
ar
X

iv
:1

10
8.

03
88

v1
 [

cs
.D

S]
 1

 A
ug

 2
01

1

A Comprehensive Study of an Online Packet Scheduling Algorithm

Fei Li

Department of Computer Science

George Mason University

Fairfax, Virginia 22030

Email: lifei@cs.gmu.edu

Abstract

We study the bounded-delay model for Qualify-of-Service buffer management. Time is discrete. There is
a buffer. Unit-length jobs (also called packets) arrive at the buffer over time. Each packet has an integer
release time, an integer deadline, and a positive real value. A packet’s characteristics are not known to an
online algorithm until the packet actually arrives. In each time step, at most one packet can be sent out
of the buffer. The objective is to maximize the total value of the packets sent by their respective deadlines
in an online manner. An online algorithm’s performance is usually measured in terms of competitive ratio,
when this online algorithm is compared with a clairvoyant algorithm achieving the best total value. In this
paper, we study a simple and intuitive online algorithm. We analyze its performance in terms of competitive
ratio for the general model and a few important variants.

Keywords: online algorithm, competitive analysis, buffer management, packet scheduling

1. Model Description

We consider the bounded-delay model introduced
in [1, 2]. Time is discrete. The t-th (time) step
presents the time interval (t−1, t]. There is a buffer
and unit-length jobs (also called packets) arrive at
the buffer over time. Each packet p has an integer
release time rp ∈ Z

+, an integer deadline dp ∈ Z
+,

and a positive real value vp ∈ R
+. A packet p’s

characteristics are not known to an online algorithm
until p actually arrives at the buffer at time rp. In
each step, at most one packet in the buffer can be
sent. A packet p is said to be successfully sent at
time t if rp ≤ t ≤ dp. The objective is to maximize
the total value of the packets that are successfully
sent in an online manner.

As people have noted, the offline version of this
problem can be solved efficiently using the Hun-
garian algorithm [3] in time O(n3), where n is the
number of packets in the input instance.

In the framework of competitive analysis which
provides worst-case guarantees, an online algo-
rithm’s performance is measured in terms of com-
petitive ratio [4]. For a maximization problem, an
online algorithm is called c-competitive if for any

finite instance, its total value is no less than 1/c
times of what an optimal offline algorithm achieves.
In competitive analysis, an input instance is al-
lowed to be generated in an adversarial way so
as to maximize the competitive ratio. The upper
bound of competitive ratio is achieved by some on-
line algorithms. A competitive ratio strictly less
than the lower bound cannot be reached by any
online algorithm. If an online algorithm has its
competitive ratio same as the lower bound, we
say that this online algorithm is optimal. For the
bounded-delay model, the currently best known re-
sult is 2

√
2 − 1 ≈ 1.828 [5] and the lower bound

is (1 +
√
5)/2 ≈ 1.618 [1, 6]. If an online algo-

rithm decides which packet to send only based on
the contents of its current buffer, and independent
of the packets that have already been released and
processed, we call it memoryless.

In this paper, we study a simple, intuitive
memoryless online algorithm called MG (‘Modi-
fied Greedy’). We analyze MG’s performance in
terms of competitive ratio for the general bounded-
delay model and some important variants. Define
a packet p’s slack-time sp as the difference between
its deadline dp and release time rp, sp = dp − rp.

Preprint submitted to Elsevier September 27, 2018

http://arxiv.org/abs/1108.0388v1

The variants that we consider include:

• Agreeable deadline setting. In an agreeable
deadline instance, for any two packets p and
q with rp ≤ rq, we have dp ≤ dq. This variant
has been studied in [7].

• Anti-agreeable deadline setting. In an anti-
agreeable deadline instance, for any two pack-
ets p and q with rp ≤ rq , we have dp ≥ dq.

• Agreeable value setting. In an agreeable value
instance, for any two packets p and q with rp ≤
rq, we have vp ≤ vq.

• Anti-agreeable value setting. In an anti-
agreeable value instance, for any two packets
p and q with rp ≤ rq, we have vp ≥ vq.

• Agreeable deadline/value setting. In an agree-
able deadline/value instance, for any two pack-
ets p and q with dp ≤ dq, we have vp ≤ vq.

• Anti-agreeable deadline/value setting. In an
anti-agreeable deadline/value instance, for any
two packets p and q with dp ≤ dq, we have
vp ≥ vq.

• Agreeable slack-time/value setting. In an
agreeable slack-time/value instance, for any
two packets p and q with sp ≤ sq, we have
vp ≤ vq.

• Anti-agreeable slack-time/value setting. In an
anti-agreeable slack-time/value instance, for
any two packets p and q with sp ≤ sq, we have
vp ≥ vq.

Our results are summarized in Table 1. Note that
the lower bounds shown in Table 1 are the lower
bounds of MG’s performance but not the lower
bounds for any online algorithms.
In the following, we present the online algorithm

MG in Section 2 and analyze its performance in
Section 3.

2. Algorithm MG

The idea of designing MG is motivated by the
greedy algorithm: In each step, the highest-value
pending packet is sent. This algorithm is proved
2-competitive [1, 2]. In one attempt to beat the
greedy algorithm in competitiveness, Chin et al. [9]
proposed an algorithm called EDFα, bearing the
idea of sending the earliest-deadline packet with a

sufficiently large value (for instance, at least 1/α
times of the highest value of a pending packet where
α ≥ 1). Note that EDFα generalizes the greedy
algorithm, which is EDF1. Same as the greedy al-
gorithm, EDFα is asymptotically not better than
2-competitive. For EDFα, it is possible that the
expiring packet in the algorithm’s buffer is the one
that an optimal offline algorithm sends and this
packet has only a slightly less value than the packet
that EDFα sends.
Recall that a memoryless online algorithm makes

its decision only based on the contents of its cur-
rent buffer. Thus, it is natural to send a packet
from a set of packets, all of which are eligible of
being sent successfully under the assumption of no
future arrivals. We consider provisional schedules.
A provisional schedule [10, 5] at time t is a schedule
specifying the set of pending packets to be trans-
mitted and for each it specifies the delivery time, as-
suming no newly arriving packets. An optimal pro-
visional schedule achieves the maximum total value
among all the provisional schedules. At the begin-
ning of each step, we calculate an optimal provi-
sional schedule S and the packets in S are arranged
in a canonical order: increasing order of deadlines,
with ties broken in decreasing order of values.
Let e denote the first packet in S and h denote

the first highest-value packet in S. Motivated by
the idea of EDFα, we would like to send a packet
with a sufficiently large value compared with vh. At
the same time, from the tight example for EDFα, we
would like to send a packet to compensate the po-
tential loss due to not sending the earliest-deadline
packet e. Thus, we send a packet f in the opti-
mal provisional schedule satisfying vf ≥ vh/α if
f = e and vf ≥ max{βve, vh/α} if f 6= e, where
α, β ≥ 1. In order to guarantee that at least one
packet in S can be a candidate packet for f , we
have to have α ≥ β since if ve < vh/α, we should
have vh ≥ vf ≥ max{βve, αve} ≥ max{β, α}ve.
The algorithm MG is described in Algorithm 1.
Note that MG generalizes EDFα (and the greedy

algorithm). If α = 1 (hence β = 1 since α ≥ β ≥ 1),
MG is the greedy algorithm. If β = 1, MG is no-
worse than EDFα in competitiveness.

Theorem 1. If β = 1, MG is no-worse than EDFα

in competitiveness.

Proof. We inductively prove that (1) MG with β =
1 and EDFα share the same buffer at any time;
(However, we note here that MG’s optimal pro-
visional schedule may not be identical to EDFα’s

2

models upper bounds lower bounds notes

general 2 2 [8] A detailed analysis
of the lower bound
is given in this pa-
per.

agreeable deadline φ [7] φ [6] MG is optimal.
anti-agreeable deadline 2 2 [8] -

agreeable value 2 2 [8] -
anti-agreeable value 1 1 MG is optimal.

agreeable deadline/value φ φ [6] MG is optimal.
anti-agreeable deadline/value 1 1 MG is optimal.
agreeable slack-time/value φ 1 -

anti-agreeable slack-time/value 1 1 MG is optimal.

Table 1: Summary of MG’s performance for the bounded-delay model and its variants. The results without references are the
work presented in this paper. In this table, φ = (1 +

√
5)/2 ≈ 1.618.

Algorithm 1 MG (t, 1 ≤ β ≤ α)

1: Calculate an optimal provisional schedule S.
All the packets in S are sorted in a canonical
order: increasing order of deadlines, with ties
broken in decreasing order of values. In S, let
e denote the first packet; let h denote the first
highest-value packet.

2: if ve ≥ vh/α then

3: send e;
4: else

5: send the first packet f satisfying vf ≥
max{vh/α, βve}.

6: end if

buffer.) and (2) in each step, the charged value to
MG is no less than the charged value to EDFα.

Assume MG sends f 6= e. EDFα must send f as
well since all the packets with values ≥ vh/α must
be in MG’s optimal provisional schedule. Assume
MG sends the e-packet and EDFα sends a packet p
not in MG’s optimal provisional schedule. If EDFα

does not send e in its schedule, we have ve ≥ vp and
we can use e to replace p for EDFα.

3. Analysis

Let OPT denote an optimal offline algorithm and
O denote the set of packets that OPT sends. Let
ADV denote a (modified) adversary. In our proof,
we will create ADV and make sure that ADV gains
a total value no less than

∑

p∈O
vp.

3.1. The general setting

Theorem 2. MG is 2-competitive for the bounded-
delay model, for any 1 ≤ β ≤ α ≤ 2.

Proof. We assume that there exists an adversary
called ADV. We modify ADV such that ADV and
MG share the same buffer at the beginning of each
step. ADV does not have to send every packet in
its buffer. In a step, MG sends the packet f .

1. Assume ADV sends the same packet f in this
step.
ADV and MG gain the same value.

2. Assume ADV sends a packet j (6= f) with dj <
df .
We modify ADV by sending both j and f in
the current step. We then insert j into ADV’s
buffer as a gift packet. As assumed, j is in
MG’s buffer at the beginning of this step. From
the canonical order and MG choosing f but not
j to send, we have vj ≤ vf . Then vj+vf ≤ 2vf .

3. Assume ADV sends a packet j (6= f) with dj >
df .
As assumed, j is in MG’s buffer at the begin-
ning of this step. No matter f = e or f 6= e,
we have vf ≥ vh/α ≥ vj/α ≥ vj/2. Note that
vf < vj (and df < dj) since otherwise, ADV
prefers to sending f instead of j. We then in-
sert j into ADV’s buffer to replace f .

At the end of this step, ADV and MG share
the same buffer again. The modifications that we
make favor the adversary but not MG. In this step,
ADV’s modified gain is bounded by 2 times of what
MG achieves.

3

Theorem 3. MG is asymptotically no better than
2-competitive for the bounded-delay model, with α =
β = φ.

A sketched proof of Theorem 3 has been given
in a conference paper [8]. We detail the analysis in
journal paper.

Proof. We construct an example to prove Theo-
rem 3. We use ∞ in the deadline field of a packet to
show that this packet’s deadline is very large. Let
n = 2k. The packets are released in a stage-manner.
There are logn = k stages. The superscript of a
packet shows the stage in which it is released.
At the beginning of step 1, there are 3 packets in

MG’s buffer. The adversary has the same buffer.
These 3 packets are e11 := (1 + ǫ, 2), f1

1 := (φ −
ǫ, 2k+1 − k), and h1

1 := (φ, ∞). MG sends h1
1, and

e11 is dropped out of the buffer due to its deadline.
In each of the following (2k − k + 1) time steps,

say step i, a group of 3 packets are released: e1i :=
(1 + ǫ, i + 1), f1

i := (φ − ǫ, 2k+1 − k), and h1
i :=

(φ, ∞). In step i, MG sends h1
i and drops e1i due

to its deadline. At the end of the (2k − k + 1)-th
step, MG’s buffer is full of (2k − k + 1) f1

i -packets
(∀i = 1, 2, . . . , 2k − k + 1). The first stage ends.
The length of stage 1 guarantees that no f1

i packet,
especially packet f1

1 , becomes the first packet in the
buffer.
At the beginning of step 2k − k + 1, the sec-

ond stage starts. The adversary releases a pair of
packets f2

1 := (φ(φ − ǫ) − ǫ, 2k+1 − k + 1) and
h2
1 := (φ2, ∞). The newly released packets have

later deadlines and are sorted canonically after the
packets already in MG’s buffer. MG sends h2

i .
Stage 2 contains 2k−1 − k + 2 steps. The length
of stage 2 guarantees that no packet f2

i becomes
the first packet in the buffer. In each of those
2k−1−k+2 steps, say step i, 2 packets are released
f2
i := (φ(φ−ǫ)−ǫ, 2k+1−k+1) and h2

i := (φ2, ∞).
MG sends h2

i in step i. Stage 2 is half as long as
stage 1.
We repeat this pattern in each stage, for k stages.

Stage i+1 is half as long as stage i. In each step j
of stage i, 2 packets are released, f i

j := (φ(wf
i−1

1

−
ǫ), 2k+1 − k + i) and hi

j := (φi, ∞). MG sends hi
j

in step j. In the last stage, which is step 2k+1, the
adversary only releases 2 packets fk

1 := (φk, 2n)
and hk

1 := (φk+1 + ǫ, ∞). MG sends hk
1 and fk

1 is
dropped out of the buffer due to its deadline.
For each step in stage i, MG only delivers the hi

packets, and eventually, all packet f i are dropped

out of the buffer due to their deadlines. On the
contrary, the adversary sends all f i packets and all
hi packets. A routine calculation shows that the
optimal weighted throughput is nearly twice MG’s
weighted throughput. We remove ǫ in the following
calculation for the sake of clearness.

c =
2
(

φ0 · 2k + φ1 · 2k−1 + . . .+ φk · 20
)

+ φk+1

(φ0 · 2k + φ1 · 2k−1 + . . .+ φk · 20) + φk+1

=
2
(

φ0 · 2k
)

(

φ0

20
+ φ1

21
+ φ2

22
+ . . .+ φk

2k

)

+ φk+1

(φ0 · 2k)
(

φ0

20
+ φ1

21
+ φ2

22
+ . . .+ φk

2k

)

+ φk+1

=
2k+1 1−(φ

2)
k+1

1−
φ

2

+ φk+1

2k
1−(φ

2)
k+1

1−
φ

2

+ φk+1

=
2k+1 − φk+1 + φk+1 − φk+2

2

2k − φk+1

2
+ φk+1 − φk+2

2

=
2
(

2

φ

)k

− φ2

2

(

2

φ

)k

− 1

2

= 2.

3.2. The agreeable deadline setting

In [7], the authors have shown that MG is φ-
competitive for agreeable deadline instances. The
lower bound φ constructed in [6] for the general
model holds as well for scheduling packets with
agreeable deadlines and MG. We list MG’s perfor-
mance in the agreeable deadline setting here for its
optimality and significance. We include this variant
for comparison with others.

3.3. The anti-agreeable deadline setting

Both Theorem 2 and Theorem 3 hold for anti-
agreeable deadline instances. Both the upper
bound and lower bound for MG are 2.

3.4. The agreeable value setting

Both Theorem 2 and Theorem 3 hold for anti-
agreeable deadline instances. Both the upper
bound and lower bound for MG are 2.

4

3.5. The anti-agreeable value setting

Theorem 4. MG is 1-competitive for the anti-
agreeable value setting when α = ∞. MG is op-
timal.

Proof. When α = ∞, MG sends the earliest-
deadline packet e in the optimal provisional sched-
ule in each step. To prove Theorem 4, we only need
to inductively show that for each step, an optimal
offline algorithm OPT sends e in each step as well.
In anti-agreeable value instances, any later released
packet has a value ≤ ve. If any later released packet
belongs to O, so does e. If no later released packet
belongs to O, OPT sends e to maximize its total
gain. Thus, OPT sends e in each step.

3.6. The agreeable deadline/value setting

The lower bound φ constructed in [6] for the
general model holds as well for agreeable dead-
line/value instances.

Theorem 5. MG is φ-competitive for the agreeable
deadline/value setting when α = β = φ2 ≈ 2.618.
MG is optimal.

Proof. We are using a charging scheme to prove
Theorem 5. Let OPT denote an optimal offline
algorithm. Without loss of generality, we assume
that OPT only accepts O-packets and sends them
in EDF manner. Let QOPT denote OPT’s buffer.
At time t, let the optimal provisional schedule be

S and we index the buffer slots as t, t+1, The
packets in S are sorted in increasing deadline order,
with ties broken in decreasing value order and these
packets are buffered in slots t, t+1, . . . , t+ |S|−1
consecutively. The packets not in S are appended
at the end of S. Let us study the optimal provi-
sional schedule S at first. The packets in S thus
are grouped into multiple (≥ 1) batches of packets
G1, G2, . . ., in order of strictly increasing dead-
lines. The packets in the same batch share the same
deadline. (Note that G1 is the first batch in S.) We
have

Remark 1. All the packets in the same batch share
the same deadline. For any two batches Gi and Gj

with indexes i < j, all the packets in Gi have strictly
earlier deadlines and strictly lower values than all
the packets in Gj.

We will introduce a charging scheme and this
charging scheme may use the following observa-
tions.

Remark 2. In the agreeable deadline/value setting,
if a packet p is inserted into the optimal provisional
schedule, then all the packets with value > vp are
shifted into one buffer slot later since they have
strictly larger deadlines. Also, for any two time
steps, the relative order among the packets in both
MG’s optimal provisional schedules is not changed.

Lemma 1. In the agreeable deadline/value setting,
if a packet p is evicted out of MG’s optimal pro-
visional schedule at time t, then in each step from
time t till p’s deadline dp, MG’s optimal provisional
schedules for these steps do not contain any packet
with a value < dp.

Proof. If a packet p is evicted out of MG’s optimal
provisional schedule at time t, then either dp < t or
in each of the buffer slots t, t+1, . . . , dp, MG’s cur-
rent optimal provisional schedule at time t buffers
one packet with value> vp. From Remark 1 and the
assumption of agreeable deadline/value, dp should
not be larger than those of packets in the batch G1.

• Assume MG sends the e-packet in a step before
dp.

Then for those packets arranged in the buffer
slots belonging to batch G1, they have their
deadlines no smaller than dp and they are tight,
that is, they cannot be shifted into later buffer
slots and provide buffer slots to accommodate
less-value packets with no-later deadlines (see
Remark 2). For packets in batchesG2, G3, . . .,
if any, they have strictly larger deadlines than
dp and strictly larger values than vp.

• Assume MG sends a packet f 6= e in a step
before dp.

All the unsent packets in the optimal provi-
sional schedule can be shifted by at most one
step to their later steps and the relative order
among all these packets keep unchanged (see
Remark 1 and Remark 2). Any newly released
packets with later deadlines have no smaller
values. Any newly released packets with values
< vp are rejected by MG’s optimal provisional
schedules since all the packets with deadlines
= dp are tight. Thus, for the new optimal pro-
visional schedule generated at the beginning of
the next step, Lemma 1 still holds.

5

Lemma 2. Consider a chain of k steps. In the
steps 1, 2, . . . , k (these steps may not be contin-
ues), we charge OPT the values vq1 , vq2 , . . . , vqk
and MG the values vp1

, vp2
, . . . , vpk

, respectively.
If for all i with 1 ≤ i ≤ k− 1, we have vqi ≤ α · vpi

,

and if vqi ≤ vpi+1
and vqk ≤ vpk

, then
∑k

i=1
vqi ≤

1

αk−1

((

2− 1

α

)

αk − α
)
∑k

i=1
vpi

.

Proof.

∑k

i=1
vqi

∑k

i=1
vpi

=
vq1 + vq2 + · · ·+ vqk
vp1

+ vp2
+ · · ·+ vpk

≤ vq1 + vq2 + · · ·+ vqk
vq1
α

+max{vq1 ,
vq2
α
}+ · · ·+ vpk

≤
vq2
α

+ vq2 + · · ·+ vqk
vq2
α2 +

vq2
α

+ · · ·+ vpk

≤ · · ·

≤
vqk−1

αk−2 + · · ·+ vqk−1

α
+ vqk−1

+ vqk
vqk−1

αk−1 + · · ·+ vqk−1

α2 + vpk−1
+ vpk

≤
vqk−1

αk−2 + · · ·+ vqk−1

α
+ vqk−1

+ vqk
vqk−1

αk−1 + · · ·+ vqk−1

α2 +
vqk−1

α
+max{vqk , vqk−1

}

≤
vqk−1

αk−2 + · · ·+ vqk−1

α
+ vqk−1

+ vqk−1

vqk−1

αk−1 + · · ·+ vqk−1

α2 +
vqk−1

α
+ vqk−1

=
1−α1−k

1−α−1 + 1

1−α−k

1−α−1

=
(2− α−1)αk − α

αk − 1
.

Note that when α ≥ 1, 1

αk−1

((

2− 1

α

)

αk − α
)

≤
2− 1

α
. Also, note φ+ 1

φ2 = 2, we have

Corollary 1. Consider a chain of k steps. In the
steps 1, 2, . . . , k (these steps may not be contin-
ues), we charge OPT the values vq1 , vq2 , . . . , vqk
and ON the values vp1

, vp2
, . . . , vpk

. If for all
i with 1 ≤ i ≤ k − 1, we have vqi ≤ α · vpi

,
and if vqi ≤ vpi+1

, and vqk ≤ vpk
, then we have

∑k

i=1
vqi ≤ φ

∑k

i=1
vpi

when α = φ2.

We say that a chain of steps is open if we have
not charged the values to OPT and MG in these
steps. Otherwise, we say that it is closed.

Definition 1 (Canonical Order). Packets in MG’s
optimal provisional schedule are order in a canoni-
cal order: in increasing order of deadlines, with ties
broken in decreasing order of values.

Our charging scheme guarantees the following
three invariants:

I1. In each step or in a closed chain of a group
of steps, the total charged values to OPT are
bounded by φ times of the total charged values
to MG. Chains do not share steps.

I2. For any packet q in OPT’s buffer, if vq has not
been charged to OPT in our charging scheme,
then q must map uniquely to a packet p in
MG’s optimal provisional schedule with vq ≤
vp and dq ≤ dp. (p may be the packet q itself.)

In the canonical order, for any packet j before
p in MG’s optimal provisional schedule S, if p
is not in S, then we have vj ≥ vq.

I3. A packet p in MG’s optimal provisional sched-
ule S may correspond to at most one open
chain and vp is no less than the value of the
packet OPT sends in the last step of this open
chain. If p corresponds to an open chain and
is mapped by a packet in OPT’s buffer, p is
called overloaded. If p is overloaded, then any
packet before p in S is overloaded as well.

Note that Invariant I1 results in Theorem 5 au-
tomatically.

The charging scheme is described below. We
consider packet arrivals and packet deliveries sepa-
rately.

Packet arrivals.

For any packet p evicted out of MG’s optimal pro-
visional schedule S due to accepting a new arrival
p′, we have vp′ ≥ vp and dp′ ≥ dp in the agree-
able deadline/value setting. After dropping p, MG
has at least one packet q in S such that q is not
mapped by a packet in OPT’s buffer, due to In-
variant I2. In the canonical order of S, we pick up
the first packet not in mapping and let it be q. q
should have a deadline ≥ vp and thus, vq ≥ vp, due
to the assumption of agreeable deadline/value set-
ting. Furthermore, any packet in MG’s current op-
timal provisional schedule has a no-less value and
no-earlier deadline than p. We transfer the open
chain mapping to p, if any, to q. Hence for packet
arrivals, all the invariants hold.

6

Packet deliveries.

In each step, OPT sends the earliest-deadline
packet q in its buffer. MG sends either e or f 6= e.
Remember that we use S denotes MG’s optimal
provisional schedule and the packets in S are sorted
in a canonical order.

Assume MG sends e and OPT sends q /∈ S or OPT
sends q = e. From Invariant I2, if q has not been
charged to OPT, then vq ≤ ve. Assume q maps
to p in S. vq ≤ vp ≤ ve. We charge OPT vq and
the packets in the open chain mapping to e, if any.
We close the open chain. The ratio of total charged
values of this chain or this single step is bounded
by φ (see Corollary 1).

Assume MG sends e and OPT sends q ∈ S with
q 6= e. Due to Invariants I2 and I3, there is no over-
loaded packets in MG’s optimal provisional sched-
ule. Otherwise, OPT sends a packet with an ear-
lier deadline than dq and less-value than ve since it
sends packets in the EDF order. We start a new
open chain from this step mapping to q in MG’s
optimal provisional schedule. Note that q is not an
overloaded packet yet since it is not mapped by any
packet in OPT’s buffer.

Assume MG sends f 6= e and OPT sends q /∈ S or
OPT sends q = e. From Algorithm 1, we have vf ≥
αve = φ2ve. If q is evicted out of the provisional
schedule, we have vq ≤ ve (from Lemma 1). We
close the open chain if e belongs to any one. The
ratio of total charged values of this chain or this
single step is bounded by φ (see Corollary 1).

Assume MG sends f 6= e and OPT sends q ∈ S
with dq < df .

• Assume f = h.

We have vq < vh/α = vf/α = vf/φ
2.

If q = e, we close the open chain mapping to
e, if any. We also charge vh to OPT in this
step. The ratio of total charged values of this
chain or this single step is bounded by φ (see
Corollary 1).

If q 6= e, then no open chains exist since other-
wise e is a candidate packet for OPT to send.
We charge OPT the value vq + vf in this step
and MG the value vf . Furthermore, we split
this step into two fractional steps: In one frac-
tional step, OPT is charged a value vf and
MG vf/φ. In this single fractional step, the

gain ratio is φ. In another fractional step, we
charge OPT the value vq and MG the value
vf/φ

2 ≥ vq/φ
2. This step maps to q in MG’s

optimal provisional schedule at the end of this
step since e with de ≥ t is not the packet q.

• Assume f 6= h.

If q is not in MG’s optimal provisional schedule
S, q must map to a packet p ∈ S and vq ≤
ve. From Algorithm 1, we have vf ≥ αve =
αvq = φ2vq. f is not in any open chain (from
Invariant I3). We close the open chain, if any,
mapping to p. We also charge vf to OPT in
this step. The ratio of total charged values of
this chain or this single step is bounded by φ
(see Corollary 1).

If q is in S, then q is not in any open chain, from
Invariant 1. We charge OPT the value vq + vf
in this step andMG the value vf . Furthermore,
we split this step into two fractional steps: In
one fractional step, OPT is charged a value vf
and MG vf/φ. In this single fractional step,
the gain ratio is φ. In another fractional step,
we charge OPT the value vq and MG the value
vf/φ

2 ≥ vq/φ
2. This step maps to q in MG’s

optimal provisional schedule at the end of this
step since e with de ≥ t is not the packet q.

Assume MG sends f 6= e and OPT sends q ∈ S
with dq > df . Due to Invariants I2 and I3, there
is no overloaded packets in MG’s optimal provi-
sional schedule. From Algorithm 1, we have vq >
vf ≥ αve = φ2ve. We start a new open chain from
this step mapping to q in MG’s optimal provisional
schedule. Note that q is not an overloaded packet
yet since it maps no packet in OPT’s buffer.

3.7. The anti-agreeable deadline/value setting

Consider the anti-agreeable deadline/value set-
ting. In MG’s optimal provisional schedule, for any
two packets p and q with dp < dq, we have vp ≥ vq.
Applying the same proof of Theorem 4, we have

Theorem 6. MG is 1-competitive for the anti-
agreeable deadline/value setting when α = ∞. MG
is optimal.

3.8. The agreeable slack-time/value setting

Lemma 3. In the agreeable slack-time/value set-
ting, if a packet p is evicted out of MG’s optimal
provisional schedule at time t, then from time t till
p’s deadline dp, all the MG’s optimal provisional

7

schedules do not contain any packet with a value
< vp.

Proof. If a packet p is evicted out of MG’s optimal
provisional schedule at time t, then either dp < t or
in each of the buffer slots t, t+1, . . . , dp, MG’s cur-
rent optimal provisional schedule at time t buffers
one packet with value > vp.
In each step, MG either sends e or f 6= e. For

time t when a packet p is rejected, those packets
unsent by MG but staying in MG’s optimal provi-
sional schedule at time t are tight and cannot be
shifted into later buffer slots. Note that for any
two packets with the same deadline, the earlier re-
leased one has a larger slack time, hence, a larger
value. Thus, the later released packet is preferred
to be evicted if two packets share the same dead-
line and MG’s optimal provisional schedule cannot
accommodate both. Lemma 3 holds.

Using Lemma 3, we apply the proof of Theorem 5
directly and have

Theorem 7. MG is φ-competitive for the agreeable
slack-time/value setting when α = β = φ = (1 +√
5)/2 ≈ 1.618.

3.9. The anti-agreeable slack-time/value setting

Property 1. Consider the anti-agreeable slack-
time/value setting. In MG’s optimal provisional
schedule, for any two packets p and q with dp < dq,
we have vp ≥ vq.

Property 1 can be proved inductively. Assume at
time t, Property 1 holds. Consider a packet p in
the optimal provisional schedule at the end of step
t. We have rp ≤ t < dp. For any released packet q
at time t+1, if dq < dp, we have sq = dq− (t+1) <
dp − t = sp and vq > vp. Thus, Property 1 holds
again. Property 1 results in that all the e-packets
in the optimal provisional schedules are O-packet.
Applying a slightly modified version of the proof of
Theorem 4, we have

Theorem 8. MG is 1-competitive for the anti-
agreeable slack-time/value setting when α = ∞.
MG is optimal.

References

[1] B. Hajek, On the competitiveness of online scheduling
of unit-length packets with hard deadlines in slotted
time, in: Proceedings of 2001 Conference on Informa-
tion Sciences and Systems (CISS), 2001, pp. 434–438.

[2] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir,
B. Schieber, M. Sviridenko, Buffer overflow manage-
ment in QoS switches, SIAM Journal on Computing
(SICOMP) 33 (3) (2004) 563–583.

[3] H. W. Kuhn, The hungarian method for the assignment
problem, Naval Research Logistics Quarterly 2 (1955)
83–97.

[4] A. Borodin, R. El-Yaniv, Online Computation and
Competitive Analysis, Cambridge University Press,
1998.

[5] M. Englert, M. Westermann, Considering suppressed
packets improves buffer management in QoS switches,
in: Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2007, pp. 209–
218.

[6] F. Y. L. Chin, S. P. Y. Fung, Online scheduling with
partial job values: Does timesharing or randomization
help?, Algorithmica 37 (3) (2003) 149–164.

[7] F. Li, J. Sethuraman, C. Stein, An optimal online al-
gorithm for packet scheduling with agreeable deadlines,
in: Proceedings of the 16th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2005, pp. 801–
802.

[8] F. Li, J. Sethuraman, C. Stein, Better online buffer
management, in: Proceedings of the 18th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2007, pp. 199–208.

[9] F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor,
J. Sgall, T. Tichy, Online competitive algorithms for
maximizing weighted throughput of unit jobs, Journal
of Discrete Algorithms 4 (2) (2006) 255–276.

[10] M. Chrobak, W. Jawor, J. Sgall, T. Tichy, Online
scheduling of equal-length jobs: Randomization and
restart help?, SIAM Journal on Computing (SICOMP)
36 (6) (2007) 1709–1728.

8

	1 Model Description
	2 Algorithm MG
	3 Analysis
	3.1 The general setting
	3.2 The agreeable deadline setting
	3.3 The anti-agreeable deadline setting
	3.4 The agreeable value setting
	3.5 The anti-agreeable value setting
	3.6 The agreeable deadline/value setting
	3.7 The anti-agreeable deadline/value setting
	3.8 The agreeable slack-time/value setting
	3.9 The anti-agreeable slack-time/value setting

