr-cmp-card - - ? - - - ? (300.00) + (111.11)

rdfbased-sem-restrict-maxqcr-cmp-class - - ? - - - ? (300.00) + (76.42)

rdfbased-sem-restrict-maxqcr-cmp-prop - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-maxqcr-data-localize + + - - - - + (0.65) + (0.77)

rdfbased-sem-restrict-maxqcr-inst-obj-one - - - + - - ? (300.00) + (74.83)

rdfbased-sem-restrict-maxqcr-inst-obj-zero - - - + - ? + (0.81) + (63.29)

rdfbased-sem-restrict-maxqcr-inst-subj-one - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-maxqcr-inst-subj-zero - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-mincard-cmp-card - - ? - - - ? (300.00) + (0.67)

rdfbased-sem-restrict-mincard-cmp-prop - - ? - - - ? (300.00) + (8.93)

rdfbased-sem-restrict-mincard-inst-obj-one - - ? - - - + (0.43) + (0.70)

rdfbased-sem-restrict-mincard-inst-subj-one - - ? - + - + (0.67) + (0.42)

rdfbased-sem-restrict-minqcr-cmp-card - - ? - - - ? (300.00) + (74.69)

rdfbased-sem-restrict-minqcr-cmp-class - - ? - - - ? (300.00) + (72.80)

rdfbased-sem-restrict-minqcr-cmp-prop - - ? - - - ? (300.00) + (2.05)

rdfbased-sem-restrict-minqcr-data-localize + + - - - - + (0.60) + (0.70)

rdfbased-sem-restrict-minqcr-inst-obj-one - - ? - - - + (0.76) + (10.16)

rdfbased-sem-restrict-minqcr-inst-subj-one - - ? - - - + (0.79) + (3.96)

rdfbased-sem-restrict-somevalues-cmp-class - - ? + - - ? (300.00) + (2.86)

rdfbased-sem-restrict-somevalues-cmp-prop - - ? + - - ? (300.00) + (74.43)

rdfbased-sem-restrict-somevalues-inst-obj - - ? - - - + (0.37) + (3.47)

rdfbased-sem-restrict-somevalues-inst-subj - - ? + + - + (0.78) + (1.19)

rdfbased-sem-restrict-term-cardqcr - - ? - - - ? (300.00) + (145.98)

rdfbased-sem-restrict-term-dataqcr - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-term-minmaxexact - - ? - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-term-minmaxthing - - - - - - ? (300.00) ? (300.00)

rdfbased-sem-restrict-term-sameall - - ? - - - ? (300.00) + (74.84)

rdfbased-sem-restrict-term-selfsome - - ? - - - + (27.57) + (1.20)

rdfbased-sem-restrict-term-somehas - - ? - - - ? (300.00) + (118.06)

rdfbased-sem-restrict-term-someqcr - - ? - - - ? (300.23) + (11.39)

rdfbased-sem-simple-bnode-iri + + ? - - - + (0.02) + (0.07)

rdfbased-sem-simple-bnode-literal + ? ? - - - + (0.03) + (0.24)

rdfbased-sem-simple-bnode-rename + + ? - - - + (0.02) + (0.07)

rdfbased-sem-simple-bnode-same + + ? - - - + (0.03) + (0.07)

rdfbased-sem-simple-emptygraph-any + + + + + + + (0.03) + (0.05)

rdfbased-sem-simple-emptygraph-self + + + + + + + (0.01) + (0.07)

rdfbased-sem-simple-subgraph-any + + + + + + + (0.02) + (0.06)

rdfbased-sem-simple-subgraph-self + + + + + + + (0.02) + (0.06)

Table 8: Result data of the language coverage experiments for the FOL theorem prover iProver-
SInE, used with the small-sufficient OWL 2 Full subaxiomatizations on those test cases where it
and Vampire had failed when using the complete axiomatization.

Test Case iProver-SInE

rdfbased-sem-bool-demorgan + (36.39)

rdfbased-sem-bool-intersection-ext + (0.64)

rdfbased-sem-bool-union-ext + (0.54)

rdfbased-sem-chain-ext + (35.00)

rdfbased-sem-enum-ext + (0.17)

rdfbased-sem-restrict-exactcard-inst-subj-two + (55.83)

rdfbased-sem-restrict-exactqcr-inst-subj-two ? (300.00)

rdfbased-sem-restrict-maxcard-cmp-prop + (0.18)

rdfbased-sem-restrict-maxqcr-cmp-prop + (0.30)

rdfbased-sem-restrict-maxqcr-inst-subj-one + (1.30)

rdfbased-sem-restrict-maxqcr-inst-subj-zero + (2.34)

rdfbased-sem-restrict-term-dataqcr + (0.59)

rdfbased-sem-restrict-term-minmaxexact + (39.47)

rdfbased-sem-restrict-term-minmaxthing + (2.03)

Table 9: Result data of the language coverage experiments for the FOL theorem prover Vampire,
used with the small-sufficient OWL 2 Full subaxiomatizations on those test cases where iProver-
SInE failed when using the small-sufficient axiomatizations.

Test Case Vampire

rdfbased-sem-restrict-exactqcr-inst-subj-two + (2.90)
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A.2 OWL 2 Full-Characteristic Conclusions and Scalability Results

The following tables provide the raw result data that underlies the results for
the scalability experiments, as reported in Section 5.3. All experiments were
conducted using the test suite of characteristic OWL 2 Full conclusions, as in-
troduced in Section 4.2 (see Appendix B for more detailed information about the
test suite). There is one table per combination of a FOL reasoner (iProver-SInE,
Vampire in auto mode, and Vampire using the SInE strategy) and either the
complete OWL 2 Full axiomatization or the small-sufficient subaxiomatizations
for the different test cases. While Section 5.3 lists only the results for bulk RDF
data of size 1 million triples, the tables here also show results for several inter-
mediate sizes: 1200, 10,000, and 100,000 triples. In addition, the results for no
bulk data (0 triples) are presented, which were the base for the results reported
in Section 5.2 for the test suite of characteristic OWL 2 Full conclusions. No
result data for the characteristic conclusion tests is given here for the Semantic
Web reasoners, since the data provided in Section 5.2 is already complete for
them. The first column of each table gives the name of the test case, and the
remaining columns gives the results for the different bulk data sizes.

Table 10: Scalability results for the theorem prover iProver-SInE using the complete OWL 2 Full
axiomatization.

Test Case 0 1200 10k 100k 1M

001 Subgraph Entailment + (0.15) + (0.17) + (0.34) + (2.16) + (21.98)

002 Existential Blank Nodes + (0.08) + (0.10) + (0.27) + (2.15) + (21.81)

003 Blank Nodes for Literals + (0.08) + (0.10) + (0.27) + (2.06) + (22.51)

004 Axiomatic Triples + (1.23) + (1.27) + (1.44) + (3.43) + (23.31)

005 Everything is a Resource + (3.03) + (3.03) + (2.56) + (5.19) + (25.07)

006 Literal Values represented by URIs and Blank Nodes + (11.66) + (11.65) + (11.77) + (13.61) + (34.00)

007 Equal Classes + (74.40) + (61.38) + (50.34) + (76.84) + (96.51)

008 Inverse Functional Data Properties + (0.41) + (0.42) + (0.59) + (2.41) + (22.66)

009 Existential Restriction Entailments + (2.35) + (2.35) + (2.48) + (4.36) + (24.15)

010 Negative Property Assertions + (89.45) + (91.03) + (90.05) + (92.60) + (111.97)

011 Entity Types as Classes + (0.30) + (0.32) + (0.49) + (2.30) + (22.20)

012 Template Class ? (300.00) + (144.50) ? (300.00) ? (300.00) ? (300.00)

013 Cliques ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

014 Harry belongs to some Species + (33.65) + (41.90) + (32.35) + (54.93) + (98.11)

015 Reflective Tautologies I + (0.16) + (0.17) + (0.34) + (2.21) + (22.06)

016 Reflective Tautologies II + (0.95) + (0.96) + (1.12) + (2.95) + (22.83)

017 Builtin Based Definitions + (5.31) + (5.19) + (5.36) + (20.17) + (34.27)

018 Modified Logical Vocabulary Semantics + (0.72) + (0.74) + (0.92) + (2.73) + (22.66)

019 Disjoint Annotation Properties + (0.19) + (0.22) + (0.38) + (2.25) + (22.06)

020 Logical Complications ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

021 Composite Enumerations ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

022 List Member Access + (123.01) + (122.19) + (122.41) + (123.19) + (143.69)

023 Unique List Components + (4.12) + (4.07) + (4.26) + (6.02) + (25.88)

024 Cardinality Restrictions on Complex Properties + (14.89) + (14.06) + (13.84) + (16.78) + (37.30)

025 Cyclic Dependencies between Complex Properties + (117.92) + (118.07) + (120.24) + (120.02) + (136.68)

026 Inferred Property Characteristics I + (111.18) + (63.40) + (109.99) + (113.43) + (130.79)

027 Inferred Property Characteristics II + (122.01) + (120.51) + (121.49) + (120.86) + (143.95)

028 Inferred Property Characteristics III + (3.56) + (3.58) + (3.66) + (5.59) + (25.48)

029 Ex Falso Quodlibet + (74.35) + (74.62) + (74.86) + (76.59) + (96.43)

030 Bad Class + (18.07) + (18.42) + (18.79) + (25.70) + (45.60)

031 Large Universe + (42.44) + (39.85) + (51.68) + (53.45) + (99.83)

032 Datatype Relationships + (2.05) + (2.04) + (2.23) + (4.08) + (23.86)
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Table 11: Scalability results for the theorem prover Vampire (auto mode) using the complete
OWL 2 Full axiomatization.

Test Case 0 1200 10k 100k 1M

001 Subgraph Entailment + (0.02) + (0.04) + (0.21) + (2.31) + (71.14)

002 Existential Blank Nodes + (0.02) + (0.03) + (0.21) + (2.35) + (216.63)

003 Blank Nodes for Literals + (0.02) + (0.04) + (0.21) + (1.90) + (73.91)

004 Axiomatic Triples + (0.43) + (0.46) + (0.67) + (2.49) ? (300.00)

005 Everything is a Resource + (0.03) + (0.05) + (0.22) + (2.38) ? (300.00)

006 Literal Values represented by URIs and Blank Nodes + (0.18) + (0.21) + (0.38) + (2.34) ? (300.00)

007 Equal Classes + (0.35) + (0.40) + (0.54) + (2.41) ? (300.00)

008 Inverse Functional Data Properties + (0.40) + (0.44) + (0.56) + (2.45) ? (300.00)

009 Existential Restriction Entailments + (0.39) + (0.40) + (0.57) + (2.34) ? (284.91)

010 Negative Property Assertions ? (285.53) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

011 Entity Types as Classes + (0.18) + (0.20) + (0.38) + (2.30) ? (300.00)

012 Template Class ? (285.57) ? (300.00) ? (284.78) ? (300.00) ? (213.28)

013 Cliques ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

014 Harry belongs to some Species + (1.15) + (1.18) + (1.33) + (2.97) ? (300.57)

015 Reflective Tautologies I + (0.03) + (0.05) + (0.21) + (1.99) + (223.44)

016 Reflective Tautologies II + (0.56) + (0.57) + (0.73) + (2.35) ? (300.00)

017 Builtin Based Definitions + (0.38) + (0.43) + (0.59) + (2.20) ? (300.22)

018 Modified Logical Vocabulary Semantics + (0.16) + (0.17) + (0.34) + (2.25) ? (301.90)

019 Disjoint Annotation Properties + (0.43) + (0.46) + (0.61) + (2.17) ? (300.00)

020 Logical Complications ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

021 Composite Enumerations ? (300.00) ? (300.00) ? (300.00) ? (300.69) ? (300.00)

022 List Member Access ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

023 Unique List Components + (0.46) + (0.51) + (0.63) + (2.24) ? (300.00)

024 Cardinality Restrictions on Complex Properties + (0.71) + (0.73) + (0.85) + (2.47) ? (300.00)

025 Cyclic Dependencies between Complex Properties ? (300.69) ? (300.31) ? (300.00) ? (300.00) ? (300.00)

026 Inferred Property Characteristics I + (0.47) + (0.48) + (0.64) + (2.28) ? (300.00)

027 Inferred Property Characteristics II ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

028 Inferred Property Characteristics III ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.36)

029 Ex Falso Quodlibet + (0.92) + (0.93) + (1.13) + (2.69) ? (300.00)

030 Bad Class + (0.39) + (0.45) + (0.57) + (2.18) ? (300.38)

031 Large Universe + (0.44) + (0.46) + (0.62) + (2.22) ? (300.00)

032 Datatype Relationships + (0.65) + (0.64) + (0.81) + (2.35) ? (300.46)

Table 12: Scalability results for the theorem prover Vampire-SInE using the complete OWL 2 Full
axiomatization.

Test Case 0 1200 10k 100k 1M

001 Subgraph Entailment + (0.04) + (0.06) + (0.20) + (1.84) + (20.19)

002 Existential Blank Nodes + (0.04) + (0.06) + (0.21) + (1.81) + (19.28)

003 Blank Nodes for Literals + (0.02) + (0.04) + (0.19) + (1.82) + (19.34)

004 Axiomatic Triples + (4.99) + (5.04) + (5.21) + (6.77) + (24.38)

005 Everything is a Resource + (0.06) + (0.07) + (0.23) + (1.86) + (20.32)

006 Literal Values represented by URIs and Blank Nodes + (9.63) + (9.74) + (9.66) + (11.43) + (29.27)

007 Equal Classes ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

008 Inverse Functional Data Properties + (3.13) + (3.14) + (3.37) + (5.06) + (23.54)

009 Existential Restriction Entailments ? (300.00) ? (301.49) ? (300.00) ? (300.00) ? (300.00)

010 Negative Property Assertions ? (300.26) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

011 Entity Types as Classes + (0.08) + (0.10) + (0.25) + (1.87) + (19.47)

012 Template Class ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

013 Cliques ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

014 Harry belongs to some Species ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

015 Reflective Tautologies I + (0.06) + (0.08) + (0.22) + (1.86) + (19.37)

016 Reflective Tautologies II + (10.82) + (10.61) + (10.93) + (12.94) + (30.77)

017 Builtin Based Definitions ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

018 Modified Logical Vocabulary Semantics + (0.27) + (0.29) + (0.44) + (2.09) + (19.45)

019 Disjoint Annotation Properties + (3.12) + (3.22) + (3.31) + (4.96) + (22.95)

020 Logical Complications ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

021 Composite Enumerations ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

022 List Member Access ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

023 Unique List Components + (6.97) + (6.93) + (6.92) + (8.87) + (26.57)

024 Cardinality Restrictions on Complex Properties ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

025 Cyclic Dependencies between Complex Properties ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

026 Inferred Property Characteristics I + (11.97) + (12.16) + (11.97) + (14.30) + (31.64)

027 Inferred Property Characteristics II ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

028 Inferred Property Characteristics III ? (300.00) ? (301.10) ? (300.00) ? (300.00) ? (300.00)

029 Ex Falso Quodlibet ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

030 Bad Class + (6.33) + (6.24) + (6.41) + (8.29) + (25.92)

031 Large Universe ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

032 Datatype Relationships + (0.09) + (0.11) + (0.25) + (1.94) + (19.53)
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Table 13: Scalability results for the theorem prover iProver-SInE using the small-sufficient OWL 2
Full subaxiomatizations.

Test Case 0 1200 10k 100k 1M

001 Subgraph Entailment + (0.04) + (0.07) + (0.24) + (2.03) + (22.87)

002 Existential Blank Nodes + (0.05) + (0.07) + (0.24) + (2.09) + (21.85)

003 Blank Nodes for Literals + (0.05) + (0.07) + (0.26) + (2.14) + (22.07)

004 Axiomatic Triples + (0.10) + (0.12) + (0.30) + (2.12) + (21.97)

005 Everything is a Resource + (0.05) + (0.08) + (0.26) + (2.07) + (22.50)

006 Literal Values represented by URIs and Blank Nodes + (0.07) + (0.09) + (0.26) + (2.08) + (21.96)

007 Equal Classes + (0.07) + (0.08) + (0.26) + (2.08) + (22.23)

008 Inverse Functional Data Properties + (0.06) + (0.09) + (0.27) + (2.08) + (21.97)

009 Existential Restriction Entailments + (0.05) + (0.08) + (0.25) + (2.08) + (21.89)

010 Negative Property Assertions + (0.29) + (0.32) + (0.49) + (2.33) + (22.21)

011 Entity Types as Classes + (0.05) + (0.07) + (0.26) + (2.08) + (21.93)

012 Template Class + (0.27) + (0.24) + (0.41) + (2.25) + (22.13)

013 Cliques + (164.20) + (191.29) ? (256.09) ? (259.50) ? (300.00)

014 Harry belongs to some Species + (0.08) + (0.09) + (0.27) + (2.08) + (21.85)

015 Reflective Tautologies I + (0.05) + (0.07) + (0.25) + (2.10) + (21.73)

016 Reflective Tautologies II + (0.11) + (0.13) + (0.30) + (2.12) + (21.76)

017 Builtin Based Definitions + (0.08) + (0.10) + (0.27) + (2.09) + (21.93)

018 Modified Logical Vocabulary Semantics + (0.05) + (0.07) + (0.24) + (2.07) + (22.50)

019 Disjoint Annotation Properties + (0.05) + (0.08) + (0.25) + (2.10) + (21.91)

020 Logical Complications + (40.67) + (45.04) + (47.79) + (42.16) + (62.69)

021 Composite Enumerations + (42.32) + (38.32) + (46.15) + (38.11) + (63.10)

022 List Member Access + (0.12) + (0.14) + (0.31) + (2.14) + (22.00)

023 Unique List Components + (0.14) + (0.16) + (0.34) + (2.24) + (22.62)

024 Cardinality Restrictions on Complex Properties + (0.07) + (0.08) + (0.27) + (2.14) + (21.87)

025 Cyclic Dependencies between Complex Properties + (0.11) + (0.14) + (0.31) + (2.13) + (22.39)

026 Inferred Property Characteristics I + (0.12) + (0.15) + (0.32) + (2.14) + (22.04)

027 Inferred Property Characteristics II + (0.16) + (0.19) + (0.35) + (2.18) + (22.14)

028 Inferred Property Characteristics III + (0.30) + (0.33) + (0.50) + (2.35) + (22.84)

029 Ex Falso Quodlibet + (0.09) + (0.11) + (0.28) + (2.11) + (22.51)

030 Bad Class + (0.07) + (0.08) + (0.26) + (2.09) + (22.07)

031 Large Universe + (0.34) + (0.36) + (0.54) + (2.39) + (22.29)

032 Datatype Relationships + (0.07) + (0.09) + (0.26) + (2.08) + (21.86)

Table 14: Scalability results for the theorem prover Vampire (auto mode) using the small-sufficient
OWL 2 Full subaxiomatizations.

Test Case 0 1200 10k 100k 1M

001 Subgraph Entailment + (0.00) + (0.01) + (0.20) + (2.41) + (48.09)

002 Existential Blank Nodes + (0.00) + (0.05) + (1.89) ? (300.00) ? (301.00)

003 Blank Nodes for Literals + (0.00) + (0.03) + (1.49) + (161.52) + (182.70)

004 Axiomatic Triples + (0.01) + (0.06) + (2.02) ? (300.00) ? (300.00)

005 Everything is a Resource + (0.00) + (0.08) + (3.17) ? (300.00) ? (300.00)

006 Literal Values represented by URIs and Blank Nodes + (0.00) + (0.03) + (1.60) ? (300.00) ? (300.00)

007 Equal Classes + (0.00) + (0.05) + (1.81) ? (300.00) ? (300.00)

008 Inverse Functional Data Properties + (0.00) + (0.05) + (1.84) ? (300.00) ? (300.00)

009 Existential Restriction Entailments + (0.00) + (0.05) + (2.01) ? (300.00) ? (285.58)

010 Negative Property Assertions + (0.05) + (0.11) + (1.92) ? (300.00) ? (300.00)

011 Entity Types as Classes + (0.00) + (0.04) + (1.78) ? (285.25) ? (300.00)

012 Template Class + (0.01) + (0.17) + (6.56) ? (300.00) ? (274.53)

013 Cliques + (4.20) + (4.25) + (5.60) ? (300.00) ? (300.00)

014 Harry belongs to some Species + (0.00) + (0.05) + (1.52) ? (300.00) ? (300.00)

015 Reflective Tautologies I + (0.00) + (0.18) + (5.07) ? (300.95) ? (300.00)

016 Reflective Tautologies II + (0.03) + (0.16) + (3.17) ? (300.00) ? (300.00)

017 Builtin Based Definitions + (0.00) + (0.05) + (1.46) ? (300.00) ? (300.00)

018 Modified Logical Vocabulary Semantics + (0.00) + (0.10) + (2.77) ? (300.00) ? (300.00)

019 Disjoint Annotation Properties + (0.00) + (0.03) + (1.45) ? (300.00) ? (300.00)

020 Logical Complications + (31.08) + (31.06) + (34.26) ? (300.00) ? (300.00)

021 Composite Enumerations + (3.79) + (3.86) + (5.21) ? (300.00) ? (300.00)

022 List Member Access + (0.02) + (0.20) + (7.69) ? (300.00) ? (300.00)

023 Unique List Components + (0.00) + (0.05) + (1.42) ? (300.00) ? (300.00)

024 Cardinality Restrictions on Complex Properties + (0.01) + (0.34) + (9.76) ? (300.00) ? (300.00)

025 Cyclic Dependencies between Complex Properties + (0.01) + (0.16) + (7.36) ? (300.00) ? (300.00)

026 Inferred Property Characteristics I + (0.01) + (0.06) + (1.46) ? (300.00) ? (300.00)

027 Inferred Property Characteristics II + (0.01) + (0.01) + (0.18) + (1.83) ? (300.00)

028 Inferred Property Characteristics III + (0.02) + (0.03) + (0.18) + (1.81) ? (300.00)

029 Ex Falso Quodlibet + (0.00) + (0.04) + (1.52) ? (300.00) ? (300.00)

030 Bad Class + (0.00) + (0.04) + (1.49) ? (300.00) ? (300.00)

031 Large Universe + (0.01) + (0.13) + (3.04) ? (300.00) ? (300.00)

032 Datatype Relationships + (0.00) + (0.05) + (1.49) ? (300.00) ? (300.00)
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Table 15: Scalability results for the theorem prover Vampire-SInE using the small-sufficient OWL 2
Full subaxiomatizations.

Test Case 0 1200 10k 100k 1M

001 Subgraph Entailment + (0.00) + (0.01) + (0.16) + (1.80) + (19.53)

002 Existential Blank Nodes + (0.00) + (0.01) + (0.16) + (1.76) + (20.15)

003 Blank Nodes for Literals + (0.00) + (0.01) + (0.16) + (1.81) + (19.52)

004 Axiomatic Triples + (0.00) + (0.02) + (0.17) + (1.79) + (19.35)

005 Everything is a Resource + (0.00) + (0.01) + (0.16) + (1.78) + (19.54)

006 Literal Values represented by URIs and Blank Nodes + (0.00) + (0.01) + (0.16) + (1.80) + (19.54)

007 Equal Classes ? (0.00) ? (0.01) ? (0.16) ? (1.79) ? (20.31)

008 Inverse Functional Data Properties + (0.00) + (0.01) + (0.17) + (1.77) + (19.40)

009 Existential Restriction Entailments + (0.00) + (0.01) + (0.17) + (1.85) + (19.45)

010 Negative Property Assertions + (0.01) + (0.03) + (0.18) + (1.82) + (20.14)

011 Entity Types as Classes + (0.00) + (0.01) + (0.17) + (1.76) + (19.43)

012 Template Class + (0.20) + (0.23) + (0.38) + (2.05) + (20.40)

013 Cliques ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

014 Harry belongs to some Species + (0.32) + (0.34) + (0.50) + (2.15) + (19.84)

015 Reflective Tautologies I + (0.00) + (0.01) + (0.17) + (1.78) + (19.41)

016 Reflective Tautologies II + (0.00) + (0.02) + (0.17) + (1.79) + (19.52)

017 Builtin Based Definitions ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

018 Modified Logical Vocabulary Semantics + (0.00) + (0.01) + (0.16) + (1.84) + (19.44)

019 Disjoint Annotation Properties + (0.00) + (0.01) + (0.16) + (1.79) + (19.45)

020 Logical Complications ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

021 Composite Enumerations ? (300.00) ? (300.00) ? (300.00) ? (300.00) ? (300.00)

022 List Member Access + (0.00) + (0.02) + (0.18) + (1.82) + (19.34)

023 Unique List Components + (0.00) + (0.02) + (0.17) + (1.78) + (19.77)

024 Cardinality Restrictions on Complex Properties + (0.00) + (0.02) + (0.17) + (1.80) + (19.53)

025 Cyclic Dependencies between Complex Properties + (0.01) + (0.03) + (0.18) + (1.79) + (19.43)

026 Inferred Property Characteristics I + (0.00) + (0.02) + (0.17) + (1.80) + (19.42)

027 Inferred Property Characteristics II + (0.03) + (0.05) + (0.19) + (1.81) + (19.36)

028 Inferred Property Characteristics III ? (300.00) + (242.19) + (262.52) ? (300.00) ? (300.00)

029 Ex Falso Quodlibet + (0.00) + (0.02) + (0.17) + (1.78) + (19.47)

030 Bad Class + (0.00) + (0.01) + (0.16) + (1.84) + (19.33)

031 Large Universe ? (0.00) ? (0.01) ? (0.16) ? (1.80) ? (19.35)

032 Datatype Relationships + (0.00) + (0.02) + (0.17) + (1.80) + (19.63)

A.3 Model Finding Results

The following table provides the raw result data that underlies the results for
the model-finding experiments, as reported in Section 5.4. The only additional
data here is the CPU time for each experiment. All experiments were conducted
using the test suite of characteristic OWL 2 Full conclusions, as introduced in
Section 4.2 (see Appendix B for more detailed information about the test suite).

Table 16: Model finding results for the model-finders Paradox and DarwinFM on the ALCO Full
and RDFS axiom sets. The black entries indicate positive entailments or inconsistent ontologies.
PA/A=Paradox/ALCO Full, PA/R=Paradox/RDFS, DF/R=DarwinFM/RDFS.

Test Case PA/A PA/R DF/R

001 Subgraph Entailment

002 Existential Blank Nodes

003 Blank Nodes for Literals

004 Axiomatic Triples + (13.60) + (0.73) + (0.45)

005 Everything is a Resource + (15.08) + (0.90) + (0.12)

006 Literal Values represented by URIs and Blank Nodes + (20.95) + (0.81) + (0.04)

007 Equal Classes + (13.01) + (1.03) + (7.19)

008 Inverse Functional Data Properties + (11.74) + (0.99) + (0.08)

009 Existential Restriction Entailments + (1.17) + (0.05)

010 Negative Property Assertions + (1.61) + (0.07)

011 Entity Types as Classes + (14.15) + (0.86) + (0.01)

012 Template Class + (1.70) + (0.33)

013 Cliques ? (300.11) + (2.17) + (0.05)

014 Harry belongs to some Species + (1.16) + (0.56)

015 Reflective Tautologies I + (10.68) + (0.75) + (0.04)

016 Reflective Tautologies II + (8.21) + (0.77) + (2.05)

017 Builtin Based Definitions + (14.61) + (0.99) + (0.06)

018 Modified Logical Vocabulary Semantics + (89.21) + (0.93) + (7.35)

019 Disjoint Annotation Properties + (14.55) + (0.89) + (0.01)

020 Logical Complications ? (300.28) + (1.80) + (0.85)

021 Composite Enumerations ? (300.15) + (2.21) + (0.11)

022 List Member Access ? (300.15) + (1.79) + (0.06)
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023 Unique List Components ? (300.15) + (1.17) + (0.05)

024 Cardinality Restrictions on Complex Properties + (16.76) + (1.16) + (0.10)

025 Cyclic Dependencies between Complex Properties ? (300.17) + (1.65) + (0.06)

026 Inferred Property Characteristics I ? (301.78) + (1.20) + (0.07)

027 Inferred Property Characteristics II ? (300.12) + (1.04) + (0.07)

028 Inferred Property Characteristics III + (17.62) + (1.10) + (0.07)

029 Ex Falso Quodlibet + (1.27) + (0.07)

030 Bad Class + (17.88) + (1.05) + (0.01)

031 Large Universe ? (300.55) + (0.93) + (0.01)

032 Datatype Relationships + (9.69) + (0.85) + (0.06)
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B OWL 2 Full Characteristic Conclusions Test Suite

This appendix presents the suite of OWL 2 Full-characteristic conclusion test
cases that was used in the evaluation and has been introduced in Section 4.2.
The appendix is divided into two parts: Section B.1 lists the test cases, and
Section B.2 provides correctness proofs for them. The test suite is also avail-
able in electronic form as part of the supplementary material for this paper
(see the download link at the beginning of Section 4), and can alternatively
be obtained as a separate package from http://www.fzi.de/downloads/ipe/

schneid/testsuite-fullish.zip.

B.1 Test Cases

Each test case is given by its name, its type (one of “Entailment” or “Inconsis-
tency”), a textual description, and the testing data as one or two RDF graphs
for an inconsistency test or entailment test, respectively. The RDF graphs are
represented in Turtle syntax5. The electronic form of the test suite additionally
contains serializations in RDF/XML syntax6 and in the TPTP syntax [14].

001 Subgraph Entailment (Entailment) In OWL 2 Full, a given RDF
graph entails any of its sub graphs, even sub graphs that appear to encode
broken language constructs of OWL. For example, the encoding of a class sub-
sumption axiom that uses a property restriction as its superclass entails the
single owl:onProperty triple of the serialization. This is a characteristic feature
of the whole family of RDF-based languages, starting with RDF Simple Entail-
ment, and it demonstrates the strictly triple-centered view that OWL 2 Full
adopts. This behavior is typically shown by RDF entailment-rule reasoners, but
not by OWL DL reasoners.

Premise Graph Conclusion Graph

ex:c rdfs:subClassOf ex:r .
ex:r rdf:type owl:Restriction .
ex:r owl:onProperty ex:p .
ex:r owl:someValuesFrom ex:d .

ex:r rdf:type owl:Restriction .
ex:r owl:onProperty ex:p .

002 Existential Blank Nodes (Entailment) In OWL 2 Full, every blank
node in an RDF graph is interpreted as an existentially quantified variable. On
the one hand, this means that triples with URIs entail corresponding triples with
blank nodes substituting the URIs. On the other hand, this means that triples
with blank nodes entail corresponding triples with alternative blank nodes. This
feature stems from RDF Simple Entailment. Many reasoners, in particular most
RDF entailment-rule reasoners, do not provide the existential semantics of blank
nodes.
5 Turtle RDF syntax: http://www.w3.org/TeamSubmission/turtle/
6 RDF/XML syntax: http://www.w3.org/TR/rdf-syntax-grammar/

http://www.fzi.de/downloads/ipe/schneid/testsuite-fullish.zip
http://www.fzi.de/downloads/ipe/schneid/testsuite-fullish.zip
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-syntax-grammar/
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Premise Graph Conclusion Graph

ex:s ex:p _:o .
_:o ex:q ex:s .

_:x ex:p _:y .
_:y ex:q _:x .

003 Blank Nodes for Literals (Entailment) In OWL 2 Full, an RDF triple
having a data literal in object position entails a corresponding triple with a blank
node substituting the literal. This feature stems from RDF Simple Entailment.
It cannot be expected from OWL DL reasoners, since OWL 2 DL treats such
blank nodes as anonymous individuals, while the domains of individuals and
data values are defined to be disjoint. Most RDF entailment-rule reasoners do
not show this behavior, since they typically do not implement the existential
semantics of blank nodes.

Premise Graph Conclusion Graph

ex:s ex:p "foo" . ex:s ex:p _:x .

004 Axiomatic Triples (Entailment) OWL 2 Full has many tautologies, i.e.
statements that are entailed by the empty premise graph. Some of these tau-
tologies have the form of “axiomatic triples”, as defined by RDF and RDFS,
but OWL 2 Full goes beyond these specifications. An example is the triple
“owl:Class rdfs:subClassOf owl:Thing”. RDF entailment-rule reasoners, such
as OWL 2 RL/RDF rule reasoners, often prove at least some of the tautologies
that OWL 2 Full provides, while for OWL 2 DL, many of these tautologies are
not valid, neither syntactically nor semantically.

Premise Graph Conclusion Graph

owl:Class rdf:type owl:Thing .
owl:Class rdf:type owl:Class .
owl:Class rdfs:subClassOf owl:Thing .
owl:Class owl:equivalentClass rdfs:Class .
rdfs:Datatype rdfs:subClassOf owl:Class .

005 Everything is a Resource (Entailment) In OWL 2 Full, following the
semantics of RDFS, all three nodes of an RDF triple denote RDF resources
(rdfs:Resource) and OWL individuals (owl:Thing). In addition, the predicate
node of an RDF triple denotes an RDF property (rdf:Property) and an OWL
object property (owl:ObjectProperty). RDF entailment-rule reasoners will of-
ten support this view to at least some extent. While OWL 2 DL offers some
support for this view syntactically in the form of “punning”, the strict separa-
tion of individuals, classes and properties in the semantics of OWL 2 DL prevents
compliant OWL DL reasoners from producing many of the conclusions known
from OWL 2 Full. In addition, OWL DL has only very limited support for RDF
entity types such as rdf:Property.
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Premise Graph Conclusion Graph

ex:s ex:p ex:o . ex:s rdf:type rdfs:Resource .
ex:s rdf:type owl:Thing .
ex:p rdf:type rdfs:Resource .
ex:p rdf:type owl:Thing .
ex:p rdf:type rdf:Property .
ex:p rdf:type owl:ObjectProperty .
ex:o rdf:type rdfs:Resource .
ex:o rdf:type owl:Thing .

006 Literal Values represented by URIs and Blank Nodes (Entailment)
In OWL 2 Full, literals can be assigned URIs or blank nodes via owl:sameAs

statements. One can then use these references to make further assertions about
the literals and to draw semantic conclusions from them. This is an often dis-
cussed replacement for literals in the subject position of RDF triples, which is
not supported by the RDF syntax. It is often supported by RDF entailment-rule
reasoners to some extent, but is not allowed in OWL 2 DL, where URIs and
blank nodes are used to refer to individuals but not to data values.

Premise Graph Conclusion Graph

ex:u owl:sameAs "abc" .
_:x owl:sameAs "abc" .
_:x owl:sameAs ex:w .

ex:u owl:sameAs ex:w .

007 Equal Classes (Entailment) In OWL 2 Full, asserting that two classes
are equal makes them into equivalent classes. This allows to substitute one class
name for the other in all class-related axioms, such as class assertions, class
subsumption axioms, and property range axioms. This can be observed in the
Linked Open Data cloud, which contains many sameAs links between entities
that are sometimes used as as classes in certain contexts. Many RDF entailment-
rule reasoners provide for the expected semantic results. While syntactically
allowed in OWL 2 DL via “punning”, the semantic results are not available due
to the strict separation of individuals and classes.

Premise Graph Conclusion Graph

ex:c1 owl:sameAs ex:c2 .
ex:w rdf:type ex:c1 .
ex:c rdfs:subClassOf ex:c1 .
ex:p rdfs:range ex:c1 .

ex:w rdf:type ex:c2 .
ex:c rdfs:subClassOf ex:c2 .
ex:p rdfs:range ex:c2 .

008 Inverse Functional Data Properties (Entailment) In OWL 2 Full,
data properties can be defined as inverse-functional properties. This option is,
for example, frequently applied in the FOAF specification. While many RDF
entailment-rule reasoners support the semantic consequences from these defini-
tions, they are not supported by OWL 2 DL, which only allows object properties
to be inverse-functional.
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Premise Graph Conclusion Graph

foaf:mbox_sha1sum
rdf:type owl:DatatypeProperty ;
rdf:type owl:InverseFunctionalProperty .

ex:bob foaf:mbox_sha1sum "xyz" .
ex:robert foaf:mbox_sha1sum "xyz" .

ex:bob owl:sameAs ex:robert .

009 Existential Restriction Entailments (Entailment) In OWL 2 Full, a
class assertion using an existential property restriction entails a property asser-
tion with a corresponding blank node. This inference is generally be provided by
OWL DL reasoners, but in most cases is not provable by RDF entailment rule
reasoners, which typically do not implement the existential semantics of blank
nodes and existential property restrictions.

Premise Graph Conclusion Graph

ex:p rdf:type owl:ObjectProperty .
ex:c rdf:type owl:Class .
ex:s rdf:type [

rdf:type owl:Restriction ;
owl:onProperty ex:p ;
owl:someValuesFrom ex:c

] .

ex:s ex:p _:x .
_:x rdf:type ex:c .

010 Negative Property Assertions (Entailment) OWL 2 has introduced
explicit support for negative property assertions (NPAs). However, it was al-
ready possible to encode NPAs in OWL 1, in terms of OWL 1 axioms and class
expressions. These definitions are rather complex and require strong semantic
support for several of the OWL language features. OWL 2 Full can infer that
the new explicit encoding of NPAs follows from the corresponding old encoding
of OWL 1. The same holds for OWL 2 DL. In contrast, RDF entailment-rule
reasoners typically do not allow for such inferences due to the high semantic
requirements.

Premise Graph Conclusion Graph

ex:p rdf:type owl:ObjectProperty .
ex:s rdf:type [

owl:onProperty ex:p ;
owl:allValuesFrom [

owl:complementOf [
owl:oneOf ( ex:o )

]
]

] .

_:z rdf:type owl:NegativePropertyAssertion .
_:z owl:sourceIndividual ex:s .
_:z owl:assertionProperty ex:p .
_:z owl:targetIndividual ex:o .

011 Entity Types as Classes (Inconsistency) In OWL 2 Full, entity types,
such as owl:Class, are regular classes. This semantic property is basically in-
herited from RDFS. This makes it possible, for example, to state that the entity
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types of classes and properties are mutually disjoint, and to infer inconsistencies
if an entity is used as both a class and a property. Some RDF entailment rule
reasoners, such as those implementing the OWL 2 RL/RDF rules, follow this
semantics. OWL 2 DL, on the other hand, does not support it, since it sees entity
types are purely syntactic information.

Graph

owl:Class owl:disjointWith owl:ObjectProperty .
ex:x rdf:type owl:Class .
ex:x rdf:type owl:ObjectProperty .

012 Template Class (Entailment) In OWL 2 Full, instead of explicitly as-
signing features to a property, such as an entity type, property characteristics,
or a domain, it is possible to build a class representing all these features and
then make the property an instance of this “template class”. Some RDF entail-
ment rule reasoners, such as those implementing the OWL 2 RL/RDF rules, will
support this approach to a certain extent, while in OWL 2 DL, in most cases
it is be syntactically illegal and generally does not have the expected semantic
meaning.

Premise Graph Conclusion Graph

foaf:Person rdf:type owl:Class .
ex:PersonAttribute owl:intersectionOf (

owl:DatatypeProperty
owl:FunctionalProperty [

rdf:type owl:Restriction ;
owl:onProperty rdfs:domain ;
owl:hasValue foaf:Person

]
) .
ex:name rdf:type ex:PersonAttribute .
ex:alice ex:name "alice" .

ex:name rdf:type owl:FunctionalProperty .
ex:alice rdf:type foaf:Person .

013 Cliques (Entailement) OWL 2 Full can define the metaclass of all cliques,
for which each instance is a clique of people that know everyone else in that
clique. The encoding is not supported by OWL 2 DL, since it uses built-in
vocabulary terms as regular entities. For RDF entailment rule reasoners, the
semantic requirements for producing all expected results are typically too high.
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Premise Graph Conclusion Graph

ex:Clique rdf:type owl:Class .
ex:sameCliqueAs

rdfs:subPropertyOf owl:sameAs ;
rdfs:range ex:Clique .

ex:Clique rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty ex:sameCliqueAs ;
owl:someValuesFrom ex:Clique

] .
foaf:knows

rdf:type owl:ObjectProperty ;
owl:propertyChainAxiom (
rdf:type
ex:sameCliqueAs
[owl:inverseOf rdf:type]

) .
ex:JoesGang rdf:type ex:Clique .
ex:alice rdf:type ex:JoesGang .
ex:bob rdf:type ex:JoesGang .

ex:alice foaf:knows ex:bob .

014 Harry belongs to some Species (Entailment) OWL 2 Full supports
the combination of metamodelling and class union. For example, provided that
the classes of eagles and falcons are both instances of the metaclass of species,
if one does not exactly know whether Harry is an eagle or a falcon, one can
still conclude that Harry must belong to some species. OWL 2 DL does not
support semantic conclusions from metamodeling, although it allows for some
metamodeling syntactically via “punning”. While many RDF entailment-rule
reasoners have some restricted support for semantic metamodeling, drawing said
conclusion from the union of classes typically goes beyond the capabilities of
these reasoners.

Premise Graph Conclusion Graph

ex:Eagle rdf:type ex:Species .
ex:Falcon rdf:type ex:Species .
ex:harry rdf:type [

owl:unionOf ( ex:Eagle ex:Falcon )
] .

ex:harry rdf:type _:x .
_:x rdf:type ex:Species .

015 Reflective Tautologies I (Entailment) In OWL 2 Full, the statement
“owl:sameAs owl:sameAs owl:sameAs” is a tautology. This is a classic example
used to demonstrate the use of built-in vocabulary terms as regular entities,
sometimes referred to as “syntax reflection”. It is not allowed in OWL 2 DL.
Some RDF entailment-rule reasoners, such as those implementing the OWL 2
RL/RDF rules, do provide this result.

Premise Graph Conclusion Graph

owl:sameAs owl:sameAs owl:sameAs .
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016 Reflective Tautologies II (Entailment) In OWL 2 Full, the class equiv-
alence property is a subproperty of the class subsumption property. This is an
example of the use of built-in vocabulary terms as regular entities, occasion-
ally referred to as “syntax reflection”. It is not allowed in OWL 2 DL. RDF
entailment-rule reasoners may contain this tautology as a special rule, but oth-
erwise cannot be expected to provide this result. For example, the result does
not follow from the OWL 2 RL/RDF rules.

Premise Graph Conclusion Graph

owl:equivalentClass
rdfs:subPropertyOf rdfs:subClassOf .

017 Builtin Based Definitions (Entailment) In OWL 2 Full, custom prop-
erties can be defined based on existing built-in properties. For example, a prop-
erty ex:noInstanceOf that is disjoint from rdf:type can be defined, and this
new property can be used to state non-membership, which has semantic rami-
fications. OWL 2 DL does not allow this. Entailment-rule reasoners can make
such assertions, and may provide some limited support for semantic conclusions.

Premise Graph Conclusion Graph

ex:notInstanceOf
owl:propertyDisjointWith rdf:type .

ex:w rdf:type ex:c .
ex:u ex:notInstanceOf ex:c .

ex:w owl:differentFrom ex:u .

018 Modified Logical Vocabulary Semantics (Entailment) The seman-
tics of OWL built-in vocabulary terms can be enriched in a way such that their
application leads to additional results that are not available from their original
meaning. For example, the domain and range of owl:sameAs can be restricted to
the class of persons, which renders all things that are equal into persons. OWL 2
DL does not allow this, while RDF entailment-rule reasoners often provide some
limited support.

Premise Graph Conclusion Graph

owl:sameAs rdfs:domain ex:Person .
ex:w owl:sameAs ex:u .

ex:u rdf:type ex:Person .

019 Disjoint Annotation Properties (Inconsistency) In OWL 2 Full, an-
notation properties are normal object properties. Thus, two annotation prop-
erties can be specified to be disjoint, and semantic conclusions can be drawn
from this disjointness. This feature is, for example, used in the SKOS specifica-
tion to define the meaning of lexical labels. OWL 2 DL provides only limited
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syntactic support for putting axioms on annotation properties, and does not pro-
vide any semantic conclusions. One can expect limited semantic support from
some RDF entailment-rule reasoners, such as those implementing the OWL 2
RL/RDF rules.

Graph

skos:prefLabel rdf:type owl:AnnotationProperty .
skos:prefLabel rdfs:subPropertyOf rdfs:label .
skos:altLabel rdf:type owl:AnnotationProperty .
skos:altLabel rdfs:subPropertyOf rdfs:label .
skos:prefLabel owl:propertyDisjointWith skos:altLabel .
ex:foo skos:prefLabel "foo" .
ex:foo skos:altLabel "foo" .

020 Logical Complications (Entailment) OWL 2 Full allows complex logi-
cal reasoning to be performed. For example, non-obvious subsumption relation-
ships between two classes can be inferred based on the application of disjointness
and different Boolean connectives. This kind of reasoning is generally possible
in unrestricted form in OWL 2 DL, but typically not with RDF entailment-rule
reasoners.

Premise Graph Conclusion Graph

ex:c owl:unionOf ( ex:c1 ex:c2 ex:c3 ) .
ex:d owl:disjointWith ex:c1 .
ex:d rdfs:subClassOf [

owl:intersectionOf (
ex:c
[ owl:complementOf ex:c2 ]

)
] .

ex:d rdfs:subClassOf ex:c3 .

021 Composite Enumerations (Entailment) OWL 2 Full allows for the
composition of enumerations via boolean connectives. For example, the union of
the classes {w1, w2} and {w2, w3} can be inferred to be equivalent to the class
{w1, w2, w3}. OWL 2 DL reasoners can be expected to provide this result, while
RDF entailment-rule reasoners are typically unable to produce the result.

Premise Graph Conclusion Graph

ex:c1 owl:oneOf ( ex:w1 ex:w2 ) .
ex:c2 owl:oneOf ( ex:w2 ex:w3 ) .
ex:c3 owl:oneOf ( ex:w1 ex:w2 ex:w3 ) .
ex:c4 owl:unionOf ( ex:c1 ex:c2 ) .

ex:c3 owl:equivalentClass ex:c4 .

022 List Member Access (Entailment) In OWL 2 Full, one can refer to all
items within an RDF list. For example, Chapter 9 of the SKOS Reference de-
fines ordered concept collections via the property skos:memberList applied to
some RDF list consisting of items of type skos:Concept. SKOS further defines
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non-ordered concept collections by applying the property skos:member repeat-
edly to single entities of type skos:Concept. SKOS statement S36 says that a
non-ordered concept collection can be inferred from an ordered collection. An
example is given in Section 9.6.1 of the SKOS Reference. OWL 2 Full allows
this statement to be expressed semantically. Both the encoding of S36 and the
example inference is given here. RDF entailment-rule reasoners implementing
the OWL 2 RL/RDF rules also produce the result. OWL 2 DL cannot make
assertions about RDF lists.

Premise Graph Conclusion Graph

skos:memberList rdfs:subPropertyOf _:pL .
skos:member owl:propertyChainAxiom (

_:pL
rdf:first

) .
_:pL owl:propertyChainAxiom (

_:pL
rdf:rest

) .
ex:MyOrderedCollection

rdf:type skos:OrderedCollection ;
skos:memberList ( ex:X ex:Y ex:Z ) .

ex:MyOrderedCollection skos:member ex:X .
ex:MyOrderedCollection skos:member ex:Y .
ex:MyOrderedCollection skos:member ex:Z .

023 Unique List Components (Entailment) In principle, it is possible to
create argument lists of OWL constructs that are non-linear. Section 3.3.3 of the
RDF Semantics specification allows semantic extensions to place extra syntactic
wellformedness restrictions on the use of the RDF Collections vocabulary in
order to rule out graphs containing non-linear lists. While OWL 2 Full does not
provide this directly, it can state that the List vocabulary property rdf:first

is a functional property. This has semantic consequences even if the argument
list of an OWL construct is given in a non-linear form. RDF entailment-rule
reasoners often have some limited support for these kinds of results. OWL 2 DL
cannot make assertions about RDF lists.

Premise Graph Conclusion Graph

rdf:first rdf:type owl:FunctionalProperty .
ex:w rdf:type [

rdf:type owl:Class ;
owl:oneOf _:l

] .
_:l rdf:first ex:u .
_:l rdf:first ex:v .
_:l rdf:rest rdf:nil .

ex:w owl:sameAs ex:u .
ex:w owl:sameAs ex:v .

024 Cardinality Restrictions on Complex Properties (Entailment) OWL 2
DL does cannot place cardinality restrictions on transitive properties. OWL 2
Full allows this. This can, for example, be used to state that every person has
at least one ancestor. The existence of an ancestor can then be inferred for any
given person. RDF entailment-rule reasoners may provide some limited support
but typically are unable to produce the result of this particular example.
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Premise Graph Conclusion Graph

ex:hasAncestor
rdf:type owl:TransitiveProperty .

ex:Person rdfs:subClassOf [
rdf:type owl:Restriction ;
owl:onProperty ex:hasAncestor ;
owl:minCardinality

"1"^^xsd:nonNegativeInteger
] .
ex:alice rdf:type ex:Person .
ex:bob rdf:type ex:Person .
ex:alice ex:hasAncestor ex:bob .

ex:bob ex:hasAncestor _:x .
ex:alice ex:hasAncestor _:x .

025 Cyclic Dependencies between Complex Properties (Entailment) OWL 2
DL does not allow cyclic dependencies between complex properties that are de-
fined via subproperty chain axioms. OWL 2 Full allows this. For example, the
uncle relation and the cousin relation can be expressed mutually in terms of
the other relation using two subproperty chain axioms. This provides for more
precise characterizations of properties than it is possible in OWL 2 DL. RDF
entailment rule reasoners that implement the OWL 2 RL/RDF rules provide
limited support for reasoning in such scenarios.

Premise Graph Conclusion Graph

ex:hasUncle owl:propertyChainAxiom (
ex:hasCousin
ex:hasFather

) .
ex:hasCousin owl:propertyChainAxiom (

ex:hasUncle
[ owl:inverseOf ex:hasFather ]

) .
ex:alice ex:hasFather ex:dave .
ex:alice ex:hasCousin ex:bob .
ex:bob ex:hasFather ex:charly .
ex:bob ex:hasUncle ex:dave .

ex:alice ex:hasUncle ex:charly .
ex:bob ex:hasCousin ex:alice .

026 Inferred Property Characteristics I (Entailment) In OWL 2 Full,
as in OWL 2 DL, a property that has a domain and a range being singleton
classes is entailed to be an inverse-functional property. RDF entailment-rule
reasoners cannot be expected to provide this result, since it requires sophisticated
reasoning.

Premise Graph Conclusion Graph

ex:p rdfs:domain [ owl:oneOf ( ex:w ) ] .
ex:p rdfs:range [ owl:oneOf ( ex:u ) ] .

ex:p rdf:type owl:InverseFunctionalProperty .

027 Inferred Property Characteristics II (Entailment) In OWL 2 Full,
if the chain of a property and its inverse property builds a subproperty chain
of owl:sameAs, then that property is inverse-functional. The application of the
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built-in vocabulary term owl:sameAs is not allowed in OWL 2 DL. Newer RDF
entailment-rule reasoners, such as those implementing the OWL 2 RL/RDF
rules, may provide some limited semantic support.

Premise Graph Conclusion Graph

owl:sameAs owl:propertyChainAxiom (
ex:p
[owl:inverseOf ex:p]

) .

ex:p rdf:type owl:InverseFunctionalProperty .

028 Inferred Property Characteristics III (Entailment) In OWL 2 Full,
instead of using the built-in property characteristics of inverse-functional prop-
erties, properties can be made into instances of the custom class of the inverses
of all functional properties. OWL 2 DL does not allow the use of built-in vocab-
ulary terms as regular entities. For RDF entailment-rule reasoners, the semantic
result given in this example is typically too demanding.

Premise Graph Conclusion Graph

ex:InversesOfFunctionalProperties
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty owl:inverseOf ;
owl:someValuesFrom owl:FunctionalProperty

] .

ex:InversesOfFunctionalProperties
rdfs:subClassOf owl:InverseFunctionalProperty .

029 Ex Falso Quodlibet (Entailment) In OWL 2 Full, an inconsistent premise
ontology entails arbitrary conclusion ontologies (“principle of explosion”, “ex
falso sequitur quodlibet”). OWL 2 DL has the same semantic property, but
many existing OWL 2 DL reasoners signal an error when given an inconsistent
premise ontology, and do not produce the expected result (however, it would
be trivial to extend an OWL 2 DL reasoner to give the result as a reaction to
an inconsistency error). RDF entailment-rule reasoners cannot be expected to
produce tyhis result, since it requires full semantic support for classical negation.

Premise Graph Conclusion Graph

ex:A rdf:type owl:Class .
ex:B rdf:type owl:Class .
ex:w rdf:type [

owl:intersectionOf (
ex:A
[owl:complementOf ex:A]

)
] .

ex:w rdf:type ex:B .

030 Bad Class (Inconsistency) If an OWL 2 Full ontology contains a class
that has the Russell Set as its class extension, then the ontology is inconsistent.
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This situation would occur for even the empty ontology if the so-called OWL 2
Full comprehension conditions, as non-normatively defined in Chapter 8 of the
OWL 2 RDF-Based Semantics, were a normative part of OWL 2 Full, as ex-
plained in Chapter 9 of the specification document. OWL 2 DL does not know
about this issue, and RDF entailment-rule reasoners cannot be expected to know
about it due to their relatively weak semantics.

Graph

ex:c rdf:type owl:Class .
ex:c owl:complementOf [

rdf:type owl:Restriction ;
owl:onProperty rdf:type ;
owl:hasSelf "true"^^xsd:boolean

] .

031 Large Universe (Inconsistency) The universe of an OWL 2 Full inter-
pretation cannot consist of only a single individual. This means that owl:Thing
cannot be equivalent to a singleton enumeration class, without leading to an
inconsistent ontology. This is different from OWL 2 DL, for which the only re-
striction on the universe is that it has to be non-empty. RDF entailment-rule
reasoners cannot be expected to provide the inconsistency result, since this re-
quires strong logic-based reasoning.

Graph

owl:Thing owl:equivalentClass [
owl:oneOf ( ex:w )

] .

032 Datatype Relationships (Entailment) According to the XSD Datatypes
specification, the value spaces of the datatypes xsd:decimal and xsd:string

are disjoint, while the value space of xsd:integer is a subset of the value space
of xsd:decimal. In OWL 2 Full, these relationships between the data values of
datatypes can be observed as corresponding relationships between the classes
representing these datatypes. OWL 2 DL also follows the XSD semantics, but it
does not support to explicitly query for subsumption or disjointness relationships
between datatypes. Some RDF entailment-rule reasoners may decide to provide
the different relationships between XSD datatypes as explicit facts or rules, but
cannot, in general, be expected to do so.

Premise Graph Conclusion Graph

xsd:decimal owl:disjointWith xsd:string .
xsd:integer rdfs:subClassOf xsd:decimal .
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B.2 Correctness Proofs

This section provides correctness proofs for all test cases listed in Section B.1.
The proofs have been constructed with respect to the OWL 2 RDF Based Seman-
tics [12] and the RDF Semantics [5], which conjointly specify the model-theoretic
semantics of OWL 2 Full.

001 Subgraph Entailment (Proof) Let I be an OWL 2 RDF-Based inter-
pretation that satisfies the premise graph, so the following becomes true:

〈I(ex:c), I(ex:r)〉 ∈ IEXT(I(rdfs:subClassOf))
〈I(ex:r), I(owl:Restriction)〉 ∈ IEXT(I(rdf:type))
〈I(ex:r), I(ex:p)〉 ∈ IEXT(I(owl:onProperty))
〈I(ex:r), I(ex:d)〉 ∈ IEXT(I(owl:someValuesFrom))

Then, in particular, the conjunction of the subset of atoms

〈I(ex:r), I(owl:Restriction)〉 ∈ IEXT(I(rdf:type))
〈I(ex:r), I(ex:p)〉 ∈ IEXT(I(owl:onProperty))

is also satisfied.

002 Existential Blank Nodes (Proof) Let I be an OWL 2 RDF-Based in-
terpretation interpretation and B be a blank node mapping for the blank nodes
in the premise graph, such that I + B satisfies the premise graph. This gives

∃o : 〈I(ex:s), o〉 ∈ IEXT(I(ex:p)) ∧ 〈o, I(ex:s)〉 ∈ IEXT(I(ex:q))

Weakening this statement by introducing an existentially quantified variable for
I(ex:s) logically implies

∃x, y : 〈x, y〉 ∈ IEXT(I(ex:p)) ∧ 〈y, x〉 ∈ IEXT(I(ex:q))

Thus, there is a blank node mapping B′, such that I+B′ satisfies the conclusion
graph.

003 Blank Nodes for Literals (Proof) Let I be an OWL 2 RDF-Based
interpretation that satisfies the premise graph. Then from

〈I(ex:s), I("foo")〉 ∈ IEXT(I(ex:p))

and taking into account that literals denote individuals in the universe, we receive
the formally weaker assertion

∃x : 〈I(ex:s), x〉 ∈ IEXT(I(ex:p))

Thus, there is a blank node mapping B, such that I +B satisfies the conclusion
graph.
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004 Axiomatic Triples (Proof) Given a satisfying OWL 2 RDF-Based in-
terpretation I for the empty graph.
1) Claim: 〈I(owl:Class), I(owl:Thing)〉 ∈ IEXT(I(rdf:type)).
Proof: The denotation of owl:Class is in the universe, i.e., I(owl:Class) ∈ IR.
The claim follows from ICEXT(I(owl:Thing)) = IR (OWL2/Tab5.2) and from
the RDFS semantic condition defining “ICEXT”.
2) Claim: 〈I(owl:Class), I(owl:Class)〉 ∈ IEXT(I(rdf:type)).
Proof: I(owl:Class) ∈ IC and ICEXT(I(owl:Class)) = IC (OWL2/Tab5.2).
The claim follows from the RDFS semantic condition defining “ICEXT”.
3) Claim: 〈I(owl:Class), I(owl:Thing)〉 ∈ IEXT(I(rdfs:subClassOf)).
Proof: According to 2), I(owl:Class) ∈ IC. Further, I(owl:Thing) ∈ IC accord-
ing to OWL2/Tab5.2. Given arbitrary x ∈ ICEXT(I(owl:Class)), then x ∈ IR,
and thus x ∈ ICEXT(I(owl:Thing)) according to OWL2/Tab5.2. The claim
follows from using the “←” direction of the OWL 2 semantic condition for class
subsumption (OWL2/Tab5.8).
4) Claim: 〈I(owl:Class), I(rdfs:Class)〉 ∈ IEXT(I(owl:equivalentClass)).
Proof: According to 2), we get I(owl:Class) ∈ IC. According to OWL2/Tab5.2,
we get I(rdfs:Class) ∈ IC. From OWL2/Tab5.2 we get ICEXT(I(owl:Class)) =
IC = ICEXT(I(rdfs:Class)). The claim follows from using the “←” direction
of the OWL 2 semantic condition for class equivalence (OWL2/Tab5.9).
5) Claim: 〈I(rdfs:Datatype), I(owl:Class)〉 ∈ IEXT(I(rdfs:subClassOf)).
Proof: According to 2), we get I(owl:Class) ∈ IC. According to OWL2/Tab5.2,
we get I(rdfs:Datatype) ∈ IC. Given arbitrary x ∈ ICEXT(I(rdfs:Datatype)).
By OWL2/Tab5.2 we get x ∈ IDC. Then, OWL2/Tab5.1 gives x ∈ IC. Fi-
nally, OWL2/Tab5.2 gives x ∈ ICEXT(I(owl:Class)). The claim now follows
from the “←” direction of the OWL 2 semantic condition for class subsumption
(OWL2/Tab5.8).

005 Everything is a Resource (Proof) Let I be an OWL 2 RDF-Based
interpretation that satisfies the premise graph.
1a) Claim: I(ex:s) ∈ IR, I(ex:p) ∈ IR, I(ex:o) ∈ IR.
Proof: Since I is a simple-interpretation, I(ex:s) and I(ex:o) are in IR, and
I(ex:p) is in IP. According to the RDF semantic condition that defines “IP”,
〈I(ex:p), I(rdf:Property)〉 ∈ IEXT(I(rdf:type), and thus I(ex:p) ∈ IR.
1b) Claim: 〈I(ex:s), I(rdfs:Resource)〉 ∈ IEXT(I(rdf:type)), and ditto for
ex:p and ex:o.
Proof: 1a) showed I(ex:s) ∈ IR, and from the RDFS semantic condition that
defines the class extension of rdfs:Resource to be the set IR follows I(ex:s) ∈
ICEXT(I(rdfs:Resource)). The claim follows from the RDFS semantic condi-
tion that defines “ICEXT”. Analog proofs apply to ex:p and ex:o.
1c) Claim: 〈I(ex:s), I(owl:Thing)〉 ∈ IEXT(I(rdf:type)), and ditto for ex:p

and ex:o.
Proof: As for 1b), but applying the OWL 2 semantic condition that defines the
extension of owl:Thing (OWL2/Tab5.2) instead of rdfs:Resource.
2a) Claim: I(ex:p) ∈ IP.
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Proof: This follows directly from I being a simple-interpretation that satisfies
the premise graph.
2b) Claim: 〈I(ex:p), I(rdf:Property)〉 ∈ IEXT(I(rdf:type)).
Proof: According to 2a), I(ex:p) ∈ IP, and the RDF semantic condition that
defines “IP” provides the claim.
2c) Claim: 〈I(ex:p), I(owl:ObjectProperty)〉 ∈ IEXT(I(rdf:type)).
Proof: According to 2a), I(ex:p) ∈ IP, and according to OWL2/Tab5.2 the class
extension of I(owl:ObjectProperty) is IP. The claim follows from the RDFS
semantic extension that defines “ICEXT”.

006 Literal Values represented by URIs and Blank Nodes (Proof) Let
I be an OWL 2 RDF-Based interpretation and B be a blank node mapping for
the blank nodes in the premise graph such that I+B satisfies the premise graph.
Given an x, such that

(1) 〈I(ex:u), I("abc")〉 ∈ IEXT(I(owl:sameAs)), and
(2) 〈x, I("abc")〉 ∈ IEXT(I(owl:sameAs)), and
(3) 〈x, I(ex:w)〉 ∈ IEXT(I(owl:sameAs)).

By the “→” direction of the semantic condition for owl:sameAs (OWL2/Tab5.9),
we receive that

(1′) I(ex:u) = I("abc"), and
(2′) x = I("abc"), and
(3′) x = I(ex:w).

From (2’) and (3’) we conclude that

(4) I("abc") = I(ex:w).

From (1’) and (4) we conclude

(5) I(ex:u) = I(ex:w).

From the “←” direction of the semantic condition for owl:sameAs (OWL2/Tab5.9),
we conclude

(6)〈I(ex:u), I(ex:w)〉 ∈ IEXT(I(owl:sameAs)).

007 Equal Classes (Proof) Let I be an OWL 2 RDF-Based interpretation
that satisfies the premise graph. From the fact

〈I(ex:c1), I(ex:c2)〉 ∈ IEXT(I(owl:sameAs))

the “→” direction of the semantic condition for owl:sameAs (OWL2/Tab5.9)
provides

I(ex:c1) = I(ex:c2).
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So we can substitute any occurrence of I(ex:c1) by I(ex:c2). Hence, from the
premises

〈I(ex:w), I(ex:c1)〉 ∈ IEXT(I(rdf:type))
〈I(ex:c), I(ex:c1)〉 ∈ IEXT(I(rdfs:subClassOf))
〈I(ex:p), I(ex:c1)〉 ∈ IEXT(I(rdfs:range))

we receive the corresponding conclusions

〈I(ex:w), I(ex:c2)〉 ∈ IEXT(I(rdf:type))
〈I(ex:c), I(ex:c2)〉 ∈ IEXT(I(rdfs:subClassOf))
〈I(ex:p), I(ex:c2)〉 ∈ IEXT(I(rdfs:range))

008 Inverse Functional Data Properties (Proof) Let I be an OWL 2
RDF-Based interpretation that satisfies the premise graph. We start from

(1a) 〈I(ex:bob), I("xyz")〉 ∈ IEXT(I(foaf:mbox sha1sum)), and
(1b) 〈I(ex:robert), I("xyz")〉 ∈ IEXT(I(foaf:mbox sha1sum)),

as well as from

(2) 〈I(foaf:mbox sha1sum), I(owl:InverseFunctionalProperty)〉 ∈ IEXT(I(rdf:type)).

From (2) and the “→” direction of the RDFS semantic condition for ICEXT we
receive

(2′) I(foaf:mbox sha1sum) ∈ ICEXT(I(owl:InverseFunctionalProperty)).

This allows to apply the “→” direction of semantic condition for inverse-functional
properties (OWL2/Tab5.13), which provides

(3) ∀x1 , x2 , y :
〈x1, y〉 ∈ IEXT(I(foaf:mbox sha1sum)) ∧
〈x2, y〉 ∈ IEXT(I(foaf:mbox sha1sum))
⇒ x1 = x2

Applying (3) to (1a) and (1b) with

x1 := I(ex:bob),
x2 := I(ex:robert), and
y := I("xyz")

results in
(4) I(ex:bob) = I(ex:robert).

Using the “←” direction of the semantic condition for owl:sameAs (OWL2/Tab5.9)
results in

(5) 〈I(ex:bob), I(ex:robert)〉 ∈ IEXT(I(owl:sameAs)).



Reasoning in OWL 2 Full using First-Order ATP 43

009 Existential Restriction Entailments (Proof) Let I be an OWL 2
RDF-Based interpretation and B be a blank node mapping for the blank nodes
in the premise graph such that I +B satisfies the premise graph. Given a z such
that the following holds:

(1a) 〈I(ex:p), I(owl:ObjectProperty)〉 ∈ IEXT(I(rdf:type)) ,
(1b) 〈I(ex:c), I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈I(ex:s), z〉 ∈ IEXT(I(rdf:type)) ,
(1d) 〈z, I(owl:Restriction)〉 ∈ IEXT(I(rdf:type)) ,
(1e) 〈z, I(ex:p)〉 ∈ IEXT(I(owl:onProperty)) ,
(1f) 〈z, I(ex:c)〉 ∈ IEXT(I(owl:someValuesFrom)) .

From the RDFS semantic condition for ICEXT (“→” direction) and (1c) follows
(2) I(ex:s) ∈ ICEXT(z) . From the semantic condition of owl:someValuesFrom
(OWL2/Tab5.6), (1e) and (1f) follows

(3) ∀y : y ∈ ICEXT(z)⇔
∃x : [ 〈y, x〉 ∈ IEXT(I(ex:p)) ∧ x ∈ ICEXT(I(ex:c)) ] .

From (2) and (3) follows

(4) ∃x : 〈I(ex:s), x〉 ∈ IEXT(I(ex:p)) ∧ x ∈ ICEXT(I(ex:c)) .

By the RDFS semantic condition for ICEXT (“←” direction) and (4) we receive

(5) ∃x : 〈I(ex:s), x〉 ∈ IEXT(I(ex:p)) ∧ 〈x, I(ex:c)〉 ∈ IEXT(I(rdf:type)) .

010 Negative Property Assertions (Proof) Let I be an OWL 2 RDF-
Based interpretation and B be a blank node mapping for the blank nodes in
the premise graph such that I + B satisfies the premise graph. Let x1, x2, x3

and x4 be individuals, such that the following holds

(1a) 〈I(ex:p), I(owl:ObjectProperty)〉 ∈ IEXT(I(rdf:type)) ,
(1b) 〈I(ex:s), x1〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈x1, I(ex:p)〉 ∈ IEXT(I(owl:onProperty)) ,
(1d) 〈x1, x2〉 ∈ IEXT(I(owl:allValuesFrom)) ,
(1e) 〈x2, x3〉 ∈ IEXT(I(owl:complementOf)) ,
(1f) 〈x3, x4〉 ∈ IEXT(I(owl:oneOf)) ,
(1g) 〈x4, I(ex:o)〉 ∈ IEXT(I(rdf:first)) ,
(1h) 〈x4, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

From the RDFS semantic condition for ICEXT (“→” direction) and (1b) follows

(2b) I(ex:s) ∈ ICEXT(x1) .

From the semantic condition for owl:allValuesFrom (OWL2/Tab5.6), (1c) and
(1d) follows

(2c) ∀y : y ∈ ICEXT(x1)⇔
∀z : [〈y, z〉 ∈ IEXT(I(ex:p))⇒ z ∈ ICEXT(x2)] .
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From the “→” direction of the semantic condition for class complement (OWL2/Tab5.4)
and (1e) follows

(2e) ∀y : y ∈ ICEXT(x2)⇔ y /∈ ICEXT(x3) .

From the “→” direction of the semantic condition for singleton enumerations
(OWL2/Tab5.5) and (1f), (1g) and (1h) follows

(2f) ∀y : y ∈ ICEXT(x3)⇔ y = I(ex:o) .

Assume that
(3) 〈I(ex:s), I(ex:o)〉 ∈ IEXT (I(ex:p)) .

By (2b), (2c) and (3) we receive

(4) I(ex:o) ∈ ICEXT(x2) .

By (4) and (2e) follows

(5) I(ex:o) /∈ ICEXT(x3) .

By (5) and (2f) follows

(6) I(ex:o) 6= I(ex:o) .

This is a contradiction, hence assumption (3) was wrong. So we have:

(3′) 〈I(ex:s), I(ex:o)〉 /∈ IEXT(I(ex:p)) .

Since I is a simple-interpretation, we receive

(7a) I(ex:s) ∈ IR ,
(7b) I(ex:o) ∈ IR .

By the property extension of owl:onProperty (OWL2/Tab5.3) follows

(7c) I(ex:p) ∈ IP .

From the second semantic condition for NPAs in OWL2/Tab5.15, (3’), (7a), (7b)
and (7c) follows that there exists some z, such that

(8a) 〈z, I(ex:s)〉 ∈ IEXT(I(owl:sourceIndividual)) ,
(8b) 〈z, I(ex:p)〉 ∈ IEXT(I(owl:assertionProperty)) ,
(8c) 〈z, I(ex:o)〉 ∈ IEXT(I(owl:targetIndividual)) .

Finally, from the property extension of owl:sourceIndividual and (8a) follows

(9) z ∈ ICEXT(I(owl:NegativePropertyAssertion)) ,

which by the “←” direction of the RDFS semantic condition for ICEXT results
in

(9′) 〈z, I(owl:NegativePropertyAssertion)〉 ∈ IEXT(I(rdf:type)) .

The result consists of (9), (8a), (8b) and (8c).
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011 Entity Types as Classes (Proof) Let I be an OWL 2 RDF-Based in-
terpretation that satisfies the premise graph. We start from the facts:

(1a) 〈I(owl:Class), I(owl:ObjectProperty)) ∈ IEXT(I(owl:disjointWith)) ,
(1b) 〈I(ex:x), I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈I(ex:x), I(owl:ObjectProperty)〉 ∈ IEXT(I(rdf:type)) .

First, by the “→” direction of RDFS semantic condition of ICEXT, we rewrite
(1b) and (1c) to

(1b′) I(ex:x) ∈ ICEXT(I(owl:Class)) ,
(1c′) I(ex:x) ∈ ICEXT(I(owl:ObjectProperty)) .

By the “→” direction of the semantic condition for class disjointness (OWL2/Tab5.9)
and (1a) follows

(2) ∀z : ¬ [z ∈ ICEXT(I(owl:Class)) ∧ z ∈ ICEXT(I(owl:ObjectProperty))] .

Specialization (2) to z := I(ex:x) implies

(3) ¬ [I(ex:x) ∈ ICEXT(I(owl:Class)) ∧ I(ex:x) ∈ ICEXT(owl:ObjectProperty))] .

Now (3) is in contradiction with (1b’) and (1c’).

012 Template Class (Proof) Let I be an OWL 2 RDF-Based interpretation
and B be a blank node mapping for the blank nodes in the premise graph such
that I + B satisfies the premise graph. Given the existence of individuals l1, l2,
l3 and r, such that

(1a1) 〈I(foaf:Person), I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1b1) 〈I(ex:PersonAttribute), l1〉 ∈ IEXT(I(owl:intersectionOf)) ,
(1c1) 〈l1, I(owl:DatatypeProperty)〉 ∈ IEXT(I(rdf:first)) ,
(1c2) 〈l1, l2〉 ∈ IEXT(I(rdf:rest)) ,
(1c3) 〈l2, I(owl:FunctionalProperty)〉 ∈ IEXT(I(rdf:first)) ,
(1c4) 〈l2, l3〉 ∈ IEXT(I(rdf:rest)) ,
(1c5) 〈l3, r〉 ∈ IEXT(I(rdf:first)) ,
(1c6) 〈l3, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1d1) 〈r, I(owl:Restriction)〉 ∈ IEXT(I(rdf:type)) ,
(1d2) 〈r, I(rdfs:domain)〉 ∈ IEXT(I(owl:onProperty)) ,
(1d3) 〈r, I(foaf:Person)〉 ∈ IEXT(I(owl:hasValue)) ,
(1e1) 〈I(ex:name), I(ex:PersonAttribute)〉 ∈ IEXT(I(rdf:type)) ,
(1f1) 〈I(ex:alice), I("alice")〉 ∈ IEXT(I(ex:name)) .

From (1b1), (1c1) – (1c6), and the semantic condition for class intersection
(OWL2/Tab5.4, “→”, ternary) follows

(2) ∀x : x ∈ ICEXT(I(ex:PersonAttribute))⇔
x ∈ ICEXT(I(owl:DatatypeProperty)) ∧
x ∈ ICEXT(I(owl:FunctionalProperty)) ∧
x ∈ ICEXT(r) .
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From (1e1) and the RDFS semantic condition for ICEXT (“→”) follows

(3) I(ex:name) ∈ ICEXT(I(ex:PersonAttribute)) .

From (3) and (2) follows

(4) I(ex:name) ∈ ICEXT(I(owl:FunctionalProperty)) .

From (4) and the RDFS semantic condition for ICEXT (“←”) follows

(5) 〈I(ex:name), I(owl:FunctionalProperty)〉 ∈ IEXT(I(rdf:type)) .

From (1d2), (1d3) and the semantic condition for has-value restrictions (OWL2/Tab5.6)
follows

(6) ∀x : x ∈ ICEXT (r)⇔
〈x, I(foaf:Person)〉 ∈ IEXT(I(rdfs:domain)) .

From (3) and (2) follows

(7) I(ex:name) ∈ ICEXT(r) .

From (7) and (6) follows

(8) 〈I(ex:name), I(foaf:Person)〉 ∈ IEXT(I(rdfs:domain)) .

From (1f1), (8) and the RDFS semantic condition for property domains follows

(9) I(ex:alice) ∈ ICEXT(I(foaf:Person)) .

From (9) and the RDFS semantic condition for ICEXT (“←”) follows

(10) 〈I(ex:alice), I(foaf:Person)〉 ∈ IEXT(I(rdf:type)) .

The conjecture follows from (5) and (10).

013 Cliques (Proof) Let I be an OWL 2 RDF-Based interpretation and B
be a blank node mapping for the blank nodes in the premise graph such that
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I + B satisfies the premise graph. Let there be r, i, l1, l2 and l3 such that

(1a) 〈I(ex:Clique), I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1b) 〈I(ex:sameCliqueAs), I(owl:sameAs)〉 ∈ IEXT(I(rdfs:subPropertyOf)) ,
(1c) 〈I(ex:sameCliqueAs), I(ex:Clique)〉 ∈ IEXT(I(rdfs:range)) ,
(1d) 〈I(ex:Clique), r〉 ∈ IEXT(I(rdfs:subClassOf)) ,
(1e) 〈r, I(owl:Restriction)〉 ∈ IEXT(I(rdf:type)) ,
(1f) 〈r, I(ex:sameCliqueAs)〉 ∈ IEXT(I(owl:onProperty)) ,
(1g) 〈r, I(ex:Clique)〉 ∈ IEXT(I(owl:someValuesFrom)) ,
(1h) 〈I(foaf:knows), I(owl:ObjectProperty)〉 ∈ IEXT(I(rdf:type)) ,
(1j) 〈I(foaf:knows), l1〉 ∈ IEXT(I(owl:propertyChainAxiom)) ,
(1k) 〈l1, I(rdf:type)〉 ∈ IEXT(I(rdf:first)) ,

(1m) 〈l1, l2〉 ∈ IEXT(I(rdf:rest)) ,
(1n) 〈l2, I(ex:sameCliqueAs)〉 ∈ IEXT(I(rdf:first)) ,
(1o) 〈l2, l3〉 ∈ IEXT(I(rdf:rest)) ,
(1p) 〈l3, i〉 ∈ IEXT(I(rdf:first)) ,
(1q) 〈l3, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1r) 〈i, I(rdf:type)〉 ∈ IEXT(I(owl:inverseOf)) ,
(1s) 〈I(ex:JoesGang), I(ex:Clique)〉 ∈ IEXT(I(rdf:type)) ,
(1t) 〈I(ex:alice), I(ex:JoesGang)〉 ∈ IEXT(I(rdf:type)) ,
(1u) 〈I(ex:bob), I(ex:JoesGang)〉 ∈ IEXT(I(rdf:type)) .

From (1s) and the RDFS semantic condition of “ICEXT” (“→”) follows

(1s′) I(ex:JoesGang) ∈ ICEXT(I(ex:Clique)) .

From (1d) and the OWL 2 semantic condition of class subsumption (OWL2/Tab5.8,
“→”) follows

(2) ∀x : x ∈ ICEXT(I(ex:Clique))⇒ x ∈ ICEXT(r) .

From (1f) – (1g) and the semantic condition for existential property restrictions
(OWL2/Tab5.6) follows

(3) ∀x : x ∈ ICEXT(r)⇔
∃y : 〈x, y〉 ∈ IEXT(I(ex:sameCliqueAs)) ∧ y ∈ ICEXT(I(ex:Clique)) .

From (1s’), (2) and (3) follows

(4) ∃y : 〈I(ex:JoesGang), y〉 ∈ IEXT(I(ex:sameCliqueAs)) .

According to (4), we can find some y such that

(5) 〈I(ex:JoesGang), y〉 ∈ IEXT(I(ex:sameCliqueAs)) .

By applying the OWL 2 semantic condition for property subsumption OWL2/Tab5.8,
“↔”) and (1b) to (5), we receive

(6) 〈I(ex:JoesGang), y〉 ∈ IEXT(I(ex:sameAs)) .
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Now, the semantic condition for owl:sameAs (OWL2/Tab5.9, “→”) applied to
(6) which yields

(6) y = I(ex:JoesGang) .

By (4) and (6) we receive

(7) 〈I(ex:JoesGang), I(ex:JoesGang)〉 ∈ IEXT(I(ex:sameCliqueAs)) .

From (1r) and the semantic condition for inverse properties (OWL2/Tab5.12,
“→”) follows

(8) ∀x y : 〈x, y〉 ∈ IEXT(i)⇔ 〈y, x〉 ∈ IEXT(I(rdf:type)) .

From (1u) and (8) follows:

(9) 〈I(ex:JoesGang), I(ex:bob)〉 ∈ IEXT(i) .

From (1j) – (1q) and the semantic condition for sub property chains (OWL2/Tab5.11,
“→”, ternary) we receive

(10) ∀y0, y1, y2, y3 :
〈y0, y1〉 ∈ IEXT(I(rdf:type)) ∧
〈y1, y2〉 ∈ IEXT(I(ex:sameCliqueAs)) ∧
〈y2, y3〉 ∈ IEXT(i)
⇒ 〈y0, y3〉 ∈ IEXT(I(foaf:knows)) .

Finally, from (10), (1t), (7) and (9) follows

(11) 〈I(ex:alice), I(ex:bob)〉 ∈ IEXT(I(foaf:knows)) .

014 Harry belongs to some Species (Proof) Let I be an OWL 2 RDF-
Based interpretation and B be a blank node mapping for the blank nodes in the
premise graph such that I + B satisfies the premise graph. Let u, l1 and l2 be
individuals such that the following holds:

(1a) 〈I(ex:Eagle), I(ex:Species)〉 ∈ IEXT(I(rdf:type)) ,
(1b) 〈I(ex:Falcon), I(ex:Species)〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈I(ex:harry), u〉 ∈ IEXT(I(rdf:type)) ,

(1d1) 〈u, l1〉 ∈ IEXT(I(owl:unionOf)) ,
(1d2) 〈l1, I(ex:Eagle)〉 ∈ IEXT(I(rdf:first)) ,
(1d3) 〈l1, l2〉 ∈ IEXT(I(rdf:rest)) ,
(1d4) 〈l2, I(ex:Falcon)〉 ∈ IEXT(I(rdf:first)) ,
(1d5) 〈l2, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

We prove the claim by classical dilemma.
Case 1: 〈I(ex:harry), I(ex:Eagle)〉 ∈ IEXT(I(rdf:type)) .

Then, together with (1a) follows:

(2) ∃x : 〈I(ex:harry), x〉 ∈ IEXT(I(rdf:type)) ∧
〈x, I(ex:Species)〉 ∈ IEXT(I(rdf:type)) .
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Case 2: 〈I(ex:harry), I(ex:Eagle)〉 /∈ IEXT(I(rdf:type)) .

By the RDFS semantic condition of ICEXT (“→”) we get

(3) I(ex:harry) /∈ ICEXT(I(ex:Eagle)) .

Likewise, from (1c) and the RDFS semantic condition of ICEXT (“→”) we get

(4) I(ex:harry) ∈ ICEXT(u) .

From (1d1) – (1d5) and the semantic condition of class union (OWL2/Tab5.4,
“→”, binary) follows

(5) ∀x : x ∈ ICEXT(u)⇔
x ∈ ICEXT(I(ex:Eagle)) ∨ x ∈ ICEXT(I(ex:Falcon)) .

Specializing (4) to x := I(ex:harry) implies

(6) I(ex:harry) ∈ ICEXT(u)⇔
I(ex:harry) ∈ ICEXT(ex:Eagle) ∨ I(ex:harry) ∈ ICEXT(ex:Falcon) .

By (4), (6) and (3) we get

(7) I(ex:harry) ∈ ICEXT(I(ex:Falcon)) .

Using the RDFS semantic condition of ICEXT (“←”) results in

(8) 〈I(ex:harry), I(ex:Falcon)〉 ∈ IEXT(I(rdf:type)) .

From (8) and (1b) follows:

(9) ∃x : 〈I(ex:harry), x〉 ∈ IEXT(I(rdf:type)) ∧
〈x, I(ex:Species)〉 ∈ IEXT(I(rdf:type)) .

Since (2) and (9) are the same result from the contrary assumed cases, we
get the claimed result.

015 Reflective Tautologies I (Proof) Let I be a satisfying OWL 2 RDF-
Based interpretation for the empty graph. It is true that

I(owl:sameAs) = I(owl:sameAs) .

By the “←” direction of semantic condition for owl:sameAs (OWL2/Tab5.9) we
receive

〈I(owl:sameAs), I(owl:sameAs)〉 ∈ IEXT(I(owl:sameAs)) .
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016 Reflective Tautologies II (Proof) Let I be a satisfying OWL 2 RDF-
Based interpretation for the empty graph. Given arbitrary c1, c2, and assume
the following to hold:

(1) 〈c1, c2〉 ∈ IEXT(I(owl:equivalentClass)) .

From the “→” direction of the semantic condition for class equivalence (OWL2/Tab5.9)
and from the property extension of owl:equivalentClass (OWL2/Tab5.3) fol-
lows

(2a) c1 ∈ IC ,
(2b) c2 ∈ IC ,
(2c) ∀x : x ∈ ICEXT(c1)⇔ x ∈ ICEXT(c2) .

From (2c) follows the weaker result

(3) ∀x : x ∈ ICEXT(c1)⇒ x ∈ ICEXT(c2) .

From (2a), (2b) and (3) and the “←” direction of the OWL 2 semantic condition
of class subsumption (OWL2/Tab5.8) follows

(4) 〈c1, c2〉 ∈ IEXT(I(rdfs:subClassOf)) .

Since (4) follows from (1) and since c1 and c2 were chosen arbitrarily, we get

(5) ∀x, y : 〈x, y〉 ∈ IEXT(I(owl:equivalentClass))
⇒ 〈x, y〉 ∈ IEXT(I(rdfs:subClassOf)) .

For property owl:equivalentClass we receive from OWL2/Tab5.3

(6a) I(owl:equivalentClass) ∈ IP .

and for property rdfs:subClassOf we receive from the RDFS axiomatic triples

(6b) 〈I(rdfs:subClassOf), I(rdf:Property)〉 ∈ IEXT(I(rdf:type)) .

By the “←” direction of the RDF semantic condition of IP and IEXT we receive
from (6b):

(6b′) I(rdfs:subClassOf) ∈ IP .

From (5), (6a) and (6b’) and from the “←” direction of the OWL 2 semantic
condition for property subsumption (OWL2/Tab5.8) we finally receive

(7) 〈I(owl:equivalentClass), I(rdfs:subClassOf)〉 ∈ IEXT(I(rdfs:subPropertyOf)) .

017 Builtin Based Definitions (Proof) Let I be an OWL 2 RDF-Based
interpretation that satisfies the premise graph. Let the following assertions hold:

(1a) 〈I(ex:notInstanceOf), I(rdf:type)〉 ∈ IEXT(I(owl:propertyDisjointWith)) ,
(1b) 〈I(ex:w), I(ex:c)〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈I(ex:u), I(ex:c)〉 ∈ IEXT(I(ex:notInstanceOf)) .
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From (1a) and the semantic condition for disjoint properties (OWL2/5.9, “→”)
follows:

(1a′) ∀x, y : ¬[ 〈x, y〉 ∈ IEXT(I(ex:notInstanceOf)) ∧
〈x, y〉 ∈ IEXT(I(rdf:type)) ] .

Specializing (1a’) to x := I(ex:w) and y := I(ex:c) implies

(2) ¬[ 〈I(ex:w), I(ex:c)〉 ∈ IEXT(I(ex:notInstanceOf)) ∧
〈I(ex:w), I(ex:c)〉 ∈ IEXT(I(rdf:type)) ] .

From (1b) and (2) follows

(3) 〈I(ex:w), I(ex:c)〉 /∈ IEXT(I(ex:notInstanceOf)) .

From (1c) and (3) follows

(4) I(ex:w) 6= I(ex:u) .

From (4) and the semantic condition for owl:differentFrom (OWL2/Tab5.9,
“←”) follows:

(5)〈I(ex:w), I(ex:u)〉 ∈ IEXT(I(owl:differentFrom)) .

018 Modified Logical Vocabulary Semantics (Proof) Let I be an OWL 2
RDF-Based interpretation that satisfies the premise graph. We start from:

(1a) 〈I(owl:sameAs), I(ex:Person)〉 ∈ IEXT(I(rdfs:domain)) ,
(1b) 〈I(ex:w), I(ex:u)〉 ∈ IEXT(I(owl:sameAs)) .

From this we get via the RDFS semantic condition for property domains:

(2) I(ex:w) ∈ ICEXT(I(ex:Person)) .

Further, from (1b) and the semantic condition for owl:sameAs (OWL2/Tab5.9,
“→”) we get

(3) I(ex:w) = I(ex:u) .

This allows for substitution in (2), providing

(4) I(ex:u) ∈ ICEXT(I(ex:Person)) .

Finally, by applying the RDFS semantic extension for ICEXT (“←”) to (4) we
get

(5) 〈I(ex:u), I(ex:Person)〉 ∈ IEXT(I(rdf:type)) .
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019 Disjoint Annotation Properties (Proof) Let I be an OWL 2 RDF-
Based interpretation that satisfies the premise graph. Starting from:

(1a) 〈I(skos:prefLabel), I(skos:altLabel)〉 ∈ IEXT(I(owl:propertyDisjointWith)) ,
(1b) 〈I(ex:foo), I("foo")〉 ∈ IEXT(I(skos:prefLabel)) ,
(1c) 〈I(ex:foo), I("foo")〉 ∈ IEXT(I(skos:altLabel)) .

From (1a) and the semantic condition of property disjointness (OWL2/Tab5.9,
“→”) we receive

(2) ∀x, y : ¬[ 〈x, y〉 ∈ IEXT(I(skos:prefLabel)) ∧
〈x, y〉 ∈ IEXT(I(skos:altLabel)) ] .

Specifically, we receive:

(3) ¬[ 〈I(ex:foo), I("foo")〉 ∈ IEXT(I(skos:prefLabel)) ∧
〈I(ex:foo), I("foo")〉 ∈ IEXT(I(skos:altLabel)) ] .

We now have a contradiction between (1b), (1c) and (3).

020 Logical Complications (Proof) Let I be an OWL 2 RDF-Based inter-
pretation and B be a blank node mapping for the blank nodes in the premise
graph such that I + B satisfies the premise graph. Let there be xs, xc, lu1, lu2,
lu3, li1, li2, li3, such that

(1a) 〈I(ex:c), lu1〉 ∈ IEXT(I(owl:unionOf)) ,
(1b) 〈lu1, I(ex:c1)〉 ∈ IEXT(I(rdf:first)) ,
(1c) 〈lu1, lu2〉 ∈ IEXT(I(rdf:rest)) ,
(1d) 〈lu2, I(ex:c2)〉 ∈ IEXT(I(rdf:first)) ,
(1e) 〈lu2, lu3〉 ∈ IEXT(I(rdf:rest)) ,
(1f) 〈lu3, I(ex:c3)〉 ∈ IEXT(I(rdf:first)) ,
(1g) 〈lu3, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1h) 〈I(ex:d), I(ex:c1)〉 ∈ IEXT(I(owl:disjointWith)) ,
(1j) 〈I(ex:d), xs〉 ∈ IEXT(I(rdfs:subClassOf)) ,
(1k) 〈xs, li1〉 ∈ IEXT(I(owl:intersectionOf)) ,

(1m) 〈li1, I(ex:c)〉 ∈ IEXT(I(rdf:first)) ,
(1n) 〈li1, li2〉 ∈ IEXT(I(rdf:rest)) ,
(1o) 〈li2, xc〉 ∈ IEXT(I(rdf:first)) ,
(1p) 〈li2, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1q) 〈xc, I(ex:c2)〉 ∈ IEXT(I(owl:complementOf)) .

From (1a), (1b) – (1g) and the semantic condition for class union (OWL2/Tab.5.4,
“→”, ternary) follows

(2) I(ex:c3) ∈ IC .

and

(3) ∀x : x ∈ ICEXT(I(ex:c))⇔
x ∈ ICEXT(I(ex:c1)) ∨ x ∈ ICEXT(I(ex:c2)) ∨ x ∈ ICEXT(I(ex:c3)) .
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From (1h) and the semantic condition for class disjointness follows

(4) I(ex:d) ∈ IC

and from (1h) and the semantic condition for class disjointness (OWL2/Tab.5.9,
“→”) follows

(5) ∀x : ¬[x ∈ ICEXT(I(ex:d)) ∧ x ∈ ICEXT(I(ex:c1)) ] .

From (1j) and the OWL 2 semantic condition of class subsumption (OWL2/Tab5.9,
“→”) follows

(6) ∀x : x ∈ ICEXT(I(ex:d))⇒ x ∈ ICEXT(xs) .

From (1k), (1m) – (1p) and the semantic condition for class intersection (OWL2/Tab5.4,
“→”, binary) follows

(7) ∀x : x ∈ ICEXT(xs)⇔ x ∈ ICEXT(I(ex:c)) ∧ x ∈ ICEXT(xc) .

From (1q) and the semantic condition for class complement (OWL2/Tab5.4,
“→”) follows

(8) ∀x : x ∈ ICEXT (xc)⇔ x /∈ ICEXT(I(ex:c2)) .

From (6), (7) and (8) follows

(9) ∀x : x ∈ ICEXT(I(ex:d))⇒ x ∈ ICEXT(I(ex:c)) ∧ x /∈ ICEXT(I(ex:c2)) .

From (9) and (3) follows

(10) ∀x : x ∈ ICEXT(I(ex:d))⇒ x ∈ ICEXT(I(ex:c1)) ∨ x ∈ ICEXT(I(ex:c3)) .

From (10) and (5) follows

(11) ∀x : x ∈ ICEXT(I(ex:d))⇒ x ∈ ICEXT(I(ex:c3)) .

Finally, from (4), (2), (11) and the OWL 2 semantic extension of class subsump-
tion (OWL2/Tab5.8, “←”) follows

(12) 〈I(ex:d), I(ex:c3)〉 ∈ IEXT(I(rdfs:subClassOf)) .

021 Composite Enumerations (Proof) Let I be an OWL 2 RDF-Based
interpretation and B be a blank node mapping for the blank nodes in the premise
graph such that I + B satisfies the premise graph. Let there be l11, l12, l21, l22,
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l31, l32, l41, l42, such that the following statements hold:

(1a1) 〈I(ex:c1), l11〉 ∈ IEXT(I(owl:oneOf)) ,
(1a2) 〈l11, I(ex:w1)〉 ∈ IEXT(I(rdf:first)) ,
(1a3) 〈l11, l12)〉 ∈ IEXT(I(rdf:rest)) ,
(1a4) 〈l12, I(ex:w2)〉 ∈ IEXT(I(rdf:first)) ,
(1a5) 〈l12, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1b1) 〈I(ex:c2), l21)〉 ∈ IEXT(I(owl:oneOf)) ,
(1b2) 〈l21, I(ex:w2)〉 ∈ IEXT(I(rdf:first)) ,
(1b3) 〈l21, l22)〉 ∈ IEXT(I(rdf:rest)) ,
(1b4) 〈l22, I(ex:w3)〉 ∈ IEXT(I(rdf:first)) ,
(1b5) 〈l22, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1c1) 〈I(ex:c3), l31)〉 ∈ IEXT(I(owl:oneOf)) ,
(1c2) 〈l31, I(ex:w1)〉 ∈ IEXT(I(rdf:first)) ,
(1c3) 〈l31, l32〉 ∈ IEXT(I(rdf:rest)) ,
(1c4) 〈l32, I(ex:w2)〉 ∈ IEXT(I(rdf:first)) ,
(1c5) 〈l32, l33〉 ∈ IEXT(I(rdf:rest)) ,
(1c6) 〈l33, I(ex:w3)〉 ∈ IEXT(I(rdf:first)) ,
(1c7) 〈l33, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1d1) 〈I(ex:c4), l41〉 ∈ IEXT(I(owl:unionOf)) ,
(1d2) 〈l41, I(ex:c1)〉 ∈ IEXT(I(rdf:first)) ,
(1d3) 〈l41, l42)〉 ∈ IEXT(I(rdf:rest)) ,
(1d4) 〈l42, I(ex:c2)〉 ∈ IEXT(I(rdf:first)) ,
(1d5) 〈l42, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

By applying the semantic condition for enumeration classes (OWL2/Tab5.5,
“→”, binary and ternary) to (1a1)–(1a5), (1b1)–(1b5) and (1c1)–(1c7), respec-
tively, we receive:

(2a) ∀x : x ∈ ICEXT(I(ex:c1))⇔ x = I(ex:w1) ∨ x = I(ex:w2) ,
(2b) ∀x : x ∈ ICEXT(I(ex:c2))⇔ x = I(ex:w2) ∨ x = I(ex:w3) ,
(2c) ∀x : x ∈ ICEXT(I(ex:c3))⇔ x = I(ex:w1) ∨ x = I(ex:w2) ∨ x = I(ex:w3) .

By applying the semantic condition for class union (OWL2/Tab5.4, “→”, binary)
to (1d1)–(1d5), we receive:

(2d) ∀x : x ∈ ICEXT(ex:c4)⇔ x ∈ ICEXT(I(ex:c1)) ∨ x ∈ ICEXT(I(ex:c2)) .

From the property extension of owl:oneOf (OWL2/Tab5.3) and (1c1) follows

(3a) I(ex:c3) ∈ IC .

From the property extension of owl:unionOf (OWL2/Tab5.3) and (1d1) follows

(3b) I(ex:c4) ∈ IC .

From (2a), (2b) and (2c) follows

(4) ∀x : x ∈ ICEXT(I(ex:c3))⇔ x ∈ ICEXT(I(ex:c1)) ∨ x ∈ ICEXT(I(ex:c2)) .
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From (2d) and (4) follows

(5) ∀x : x ∈ ICEXT(I(ex:c3))⇔ x ∈ ICEXT(I(ex:c4)) .

From the semantic condition for class equivalence (OWL2/Tab5.9,←), (3a), (3b)
and (5) follows

(6) 〈I(ex:c3), I(ex:c4)〉 ∈ IEXT(I(owl:equivalentClass)).

022 List Member Access (Proof) Let I be an OWL 2 RDF-Based interpre-
tation and B be a blank node mapping for the blank nodes in the premise graph
such that I + B satisfies the premise graph. Given an individual pL as well as
list individuals l11, l12, l21, l22, l31, l32 and l33, such that the following assertions
hold:

(1a1) 〈I(skos:memberList), pL〉 ∈ IEXT(I(rdfs:subPropertyOf)) ,
(1b1) 〈I(skos:member), l11〉 ∈ IEXT(I(owl:propertyChainAxiom)) ,
(1b2) 〈l11, pL〉 ∈ IEXT(I(rdf:first)) ,
(1b3) 〈l11, l12〉 ∈ IEXT(I(rdf:rest)) ,
(1b4) 〈l12, I(rdf:first)〉 ∈ IEXT(I(rdf:first)) ,
(1b5) 〈l12, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1c1) 〈pL, l21〉 ∈ IEXT(I(owl:propertyChainAxiom)) ,
(1c2) 〈l21, pL〉 ∈ IEXT(I(rdf:first)) ,
(1c3) 〈l21, l22〉 ∈ IEXT(I(rdf:rest)) ,
(1c4) 〈l22, I(rdf:rest)〉 ∈ IEXT(I(rdf:first)) ,
(1c5) 〈l22, I(rdf:nil)〉 ∈ IEXT(I(rdf:first)) ,
(1d1) 〈I(ex:MyOrderedCollection), I(skos:OrderedCollection)〉 ∈ IEXT(I(rdf:type)) ,
(1e1) 〈I(ex:MyOrderedCollection), l31〉 ∈ IEXT(I(skos:memberList)) ,
(1e2) 〈l31, I(ex:X)〉 ∈ IEXT(I(rdf:first)) ,
(1e3) 〈l31, l32)〉 ∈ IEXT(I(rdf:rest)) ,
(1e4) 〈l32, I(ex:Y)〉 ∈ IEXT(I(rdf:first)) ,
(1e5) 〈l32, l33)〉 ∈ IEXT(I(rdf:rest)) ,
(1e6) 〈l33, I(ex:Z)〉 ∈ IEXT(I(rdf:first)) ,
(1e7) 〈l33, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

By the RDFS semantic condition for property subsumption, (1a1) and (1e1) we
receive

(1e1′) 〈I(ex:MyOrderedCollection), l31〉 ∈ IEXT(pL) .

From the semantic condition of sub property chains (OWL2/Tab5.11, “→”, bi-
nary version) we get from (1b1) to (1b5):

(2b) ∀y0, y1, y2 : 〈y0, y1〉 ∈ IEXT(pL) ∧
〈y1, y2〉 ∈ IEXT(I(rdf:first))
⇒ 〈y0, y2〉 ∈ IEXT(I(skos:member)) .

and from (1c1) to (1c5) we get

(2c) ∀y0, y1, y2 : 〈y0, y1〉 ∈ IEXT(pL) ∧
〈y1, y2〉 ∈ IEXT(I(rdf:rest))
⇒ 〈y0, y2〉 ∈ IEXT(pL) .
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We receive the first result triple

(3a) 〈I(ex:MyOrderedCollection), I(ex:X)〉 ∈ IEXT(I(skos:member)) .

from (2b), (1e1’) and (1e2). Further, by (2c), (1e1’) and (1e3) we receive

(1e1′′) 〈I(ex:MyOrderedCollection), l32〉 ∈ IEXT(pL) .

In the same way, from (2b), (1e1”), (1e4) and (1e5) we receive

(3b) 〈I(ex:MyOrderedCollection), I(ex:Y)〉 ∈ IEXT(I(skos:member)) .

and
(1e1′′′) 〈I(ex:MyOrderedCollection), l33〉 ∈ IEXT(pL) .

And likewise, we receive

(3c) 〈I(ex:MyOrderedCollection), I(ex:Z)〉 ∈ IEXT(I(skos:member)) .

023 Unique List Components (Proof) Let I be an OWL 2 RDF-Based
interpretation and B be a blank node mapping for the blank nodes in the premise
graph such that I + B satisfies the premise graph. Let there be individuals o
and l such that

(1a) 〈I(rdf:first), I(owl:FunctionalProperty)〉 ∈ IEXT(I(rdf:type)) ,
(1b) 〈I(ex:w), o〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈o, I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1d) 〈o, l〉 ∈ IEXT(I(owl:oneOf)) ,
(1e) 〈l, I(ex:u)〉 ∈ IEXT(I(rdf:first)) ,
(1f) 〈l, I(ex:v)〉 ∈ IEXT(I(rdf:first)) ,
(1g) 〈l, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

By the RDFS semantic condition for ICEXT and (1b) follows

(1b′) I(ex:w) ∈ ICEXT(o) .

By the semantic condition for enumeration classes (OWL2/Tab5.5, “→”, single-
ton) and (1d), (1e) and (1g) follows

(2) ∀x : x ∈ ICEXT(o)⇔ x = I(ex:u) .

From (1b’) and specializing (2) to x := I(ex:w) follows

(3) I(ex:w) = I(ex:u) .

By the semantic condition for functional properties (OWL2/Tab5.13, “→”) and
(1a) follows

(4) ∀x, y1, y2 : 〈x, y1〉 ∈ IEXT(I(rdf:first)) ∧
〈x, y2〉 ∈ IEXT(I(rdf:first))
⇒ y1 = y2 .
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From (1e), (1f) and from specializing (4) to x := l follows

(5) I(ex:u) = I(ex:v) .

From the semantic condition of owl:sameAs (OWL2/Tab5.9, “←”) and (3) and
(5) follows

(6a) 〈I(ex:w), I(ex:u)〉 ∈ IEXT(I(owl:sameAs)) ,
(6b) 〈I(ex:w), I(ex:v)〉 ∈ IEXT(I(owl:sameAs)) .

024 Cardinality Restrictions on Complex Properties (Proof) Let I be
an OWL 2 RDF-Based interpretation and B be a blank node mapping for the
blank nodes in the premise graph such that I + B satisfies the premise graph.
Let there be z such that

(1a) 〈I(ex:hasAncestor), I(owl:TransitiveProperty)〉 ∈ IEXT(I(rdf:type)) ,
(1b) 〈I(ex:Person), z〉 ∈ IEXT(I(rdfs:subClassOf)) ,
(1c) 〈z, I(owl:Restriction)〉 ∈ IEXT(I(rdf:type)) ,
(1d) 〈z, I(ex:hasAncestor)〉 ∈ IEXT(I(owl:onProperty)) ,
(1e) 〈z, I("1"^^xsd:nonNegativeInteger)〉 ∈ IEXT(I(owl:minCardinality)) ,
(1f) 〈I(ex:alice), I(ex:Person)〉 ∈ IEXT(I(rdf:type)) ,
(1g) 〈I(ex:bob), I(ex:Person)〉 ∈ IEXT(I(rdf:type)) ,
(1h) 〈I(ex:alice), I(ex:bob)〉 ∈ IEXT(I(ex:hasAncestor)) .

From (1a) and the semantic condition of transitive properties (OWL2/Tab5.13,
“→”) follows

(2) ∀y1, y2, y3 : 〈y1, y2〉 ∈ IEXT(I(ex:hasAncestor)) ∧
〈y2, y3〉 ∈ IEXT(I(ex:hasAncestor))
⇒ 〈y1, y3〉 ∈ IEXT(I(ex:hasAncestor)) .

From (1b) and the OWL 2 semantic condition for class subsumption (OWL2/Tab5.8,
“→”) follows

(3) ∀y : y ∈ ICEXT(I(ex:Person))⇒ y ∈ ICEXT(z) .

From (1c)–(1e) and the semantic condition for 1-min cardinality restrictions
(OWL2/Tab5.6) follows

(4) ∀y : y ∈ ICEXT(z)⇔ ∃x : 〈y, x〉 ∈ ICEXT(I(ex:hasAncestor)) .

From (3) and (4) follows

(5) ∀y : ICEXT(ex:Person, y)⇒ ∃x : 〈y, x〉 ∈ IEXT(ex:hasAncestor) .

Applying the RDFS semantic condition for ICEXT (“→”) to (1g) yields

(6) I(ex:bob) ∈ ICEXT(I(ex:Person)) .
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From (6) and (5) follows the existence of some x such that

(7) 〈I(ex:bob), x〉 ∈ IEXT(I(ex:hasAncestor)) .

From (1h), (7) and (2) follows, for the same x,

(8) 〈I(ex:alice), x〉 ∈ IEXT(I(ex:hasAncestor)) .

Hence we have shown in (7) and (8) that

(9) ∃x : 〈I(ex:bob), x〉 ∈ IEXT(I(ex:hasAncestor)) ∧
〈I(ex:alice), x〉 ∈ IEXT(I(ex:hasAncestor)) .

Therefore, there is some blank node mapping B′ for the blank nodes in the
conclusion graph such that I + B′ satisfies the conclusion graph.

025 Cyclic Dependencies between Complex Properties (Proof) Let I
be an OWL 2 RDF-Based interpretation and B be a blank node mapping for the
blank nodes in the premise graph such that I + B satisfies the premise graph.
Let there be individuals l11, l12, l21, l22, l3, such that:

(1a1) 〈I(ex:hasUncle), l11〉 ∈ IEXT(I(owl:propertyChainAxiom)) ,
(1a2) 〈l11, I(ex:hasCousin)〉 ∈ IEXT(I(rdf:first)) ,
(1a3) 〈l11, l12〉 ∈ IEXT(I(rdf:rest)) ,
(1a4) 〈l12, I(ex:hasFather)〉 ∈ IEXT(I(rdf:first)) ,
(1a5) 〈l12, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1b1) 〈I(ex:hasCousin), l21〉 ∈ IEXT(I(owl:propertyChainAxiom)) ,
(1b2) 〈l21, I(ex:hasUncle)〉 ∈ IEXT(I(rdf:first)) ,
(1b3) 〈l21, l22〉 ∈ IEXT(I(rdf:rest)) ,
(1b4) 〈l22, l3〉 ∈ IEXT(I(rdf:first)) ,
(1b5) 〈l22, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1c) 〈l3, I(ex:hasFather)〉 ∈ IEXT(I(owl:inverseOf)) ,
(1d) 〈I(ex:alice), I(ex:dave)〉 ∈ IEXT(I(ex:hasFather)) ,
(1e) 〈I(ex:alice), I(ex:bob)〉 ∈ IEXT(I(ex:hasCousin)) ,
(1f) 〈I(ex:bob), I(ex:charly)〉 ∈ IEXT(I(ex:hasFather)) ,
(1g) 〈I(ex:bob), I(ex:dave)〉 ∈ IEXT(I(ex:hasUncle)) .

From the semantic condition for sub property chains (OWL2/Tab5.11, “→”,
binary) and (1a1) to (1a5) follows

(2a) ∀y0, y1, y2 : 〈y0, y1〉 ∈ IEXT(I(ex:hasCousin)) ∧
〈y1, y2〉 ∈ IEXT(I(ex:hasFather))
⇒ 〈y0, y2〉 ∈ IEXT(I(ex:hasUncle)) .

From the semantic condition for sub property chains (OWL2/Tab5.11, “→”,
binary) and (1b1) to (1b5) follows

(2b) ∀y0, y1, y2 : 〈y0, y1〉 ∈ IEXT(I(ex:hasUncle)) ∧
〈y1, y2〉 ∈ IEXT(l3)
⇒ 〈y0, y2〉 ∈ IEXT(I(ex:hasCousin)) .
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From the semantic condition for inverse properties (OWL2/Tab5.12, “→”) and
(1c) follows

(2c) ∀x, y : 〈x, y〉 ∈ IEXT(l3)⇔ 〈y, x〉 ∈ IEXT(I(ex:hasFather)) .

From (2c) and (1d) follows

(1d′) 〈I(ex:dave), I(ex:alice)〉 ∈ IEXT(l3) .

From (2a), (1e) and (1f) follows

(3a) 〈I(ex:alice), I(ex:charly)〉 ∈ IEXT(I(ex:hasUncle)) .

From (2b), (1g) and (1d’)

(3b) 〈I(ex:bob), I(ex:alice)〉 ∈ IEXT(I(ex:hasCousin)) .

The resulting triples are (3a) and (3b).

026 Inferred Property Characteristics I (Proof) Let I be an OWL 2
RDF-Based interpretation and B be a blank node mapping for the blank nodes
in the premise graph such that I + B satisfies the premise graph. Let x1, x2, l1
and l2 be individuals such that the following holds:

(1a) 〈I(ex:p), x1〉 ∈ IEXT(I(rdfs:domain)) ,
(1b) 〈x1, l1〉 ∈ IEXT(I(owl:oneOf)) ,
(1c) 〈l1, I(ex:w)〉 ∈ IEXT(I(rdf:first)) ,
(1d) 〈l1, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1e) 〈I(ex:p), x2〉 ∈ IEXT(I(rdfs:range)) ,
(1f) 〈x2, l2〉 ∈ IEXT(I(owl:oneOf)) ,
(1g) 〈l2, I(ex:u)〉 ∈ IEXT(I(rdf:first)) ,
(1h) 〈l2, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

From the semantic condition for enumeration classes (OWL2/Tab5.5, “→”, sin-
gleton) and (1b) to (1d) follows:

(2) ∀z : z ∈ ICEXT(x1)⇔ z = I(ex:w) .

Now let us assume that there are s1, s2 and o such that

(3a) 〈s1, o〉 ∈ IEXT(I(ex:p)) , and
(3b) 〈s2, o〉 ∈ IEXT(I(ex:p)) .

From the RDFS semantic condition for property domains, (1a) and (3a) follows

(4a) s1 ∈ ICEXT(x1) .

From the RDFS semantic condition for property domains, (1a) and (3b) follows

(4b) s2 ∈ ICEXT(x1) .
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From (2) and (4a) follows

(5a) s1 = I(ex:w) .

From (2) and (4b) follows

(5b) s2 = I(ex:w) .

Finally, from (5a) and (5b) follows

(6) s1 = s2 .

Since s1, s2 and o were chosen arbitrarily, we can generalize

(7) ∀s1, s2, o : 〈s1, o〉 ∈ IEXT(I(ex:p)) ∧
〈s2, o〉 ∈ IEXT(I(ex:p))
⇒ s1 = s2 .

From the RDFS axiomatic triple for the domain of rdfs:domain, we receive

(8) 〈I(rdfs:domain), I(rdf:Property)〉 ∈ IEXT(I(rdfs:domain)) .

From the RDFS semantic condition for property domains, (8) and (1a) follows

(9) I(ex:p) ∈ ICEXT(I(rdf:Property)) .

With the RDFS semantic condition for ICEXT and the RDF semantic condition
for IP and IEXT follows

(9′) I(ex:p) ∈ IP .

By the semantic condition for inverse-functional properties (OWL2/Tab5.13,
“←”), (9’) and (7) follows

(10) I(ex:p) ∈ ICEXT(I(owl:InverseFunctionalProperty)) .

And by the RDFS semantic condition for ICEXT and (10) follows

(10′) 〈I(ex:p), I(owl:InverseFunctionalProperty)〉 ∈ IEXT(I(rdf:type)) .

027 Inferred Property Characteristics II (Proof) Let I be an OWL 2
RDF-Based interpretation and B be a blank node mapping for the blank nodes
in the premise graph such that I + B satisfies the premise graph. Let there be
l1, l2 and v, such that

(1a) 〈I(owl:sameAs), l1〉 ∈ IEXT(I(owl:propertyChainAxiom)) ,
(1b) 〈l1, I(ex:p)〉 ∈ IEXT(I(rdf:first)) ,
(1c) 〈l1, l2〉 ∈ IEXT(I(rdf:rest)) ,
(1d) 〈l2, v〉 ∈ IEXT(I(rdf:first)) ,
(1e) 〈l2, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1f) 〈v, I(ex:p)〉 ∈ IEXT(I(owl:inverseOf)) .
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From (1a), (1b) – (1e) and the semantic condition for sub property chains
(OWL2/Tab5.11, “→”, binary) follows

(2) I(ex:p) ∈ IP

and
(3) ∀y0, y1, y2 : 〈y0, y1〉 ∈ IEXT(I(ex:p)) ∧

〈y1, y2〉 ∈ IEXT(v)
⇒ 〈y0, y2〉 ∈ IEXT(I(owl:sameAs)) .

From (1f) and the semantic condition for inverse properties (OWL2/Tab5.12,
“→”) follows:

(4) ∀x, y : 〈x, y〉 ∈ IEXT(v)⇔ 〈y, x〉 ∈ IEXT(I(ex:p)) .

From the semantic condition for owl:sameAs (OWL2/Tab5.9, “→”) follows:

(5) ∀x, y : 〈x, y〉 ∈ IEXT(I(owl:sameAs))⇒ x = y .

From (3), (4) and (5) follows

(6) ∀y0, y1, y2 : 〈y0, y1〉 ∈ IEXT(I(ex:p)) ∧
〈y2, y1〉 ∈ IEXT(I(ex:p))
⇒ y0 = y2 .

From (2), (6) and the semantic condition for inverse-functional properties (OWL2/Tab.13,
“←”) follows

(7) I(ex:p) ∈ ICEXT(I(owl:InverseFunctionalProperty)) .

Finally, from (7) and the RDFS semantic condition for ICEXT (“←”) follows

(8) 〈I(ex:p), I(owl:InverseFunctionalProperty)〉 ∈ IEXT(I(rdf:type)) .

028 Inferred Property Characteristics III (Proof) Let I be an OWL 2
RDF-Based interpretation and B be a blank node mapping for the blank nodes
in the premise graph such that I + B satisfies the premise graph. Let there be
a z such that

(1a) 〈I(ex:InversesOfFunctionalProperties), z〉 ∈ IEXT(I(owl:equivalentClass)) ,
(1b) 〈z, I(owl:Restriction)〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈z, I(owl:inverseOf)〉 ∈ IEXT(I(owl:onProperty)) ,
(1d) 〈z, I(owl:FunctionalProperty)〉 ∈ IEXT(I(owl:someValuesFrom)) .

From (1a) and the semantic condition for class equivalence (OWL2/Tab5.9,
“→”) follows

(2) ∀x : x ∈ ICEXT(I(ex:InversesOfFunctionalProperties))⇔ x ∈ ICEXT(z) .
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From (1b) – (1d) and the semantic condition for existential property restrictions
(OWL2/Tab5.6) follows

(3) ∀x : x ∈ ICEXT(z)⇔
∃y : [ 〈x, y〉 ∈ IEXT(I(owl:inverseOf)) ∧

y ∈ ICEXT(I(owl:FunctionalProperty)) ] .

From (2) and (3) follows

(4) ∀x : x ∈ ICEXT(I(ex:InversesOfFunctionalProperties))⇔
∃y : [ 〈x, y〉 ∈ IEXT(I(owl:inverseOf)) ∧

y ∈ ICEXT(I(owl:FunctionalProperty)) ] .

Let p be an arbitrary individual such that

(5) p ∈ ICEXT(I(ex:InversesOfFunctionalProperties)) .

We receive (5) and (4):

(6) ∃y : 〈p, y〉 ∈ IEXT(I(owl:inverseOf)) ∧
y ∈ ICEXT(I(owl:FunctionalProperty)) .

According to (6) there is a q for p such that

(7) 〈p, q〉 ∈ IEXT(I(owl:inverseOf)) ∧
q ∈ ICEXT(I(owl:FunctionalProperty)) .

From (7) and the semantic condition for inverse properties (OWL2/Tab5.12,
“→”) follows

(8) ∀x, y : 〈x, y〉 ∈ IEXT(p)⇔ 〈y, x〉 ∈ IEXT(q) .

From (7) and the semantic condition for functional properties (OWL2/Tab5.13,
“→”) follows:

(9) ∀x, y1, y2 : 〈x, y1〉 ∈ IEXT(q) ∧ 〈x, y2〉 ∈ IEXT(q)⇒ y1 = y2 .

From (8) and (9) follows

(10) ∀y1, y2, x : 〈y1, x〉 ∈ IEXT(p) ∧ 〈y2, x〉 ∈ IEXT(p)⇒ y1 = y2 .

From (7) and the property extension of owl:inverseOf (OWL2/Tab.5.3) follows

(11) p ∈ IP .

From (11), (10) and the semantic condition for inverse-functional properties
(OWL2/Tab5.13, “←”) follows

(12) p ∈ ICEXT(I(owl:InverseFunctionalProperty)) .
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Since (12) follows from (5) and since p has been arbitrarily chosen, we receive

(13) ∀x : x ∈ ICEXT(I(ex:InversesOfFunctionalProperties))⇒
x ∈ ICEXT(I(owl:InverseFunctionalProperty)) .

From (1a) and the property extension of owl:equivalentClass (OWL2/Tab5.3)
follows

(14) I(ex:InversesOfFunctionalProperties) ∈ IC .

From OWL2/Tab5.3 follows for owl:InverseFunctionalProperty

(15) I(owl:InverseFunctionalProperty) ∈ IC .

Finally, from (14), (15), (13) and the OWL 2 semantic condition for class sub-
sumption (OWL2/Tab5.8, “←”) follows

(16) 〈I(ex:InversesOfFunctionalProperties), I(owl:InverseFunctionalProperty〉
∈ IEXT(I(rdfs:subClassOf)) .

029 Ex Falso Quodlibet (Proof) Let I be an OWL 2 RDF-Based interpre-
tation and B be a blank node mapping for the blank nodes in the premise graph
such that I + B satisfies the premise graph. Let x, y, l1, l2 be individuals such
that

(1a1) 〈I(ex:A), I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1b1) 〈I(ex:B), I(owl:Class)〉 ∈ IEXT(I(rdf:type)) ,
(1c1) 〈I(ex:w), x〉 ∈ IEXT(I(rdf:type)) ,
(1d1) 〈x, l1〉 ∈ IEXT(I(owl:intersectionOf)) ,
(1e1) 〈l1, I(ex:A)〉 ∈ IEXT(I(rdf:first)) ,
(1e2) 〈l1, l2〉 ∈ IEXT(I(rdf:rest)) ,
(1e3) 〈l2, y〉 ∈ IEXT(I(rdf:first)) ,
(1e4) 〈l2, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) ,
(1f1) 〈y, I(ex:A)〉 ∈ IEXT(I(owl:complementOf)) .

From (1d1), (1e1) – (1e4), and the semantic condition for class intersection
(OWL2/Tab5.4, “→”, binary) follows

(2) ∀z : z ∈ ICEXT(x)⇔ z ∈ ICEXT(I(ex:A)) ∧ z ∈ ICEXT(y) .

From (1f1) and the semantic condition for class complement (OWL2/Tab5.4,
“→”) follows

(3) ∀z : z ∈ ICEXT(y)⇔ z /∈ ICEXT(I(ex:A)) .

From (2) and (3) follows

(4) ∀z : z ∈ ICEXT(x)⇔ z ∈ ICEXT(I(ex:A)) ∧ z /∈ ICEXT(I(ex:A)) .

From (1c1) and the RDFS semantic condition of ICEXT (“→”) follows

(5) I(ex:w) ∈ ICEXT(x) .
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From (5) and (4) follows a contradiction, i.e. the set of premises is contradictory.
From a contradiction follows arbitrary (“ex falso sequitur quodlibet”), hence we
receive:

(6) 〈I(ex:w), I(ex:B)〉 ∈ IEXT(I(rdf:type)) .

030 Bad Class (Proof) Let I be an OWL 2 RDF-Based interpretation and
B be a blank node mapping for the blank nodes in the premise graph such that
I + B satisfies the premise graph. Let there be an x, such that

(1a) 〈I(ex:c), x〉 ∈ IEXT(I(owl:complementOf)) ,
(1b) 〈x, I(owl:Restriction)〉 ∈ IEXT(I(rdf:type)) ,
(1c) 〈x, I(rdf:type)〉 ∈ IEXT(I(owl:onProperty)) ,
(1d) 〈x, I("true"8sd:boolean)〉 ∈ IEXT(I(owl:hasSelf)) .

From (1a) and the semantic condition for class complement (OWL2/Tab5.4,
“→”) follows

(2) ∀y : y ∈ ICEXT(I(ex:c))⇔ y /∈ ICEXT(x) .

From (1b), (1c), (1d) and the semantic condition for self-restrictions (OWL2/Tab5.6)
follows

(3) ∀z : z ∈ ICEXT(x)⇔ 〈z, z〉 ∈ IEXT(I(rdf:type)) .

Now the following equivalence holds:

〈I(ex:c), I(ex:c)〉 ∈ IEXT(I(rdf:type))
⇔ I(ex:c) ∈ ICEXT(x) : by (3)
⇔ I(ex:c) /∈ ICEXT(I(ex:c)) : by (2)
⇔ 〈I(ex:c), I(ex:c)〉 /∈ ICEXT(I(rdf:type)) : by ICEXT definition

Hence, we receive a contradiction solely from the original settings (1a), (1b),
(1c) and (1d). That is, the original setting is an inconsistent ontology.

031 Large Universe (Proof) Let I be an OWL 2 RDF-Based interpretation
and B be a blank node mapping for the blank nodes in the premise graph such
that I + B satisfies the premise graph. Let there be x and l, such that the
following holds:

(1a) 〈I(owl:Thing), x〉 ∈ IEXT(I(owl:equivalentClass)) ,
(1b) 〈x, l〉 ∈ IEXT(I(owl:oneOf)) ,
(1c) 〈l, I(ex:w)〉 ∈ IEXT(I(rdf:first)) ,
(1d) 〈l, I(rdf:nil)〉 ∈ IEXT(I(rdf:rest)) .

From (1a) and the semantic condition for class equivalence (OWL2/Tab5.9,
“→”) follows

(2) ∀z : z ∈ ICEXT(I(owl:Thing))⇔ z ∈ ICEXT(x) .



Reasoning in OWL 2 Full using First-Order ATP 65

From (1b), (1c), (1d) and semantic condition for enumeration classes (OWL2/Tab5.5,
“→”) follows

(3) ∀z : z ∈ ICEXT(x)⇔ z = I(ex:w) .

Since I is a simple interpretation and from the class extension of owl:Thing

(OWL2/Tab5.2, “←”) we receive

(4a) I(owl:Thing) ∈ ICEXT(I(owl:Thing)) ,
(4b) I(owl:Nothing) ∈ ICEXT(I(owl:Thing)) .

Applying (2) and (3) to (4a) and (4b), respectively, leads to

(5a) I(owl:Thing) = ex:w ,
(5b) I(owl:Nothing) = ex:w ,

and therefore
(6) I(owl:Thing) = I(owl:Nothing) .

From (6) and (4b) follows

(7) I(owl:Nothing) ∈ ICEXT(I(owl:Nothing)) .

However, from the class extension of owl:Nothing (OWL2/Tab5.2) follows

(8) ∀z : z /∈ ICEXT(I(owl:Nothing)) .

By (7) and (8) we get a contradiction. Hence the original setting (1a), (1b), (1c)
and (1d) is an inconsistent ontology.

032 Datatype Relationships (Proof) Let I be an OWL 2 RDF-Based in-
terpretation that satisfies the empty graph.

As a consequence of OWL2/Def4.2, I must be specified with respect to some
OWL 2 RDF-Based datatype map D. According to OWL2/Def4.1, D must
include the datatypes denoted by the URIs xsd:string, xsd:integer, and
xsd:decimal. The denotations are given by name-datatype pairs “(u, d)” pro-
vided by the datatype map, and the value spaces are given as “VS(d)”. Accord-
ing to the “general semantic conditions for datatypes” in the specification of D-
entailment, the datatypes are identified by “I(xsd:string)”, “I(xsd:integer)”,
and “I(xsd:decimal)”, respectively. Secondly, the datatypes I(u), for u one of
“xsd:string”, “xsd:integer”, and “xsd:decimal”, are instances of the set
ICEXT(I(rdfs:Datatype)). OWL2/Tab5.2 implies ICEXT(I(rdfs:Datatype)) =
IDC. From OWL2/Tab5.1 follows that IDC is a sub set of IC. From OWL2/Tab5.2
follows that ICEXT(I(owl:Class)) = IC. Hence, we get:

(1a) I(xsd:string) ∈ IC ;
(1b) I(xsd:integer) ∈ IC ;
(1c) I(xsd:decimal) ∈ IC .

Further, according to the “general semantic conditions for datatypes” in the
specification of D-entailment the datatypes have the following value spaces:
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ICEXT(I(xsd:string)), ICEXT(I(xsd:integer)), and ICEXT(I(xsd:decimal)).
According to OWL2/Def4.1 (referring to the OWL 2 Structural Specification),
the value spaces of the three datatypes are defined according to the XSD Datatype
specification. This has the following consequences. Firstly, the value spaces of
xsd:decimal and xsd:string are disjoint sets:

(2a) ∀x : ¬[x ∈ ICEXT(I(xsd:decimal)) ∧ x ∈ ICEXT(I(xsd:string)) ] .

Secondly, the value space of xsd:integer is a subset of the value space of
xsd:decimal:

(2b) ∀x : x ∈ ICEXT(I(xsd:integer))⇒ x ∈ ICEXT(I(xsd:decimal)) .

Using (1c), (1a), (2a), and the “←” direction of the semantic condition for class
disjointness (OWL2/Tab5.9), we get:

(3a) 〈I(xsd:decimal), I(xsd:string)〉 ∈ IEXT(I(owl:disjointWith)) .

Using (1b), (1c), (2b), and the “←” direction of the OWL 2 semantic condition
of class subsumption (OWL2/Tab5.8), we get:

(3b) 〈I(xsd:integer), I(xsd:decimal)〉 ∈ IEXT(I(rdfs:subClassOf)) .

The combination of (3a) and (3b) was the conjecture.
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C Translation into TPTP

In Section 3 it was explained how RDF graphs and the semantics of OWL 2
Full (see Section 2.1) are translated into FOL, and Section 4.1 mentioned that
the TPTP language [14] is used as a concrete FOL serialization syntax. In this
appendix, the translation into TPTP are demonstrated by means of a concrete
example. The translation is demonstrated using the test case

020 Logical Complications

from the test suite of characteristic OWL 2 Full conclusions, which has been
defined in Appendix B. The example translation will be complete in the sense
that the resulting TPTP encoding can be used with FOL ATPs that understand
the TPTP language7 in order to obtain the reasoning result of the test case.
The TPTP translations for the example test case and for all other characteristic
conclusions test cases are included in the electronic version of the test suite; see
Appendix B for pointers. In addition, the supplementary material for this paper
(see the download link at the beginning of Section 4) contains a translation of
a large fragment of the OWL 2 Full semantics into TPTP (see Section 4.1 for
a characterization of the fragment) and provides an executable software tool for
the conversion of arbitrary RDF graphs into TPTP.

C.1 RDF Graphs and Test Case Data

In this section it is shown how RDF graphs and test case data are converted
into the TPTP language. Example translations are given for the premise and
conclusion graphs of the entailment test case 020 Logical Complications from
the “characteristic OWL 2 Full conclusions” test suite.

According to Section B.1, the premise graph of the example test case is given
in Turtle syntax8 as:

@prefix ex: <http://www.example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:c owl:unionOf ( ex:c1 ex:c2 ex:c3 ) .

ex:d owl:disjointWith ex:c1 .

ex:d rdfs:subClassOf [

owl:intersectionOf (

ex:c

[ owl:complementOf ex:c2 ]

)

] .

7 The reasoners available online as part of the SystemOnTPTP service can be used
for this purpose: http://www.tptp.org/cgi-bin/SystemOnTPTP/.

8 Turtle RDF syntax: http://www.w3.org/TeamSubmission/turtle/

http://www.tptp.org/cgi-bin/SystemOnTPTP/
http://www.w3.org/TeamSubmission/turtle/
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This encoding uses some of the “syntactic sugar” that Turtle offers for con-
cisely representing certain language constructs, such as RDF collections. For the
purpose of translating the RDF graph into TPTP, it is advisable to restate the
above representation into an equivalent form that consists of only RDF triples:

@prefix ex: <http://www.example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:c owl:unionOf _:lu1 .

_:lu1 rdf:first ex:c1 .

_:lu1 rdf:rest _:lu2 .

_:lu2 rdf:first ex:c2 .

_:lu2 rdf:rest _:lu3 .

_:lu3 rdf:first ex:c3 .

_:lu3 rdf:rest rdf:nil .

ex:d owl:disjointWith ex:c1 .

ex:d rdfs:subClassOf _:xs .

_:xs owl:intersectionOf _:li1 .

_:li1 rdf:first ex:c .

_:li1 rdf:rest _:li2 .

_:li2 rdf:first _:xc .

_:li2 rdf:rest rdf:nil .

_:xc owl:complementOf ex:c2 .

Premise graphs of entailment test cases are translated into TPTP axiom
formulae. Following the explanation in Section 3 on how to translate RDF graphs
into FOL, the translation into TPTP is as follows:

fof(testcase_premise, axiom, (

? [B_xs, B_xc, B_lu1, B_lu2, B_lu3, B_li1, B_li2] : (

iext(uri_owl_unionOf, uri_ex_c, B_lu1)

& iext(uri_rdf_first, B_lu1, uri_ex_c1)

& iext(uri_rdf_rest, B_lu1, B_lu2)

& iext(uri_rdf_first, B_lu2, uri_ex_c2)

& iext(uri_rdf_rest, B_lu2, B_lu3)

& iext(uri_rdf_first, B_lu3, uri_ex_c3)

& iext(uri_rdf_rest, B_lu3, uri_rdf_nil)

& iext(uri_owl_disjointWith, uri_ex_d, uri_ex_c1)

& iext(uri_rdfs_subClassOf, uri_ex_d, B_xs)

& iext(uri_owl_intersectionOf, B_xs, B_li1)

& iext(uri_rdf_first, B_li1, uri_ex_c)

& iext(uri_rdf_rest, B_li1, B_li2)

& iext(uri_rdf_first, B_li2, B_xc)

& iext(uri_rdf_rest, B_li2, uri_rdf_nil)

& iext(uri_owl_complementOf, B_xc, uri_ex_c2) ))) .
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The Turtle representation of the conclusion graph of the test case is given as:

@prefix ex: <http://www.example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

ex:d rdfs:subClassOf ex:c3 .

Conclusion graphs of entailment test cases are translated into TPTP conjec-
ture formulae, which is done as follows:

fof(testcase_conclusion, conjecture, (

iext(uri_rdfs_subClassOf, uri_ex_d, uri_ex_c3) )) .

C.2 Semantic Conditions of the OWL 2 RDF-Based Semantics

In this section it is shown how the semantic conditions of the OWL 2 RDF-Based
Semantics are translated into the TPTP language. An example translation is
given for a small subset of semantic conditions that are sufficient to entail the
conclusion graph of the entailment test case 020 Logical Complications from its
premise graph. The selection of the small sufficient subset of semantic conditions
was made based on the correctness proof for the test case, as given in Section B.2.
The following semantic conditions are used to prove correctness:

– extension of property owl:disjointWith (Section 5.3 of OWL 2 RDF-Based
Semantics);

– class complement (Section 5.4 of OWL 2 RDF-Based Semantics);
– binary class intersection (Section 5.4 of OWL 2 RDF-Based Semantics);
– ternary class union (Section 5.4 of OWL 2 RDF-Based Semantics);
– class subsumption, OWL version (Section 5.8 of OWL 2 RDF-Based Seman-

tics);
– class disjointness (Section 5.9 of OWL 2 RDF-Based Semantics).

Semantic conditions are translated into TPTP axiom formulae, since, tech-
nically, they act as further premises in addition to the axiom that represents the
premise graph of a test case. Following the explanation in Section 3 on how to
translate semantic conditions into FOL, the translation into TPTP is as follows:

% extension of property owl:disjointWith

% (Section 5.3 of OWL 2 RDF-Based Semantics)

fof(owl_prop_disjointwith_ext, axiom, (

! [X, Y] : (

iext(uri_owl_disjointWith, X, Y)

=> (

ic(X)

& ic(Y) )))) .
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% class complement

% (Section 5.4 of OWL 2 RDF-Based Semantics)

fof(owl_bool_complementof_class, axiom, (

! [Z, C] : (

iext(uri_owl_complementOf, Z, C)

=>

( ic(Z)

& ic(C)

& ( ! [X] : (

icext(Z, X)

<=>

~ icext(C, X) )))))) .

% binary class intersection

% (Section 5.4 of OWL 2 RDF-Based Semantics)

fof(owl_bool_intersectionof_class_002, axiom, (

! [Z, S1, C1, S2, C2] : (

( iext(uri_rdf_first, S1, C1)

& iext(uri_rdf_rest, S1, S2)

& iext(uri_rdf_first, S2, C2)

& iext(uri_rdf_rest, S2, uri_rdf_nil) )

=> (

iext(uri_owl_intersectionOf, Z, S1)

<=> (

ic(Z)

& ic(C1)

& ic(C2)

& ( ! [X] : (

icext(Z, X)

<=> (

icext(C1, X)

& icext(C2, X) )))))))) .

% ternary class union

% (Section 5.4 of OWL 2 RDF-Based Semantics)

fof(owl_bool_unionof_class_003, axiom, (

! [Z, S1, C1, S2, C2] : (

( iext(uri_rdf_first, S1, C1)

& iext(uri_rdf_rest, S1, S2)

& iext(uri_rdf_first, S2, C2)

& iext(uri_rdf_rest, S2, S3)

& iext(uri_rdf_first, S3, C3)

& iext(uri_rdf_rest, S3, uri_rdf_nil) )

=> (
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iext(uri_owl_unionOf, Z, S1)

<=> (

ic(Z)

& ic(C1)

& ic(C2)

& ic(C3)

& ( ! [X] : (

icext(Z, X)

<=> (

icext(C1, X)

| icext(C2, X)

| icext(C3, X) )))))))) .

% class subsumption, OWL version

% (Section 5.8 of OWL 2 RDF-Based Semantics)

fof(owl_rdfsext_subclassof, axiom, (

! [C1, C2] : (

iext(uri_rdfs_subClassOf, C1, C2)

<=> (

ic(C1)

& ic(C2)

& ( ! [X] : (

icext(C1, X)

=>

icext(C2, X) )))))) .

% class disjointness

% (Section 5.9 of OWL 2 RDF-Based Semantics)

fof(owl_eqdis_disjointwith, axiom, (

! [C1, C2] : (

iext(uri_owl_disjointWith, C1, C2)

<=> (

ic(C1)

& ic(C2)

& ( ! [X] : (

~ ( icext(C1, X)

& icext(C2, X) ))))))) .
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