Types, Regions, and Effects for Safe Programming
with Object-Oriented Parallel Frameworks

Robert L. Bocchino Jr.

Vikram S. Adve

Department of Computer Science
University of lllinois at Urbana-Champaign

dpj@cs.uiuc.edu

Abstract

Object-oriented frameworks can make parallel programneiagr
ier by providing generic parallel algorithms such as magduce,

or scan, and letting the user fill in the details with sequemibde.
However, such frameworks can produce incorrect behavitneif
are not carefully used, e.qg., if a user-supplied functioriqggens an
unsynchronized access to a global variable. We develod texte
niques that a framework designer can use to prevent suckserro
Building on a language (Deterministic Parallel Java, or DFith

an expressive region-based type and effect system, we stw h
to write a framework API that enables sound reasoning alfmut t
effects of unknown user-supplied methods. We also desonlsel
extensions to DPJ that enable generic types and effects entés
for flexible frameworks — while retaining soundness. Fipaile
show how to make the reasoning modular: using any desired tes
ing or verification technique, the framework author can gotee
noninterference subject to the API constraints; and thepdencan
check the constraints to provide a noninterference gueedot the
entire user program. We evaluate our technigue by usingatite
two parallel frameworks and two realistic parallel algonits.

1. Introduction

The emergence of multicore desktop architectures is dyipiar-
allel programming into the mainstream, posing new prodiigti
correctness, and performance challenges for programntersave
used to writing sequential code. One way to alleviate thésé-c
lenges is to use object-oriented frameworks. The framewoiter
provides most of the code for parallel construction of gendata
structures and for generic parallel algorithms such as mesgjoice,
or scan; and the user fills in the missing pieces with seqaienti
code that is applied in parallel by the framework. Examples i
clude the algorithm templates in Intel's Threading BuifgBlocks
(TBB) [23] and Java’s ParallelArray framework [1]. Such arfre-
work is usually easier to reason about than general pamitel
gramming, because the user only has to write sequential tetde
ting the framework orchestrate the parallelism.

However, current frameworks give no guarantee of nonieterf
ence of effect, and this a serious deficiency in terms of ctmess
and program understanding. For example, ParallelArrayisl y
method applies an arbitrary user-specified function to etement
of the array. If that operation performs an unsynchronizedhte to
a global, then an unexpected race will result. One coulceissset
of informal guidelines for how to use the API safely, but tisisin-
satisfactory. It would be much better if (1) the frameworkeleper
could write an API expressing a contract (for example, timefion
provided toapply is read-only with respect to global state); and
(2) the compiler could check that the contract is met by atleco
supplied by the user to the framework.

While several tools and techniques exist that supportrg ind
checking assertions at interface boundaries [17,21,B8%¢etideas
have not yet been applied to enforparallel noninterferenceas
discussed in Section 7. Doing so involves several openerigis,
which we list below.

Maintaining internal linearityUseful parallel frameworks need
to support parallel updates on contained objects. For elame
would like aParallelArray of distinct objects, where the user
can provide arepply function that updates an element, and ask
the framework to apply it to each distinct object in paralled do
this safely, the framework must ensure that the objects eatiyr
distinct; otherwise the same object could be updated in &valfel
iterations, causing a race. We call this propenternal linearity,
by analogy with linear types [31], because each containgecbb
occupies exactly one iteration slot of the container. Iting€rnal”
because we only care about aliasing in the container sldts; a
trary aliasing outside the container (or between conta)nierstill
allowed. For a language like Java with robust referencesialip
internal linearity is a nontrivial property.

Constraining the effects of user-supplied methéds.a parallel
update traversal over the objects in a framework, inteinahrity
is necessary but not sufficient to ensure noninterferertoeffame-
work must also ensure that the effects of the user-supplettiods
do not interfere, for example by updating a global variableby
following a link from one contained object to another.

Making the types and effects geneBecause different uses of
the framework need user-supplied methods with differefetces,
the framework should constrain the effects of user-sugptieth-
ods as little as possible while retaining soundness. Fanple one
use ofapply may write into each object only; while another may
read shared data and write into each object. The framewakidgh
also be generic, not specialized to a specific type of coatbob-
ject. These requirements pose challenges when the frarkewer
thor needs information about the type of the contained ebjmed
the effect of user-supplied methods in order to provide amenr
ference guarantee.

Verifying the framework implementatiofhe framework author
must verify that the internal framework implementation igua
tees safe parallelism, given that the APl is enforced. Fampte,
even if the framework ensures that the same object is nesertad
twice, it must also ensure that any parallel loop inside theng-
work iterates exactly once over each inserted object.

Notice that the first three challenges are about definingradra
work API that enables sound reasoning about uses of the frame-
work; while the fourth challenge is about writing a framelvan-
plementatiorand proving it correct.

In this work we address the first three challenges, i.e., wa/sh
how to write a framework API so that the framework author can
reason soundly about interference of effect in arbitrastantia-

2009/9/8

tions of the framework, with unknown user-supplied methadd
generic type bindings. We build on Deterministic ParallaVal
(DPJ) [5], which expresses effects in termsegfionsthat partition
the heap. Regions provide an intuitive way to reason abarirgh
patterns and a flexible way to express and check effects.

We do not try to solve the fourth challenge; instead we redtuce
to a simple logical predicate that can be discharged by otleans,
such as program logic [14, 22], testing, or model checkings T
predicate is completely hidden from the user of the framé&nso
that the user gets a strong guarantee, assuming a cormeeviiak
implementation: if the program type checks, then there imter-
ference between parallel code sections. A framework sudteas
allelArray can further provideeterministic executiof8], perhaps
subject to some additional requirements (e.g., that realuopera-
tions are associative) that our system does not currengdlgich ;

Our approach fosters modular checking in two ways. First, we
show how to use a region-based type and effect system for what
it does very well — checking the use of a generic framework APP
— while using any other appropriate form of verification teck E
the inside of the framework, e.g., to verify set and tree proes.

1
2
3
4
5
6
7
8
1
2
3
4
5
6

13
Second, the framework author can verify the generic framlewo14
once, and then rely on a type checker to verify each use depara *
the user does not have to re-verify the instantiated framefo 1
each use. This is important because the user may have noddea h
to verify the framework or how it even works.

Our contributions are the following:

. We show how to write a framework API using the DPJ type and
effect system “off the shelf” so that the framework implerngzn
has all the information necessary to guarantee interngéitity
of reference and sound effects for user-supplied methods.

. We show how to extend the DPJ type and effect system to add
generic effects and generic types, making the frameworke mo
general and useful. For the effects, we aftect variables
here the technical challenges are constraining the unkrewn
fects appropriately and providing sound subtyping. Foregien
types, we introducéype region parameterso that the frame-
work author has enough information about the types bound to
generic type variables to guarantee internal linearitysmad-
ness of effect, without knowing the exact type.

public class ListNode<region R> {
int data in this;
ListNode<*> next in this;
public ListNode(int data, ListNode<R> next) pure {
this.data = data;
this.next = next;

Figure 1. ListNode class that will serve as a running example.

class NodePair {
region One, Two;
private Node<One> one in Root;
private Node<Two> two in Root;
NodePair (ListNode<One> one, ListNode<Two> two) pure {

this.one = one;
this.two = two;
}
void updateNodes(int oneData, int twoData) {
cobegin {
/% reads Root writes One : * x/
one.data = oneData;
/* reads Root writes Two : * */

two.data = twoData;

17}

Figure 2. Using region parameters to distinguish object instances.

As an example, Figure 1 defines a simple list node class that
we will also use in subsequent sections. The class has of@reg
parameterR. The fieldsdata and next in lines 2-3 are both
located in the object reference region associated withs. A
reference region is a child of the first region appearingsrype:
for example, in Figure 1, regionhis is a child ofR. In line 4,
the effect of the constructor is declargdre (no effect) because
in DPJ an object is not visible to the rest of the program until
the constructor returns, so constructors do not have tatréper
effects on the constructed object.

Figure 2 presents a simple container cladstNodePair, that
stores a pair of list nodes. Lines 3—4 instantibi@tNode types
using the field region name@ne and Two, declared just above.
Herereads Root comes from the fact that the fieldae andtwo

- Using a simple logical predicate as the “glue,” we show how gre |ocated in regioRoot, the top-level region in the hierarchy,
to make different forms of verification interoperate so that 55 shown in lines 3—-4. The effegtites One:#* comes from the

the framework author and user can separately check separatgact that line 12 writesiata, which is inthis, which is under
parts of the program with separate verification mechanisms, the region bound t@. in the type ofone, i.e., One; and similarly
and guarantee that any composition of the parts results in afor the effect shown in line 13. Becausee andTwo are distinct

correct program.

We formalize a core subset of the system and formally stae th
soundness results. We also describe the results of an gwalua
showing that the system is expressive enough to capture éwo r
alistic parallel algorithms, and that the extra annotaioequired

by the system are not unduly burdensome.

2. Background: Deterministic Parallel Java

We begin with a brief introduction to DPJ [5]. DPJ usegionsto
specify access to the heap: every class field and array esliri

a single region, and distinct regions represent disjoitiections
of memory locations. A region can be a declared name fahal
local variable representing a dynamic object referencie, @sner-
ship systems [9,10]. All the regions are arranged in a treeahihy,
rooted at the special regidot. The regions in the subtree at re-
gion R can be named a8 : *. DPJ usesffect summariesn method
interfaces, expressed in terms of reads and writes to regioren-
able method-local checking of noninterference.

names, and because the region hierarchy forms a tree, thaleom
can conclude that the updates in lines 12 and 14 are disjitit.
these features, together with additional features foryarrdivide
and conquer parallelism, and commutative operations ssaet
inserts, DPJ can express important patterns of parall¢bgm

3. Difficulties with Region-Based Effect Systems

As DPJ illustrates, region-based type and effect systemsbea
quite expressive, and they are a natural choice for writiaig s
object-oriented frameworks. However, existing systempose
significant limitations that we must address in our framéwae-
sign. As we will see, by shifting some of the burden of guazant
ing noninterference from the type system to the framewogkcan
overcome some of these limitations.

One limitation is that, to guarantee soundness, we haveoto pr
hibit swapping ofone andtwo in the example:

void swap() {

ListNode<One> tmp = one;
/* illegal, can’t assign ListNode<Two> to ListNode<One> */

2009/9/8

one = two;
/* 4llegal, can’t assign ListNode<One> to ListNode<Two> */
two = tmp;

}

If we could do such an assignment, then in general we could hav
multiple references with conflicting types pointing to tlaere data,
and we would no longer be able to draw sound conclusions about
effects [4].

For this reason, researchers have introduced wildcardstype
that allow freer assignments [5, 19]. For example, in lined 8f
Figure 2, we could have written both typesstNode<*>, where
* stands in for any region. Now the swapping shown above is fine,
because the variable types don't constrain what regionsspear
in the dynamic reference types. However, we have lost théyabi
to distinguish writes tone.data andtwo.data using the type
system, because now all we know is that the writes in lines 12
and 14 are tex. This is true even though by inspecting Figure 2,
we (as opposed to the type system) can see thaind)and two
are distinct coming into the constructor (line 5); and (2 shap
operation preserves the distinctnessmé andtwo. So the state of
the art in region-based type systems forces us to chooker eie
can prove that two references don't alias, or we can swapvbe t
references, but not both.

In fact, the situation is worse than this. Notice that in Feyl,
we gave the.istNode class a fielthext of type ListNode<*>,

i.e., aListNode with an unspecified region bound to its parame-
ter. Therefore, as shown in Figure 3L.&stNodePair holding list
nodes can have cross links. The effect system has to makéhstire
(1) the references stored in the fielstss andtwo are distinct; and
(2) when following the references to access the objectsriallph
the cross links are never followed to update the same olfjeict.
ther, we probably don’t want to “hard code” the operation oftw
ing to data into the framework implementation, as shown in lines
12 and 14. Instead, as discussed in the introduction, wednie

to express the operation abstractly, and let the user stipplgpe-
cific operation. We therefore must constrain the effecthefuser-
supplied method so that we can argue that for any user-sgppli
method, this kind of interference cannot happen.

data data

next @ next

Figure 3. The references stored in tiNedePair are distinct; but
we can still get a race if we follow the cross link represerigthe
dotted arrow.

4. Writing Safe, Reusable Parallel Frameworks

In this section we show how to address the challenges disduss
above to write safe, reusable parallel frameworks. Firdefie an
abstract linear container, which provides a sample frameW®!|

to illustrate our ideas. Second, we show how how to write tRé A
so that the framework writer can reason soundly about effecta
container specialized to list nodes. Third, we show how tersk
the type system to make the API generic. Finally, we addtess t
problem of verifying the framework implementation.

4.1 Abstract Linear Containers

We define an abstract data type calledabstract linear container
This type generalizes the triviibdePair container introduced in

the previous section. In Section 6 we discuss how to apply our
techniques to more realistic examples.

An abstract linear container is an abstract data type wigh th
following properties:

1. It contains references to other objects. The number oédto
references can be fixed up front (as with an array) or changed
dynamically (as with a resizable array or set).

2. The elements are conceptually stored in slots. An itemaiver
the elements in the container iterates over the slots. Famex
ple, for an array, the slots are the array cells; for a setltie s

are the set elements; and for a tree the slots are the tres.node

3. For any two distinct slots, the references stored in tbes slre
different (point to different objects). So, for example, &t B
allowed but a multiset is not (since two slots can have theesam
element). However, one could emulate a multiset using afset o
sets.

Property 1 is standard for a container ADT, e.g., any of theaio-
ers injava.util. We introduce property 2 just so we have a way
to talk about the iteration space of a container that is inddpnt of
the internal storage pattern (array, tree, etc.). Prof3aetkey to en-
suring soundness when the user calls an API method to itevate
the container and update its contents in parallel. We cisligiop-
erty internal linearity, by analogy with linear types [31]. The slots
are linear, in the sense that at most one slot of any partitnkar
container points to any object. However, unlike generaldirtypes,
multiple containers (or other references outside the dcoatacan
point to the same object. Note that both versiongaafePair from
Section 3 are instances of the abstract linear container, typere
the slots are the fieldsne andtwo. For conciseness, we refer to
the slots of the container and the container itself as “liid¢aough
we mean that internal linearity holds as to the slots.

4.2 A List Node Container

We now show how to use the DPJ type system [5] to write an
abstract linear container API that allows safe parallelates to

its contained objects. There are two problems: maintaihirear-

ity, and reasoning about effects. Our key insight is thabugh
careful API design, together with judicious use of localiables
and method region parameters, we can enforce restrictiicasd
factory method must return a new object” or “an apply method
must write only under the region of the object it is given.tther,

we can impose these restrictions without exposing globgibre
names (such aBne and Two in Figure 2), that would otherwise
prevent swapping and other linearity-preserving openatioside
the framework.

4.2.1 Maintaining Linearity

To maintain linearity, we use the following strategy: (1ggvcon-
tainer starts empty and so is trivially linear; and (2) evgpgration
provided by the linear container API is linearity presegvittakes
a linear container to another linear container). By a sinmpdieic-
tion, we can then conclude that the container is linear tjnout its
lifetime. The hard part is guaranteeing property (2). Ttagetwo
types of operations to consider: (a) operations that aa#lyatnder
the control of the container implementation and (b) operetithat
must cooperate with (possibly unknown) user code.

An example of (a) is a tree rebalancing or array reshufflirg th
operates only on internal structure of the container. Heeegtob-
lem is entirely reduced to writing a correct framework impén-
tation. We discuss this problem in Section 4.4 below.

In the case of (b), however, the framework must restrict et
user can do so that the framework author can reason sounaolly ab
uses of the container without knowing exactly what that uge w

2009/9/8

look like. A core example here is putting things into a coméai For *
the container to be useful, the user has to retain contrelwhatis 2
inserted in the container, and how and where those insdriegst
are created. The trick is to allow some control while stilitgeable s
to reason about linearity. In our work to date we have explore®
three strategies: controlled creation of contained objemtilding
one linear container from another, and backing the contaiite a o
set. 10

Controlled creation of contained objectsnes 7-11 of Figure 4 *
illustrate this strategy, for dodeContainer interface that could ;
be implemented in different ways (array, tree, etc). We defie 14
interface with two region parametei&de andCont, because we 15
want to refer separately to the nodes stored in the conteamer ¢
the container itself. The container implementation doesaittual
object creation, but the user specifies the number of objects 1o
create and provides a factory method specifying how to erteg 20
ith object. For example, a use could look like this, assumicigss *
NodeArray that implementdlodeContainer: Z
24

public class MyFactory implements NodeContainer.NodeFactory<N> {
public <region R>ListNode<R> create(int i) {
return new ListNode<R>(i, null);
}
}

NodeContainer<N,C> cont =
new NodeArray<N,C>(new MyFactory(), 10);

This code creates a neélwdeArray with 10 list nodes, such that
the ith one has itslata field set toi. HereN and C are region
names declared by the user (declarations not shown) anddboun
to the region arguments in the instantiated types.

The important thing here is that the “factory method” must
really be a factory method and not, for example, just fetaneso
object reference from the heap and store the same one itticledc
of the new linear container. The framework author can eeftines
requirement by judicious use ofaethod region parameteNotice
that in line 10, the return type of the factory method is weritin
terms of a paramet@rthat is in scope only in that method. Further,
no reference of typ&istNode<R> enters the method. Therefore,
the only way aListNode<R> can escape the method is if it is
created inside the method \iew. To our knowledge, no previous

public interface NodeContainer<region Node,Cont> {

/* One linear container from another */
public NodeContainer (NodeContainer<Node,Cont> cont)
writes Cont;

/* Controlled creation of contents */
public NodeContainer(NodeFactory fact, int size) writes Cont;
public interface NodeFactory {

public <region R>ListNode<R> create(int i) pure;

}

/* Backed by set */
public void add(ListNode<Node> elt) writes Cont;

/* Data parallel operation on all elements */
public void performOnAll(Operation<Node> op)
reads Cont writes Node:x*;
public interface Operation<region Node> {
public void operateOn(final ListNode<Node> elt)
writes elt;

}

Figure 4. Framework API for an abstract linear list container.

Backing the container with a setine 14 of Figure 4 illus-
trates the third strategy: we just provide a standatd method for
the container, but require that any implementation of thathod
be backed by a set. This is most useful for a linear container
that actually is a set, where this backing happens “autcalt’
For a non-set container such as a tree or array, the implement
must choose: either back insertion with a set (causing exma
time overhead), or “implement” thedd method by throwing an
UnsupportedOperationException, which is effectively a run-
time check that this operation never occurs.

4.2.2 Using Linearity to Reason About Effects

Lines 17-22 of Figure 4 show the part of the API that allows the
user to define a method and then pass that method into theéreemta
to be applied in parallel to all contained objects. For exangiven
referencecont of type NodeContainer<N,C>, the user could do
this:

work has shown that region parameters can be used to enforce a

restriction that a method must return a fresh object.

Building one linear container from anothdf. we start with a
linear container4, and we create a new linear containgrand
populate it by copying the reference elements from the sibt4
to the slots ofB, then B will be linear. An example is creating a
tree out of the elements of an array or set.

Lines 4-5 of Figure 4 illustrate how we might implement
this strategy in DPJ. They just say that given one object péty
NodeContainer<Node,Cont> we can create another one. An im-
portant special case in DPJ is creating a linear contair@n fr
an index-parameterized arrayin DPJ, the index-parameterized
array type is an arrays such that cellA[:] has a type like
ListNode<[:]> that is parameterized by the integer valudhis
guarantees the linearity property for the array, becaubie; @an
never point to typ&.istNode<[j]>, for ¢ # j. However, because
the parameterized types are exposed to the rest of the pmpgra
also means that we cannot shuffle the array elements witloowt ¢
promising soundness. (This is exactly the same problenustsa
in Section 3, just with array cells rather than fields.) If wane
struct a linear container by copying in elements from thésadlan
index-parameterized array, then we obtain a containeighiaear,
but on which we can also perform linearity preserving openst
such as reshuffling, that were prohibited for the originaharby
doing theminternally within the framework.

public class MyOperation implements NodeContainer.Operation<N> {
public void operateOn(ListNode<N> elt) writes elt {
++elt.data;
}
}
cont.performOnAll(new MyOperation());

This code increments in parallel thiata field of each of the
objects stored iront.

We have carefully written the API so that any user-supplied
method updates at most the object it is applied to, and does no
(1) follow the cross links to read or write a different objéas il-
lustrated in Figure 3); or (2) update any other shared stateh(
asstatic variables). In the definition of the abstragierateOn
method in theOperation interface (lines 20-21 of Figure 4),
we specify the effect agsrites elt. The DPJ type system re-
quires that any user-supplied method implemenipgrateOn
must have a declared effect that issabeffectof writes elt.
Updating thedata field as shown above is legal, becadega is
declared in this” inside ListNode, which becomesin elt”
(becausee1t is bound tothis) in the scope obperateOn. How-
ever, following thenext field to updatedata of a different ob-
ject is not legal: because theext field has typeListNode<#*>,
the effect of that update igrites *, which is not a subeffect of
writes elt and so is not allowed.

2009/9/8

4.2.3 Using Hidden Regions for Strong Disjointness

The effect control strategy shown in Figure 4 works well wien
want to create an object or graph of objects all at once, theate

its fields in parallel with values (including immutable o).
However, usingthis as a parameter prevents us from adding a
previously-constructethutable objecfi.e., one that supports write
effects on its members) as a member of another object, asnshow
below:

class A<region R> {}

class B<region R> { A<this> x = new A<this>(); }
class C<region R> { A<this> x; }

B<Root> b = new B<Root>();

1
C<Root> c = new C<Root>(); 2
/* Illegal, can’t assign A<c> to A */ 3
b.x = c.x; 4

5

should be allowed, but it is disallowed by the effect speatfan
writes elt inthe API.

To solve this problem, we use effect polymorphism [20]. We
give theOperation interface an effect parametg&r(similar to a
region parameter, but it specifies an effect) that becomesdo
to an actual effect when the interface is instantiated intgpe.

To make this strategy work, we need to solve two problems that
have not been solved in previous work: (1) constraining ffece
arguments so that the effects of invoking the user-suppliethod

on different objects are noninterfering; and (2) ensurimgnsiness

of subtyping when we add effect parameters.

public interface Operation<region Node, effect E> {
public void operateOn(final ListNode<Node> elt)
writes elt effect E;
}

This deficiency can be severe when the user wants to use thepublic <effect E | effect E # writes Node:* effect E>

mutable result of one computation phase in a subsequengphas
as illustrated in our Monte Carlo example (Section 6). °

If the framework API excludes thedd method (line 14 of
Figure 4), and requires that the container contents beettemder
control of the framework (i.e., the first two linearity segtes),
then it can allow more flexible effects by writing tle@eration
interface with a region parameter, and allowing write dfemder
that parameter:

public interface Operation {
public <region R>void operateOn(final ListNode<R> elt)
writes R:x, elt;

In this way the user can write to objects not parameterizechhy,
while the framework retains control over user-suppliee&f.

void performOnAll(Operation<Node, effect E> op)
reads Cont writes Node:* effect E;

Figure 5. Making the effects of th@peration interface generic.

Constraining the effect argument®bviously the framework
cannot let the effect variablebecome bound to an arbitrary effect
in the user’s code, because then we would be back to the pnoble
of a user-supplied method with unregulated effects. Inktese
introduce areffect constrainthat restricts the effect of the user-
supplied method.

Figure 5 shows how to write the effect variables and con#fsai
We define th@peration interface (line 1) with one region param-
eterNode and one effect variable. We define theerformOnAll
method (lines 6-8) with anethod effect parametd. After the

This strategy is sound because the framework ensures that aparameter declaration is a vertical bar, followed by a carst

fresh object is created for each slot, so the framework osatt tr
each slot as having a region; bound to its parameter, such that
for anyi # j, ri:* andr; : x are disjoint (i.e., neither; is under

r; NOr vice versa in the region tree). In this case we say that.the
arestrongly disjoint Strong disjointness of regions in the slot types
implies linearity (because strongly disjoint regions ignglifferent
types and therefore different objects), but the conversetisrue.

In this approach, the user never sees the strongly disggitns
r4, and interacts with them only through the region paranmier
the Operation API. We call this strategy using “hidden regions.”
It generalizes the strategy shown in Figure 2, where we drtjws
one andtwo would have (strongly disjoint) regiorse andTwo in
their dynamic types, even if the static type of both wiesge<*>.
The correctness of this strategy is subtle and, in fact, vtliy
considered using it for a container supportiatf backed by a set.

specifying that the effect bound ®must be noninterfering with
writes Node:* effect E. This constraint ensures that (1) the
supplied effect will not interfere with the effeetrites Node:*
of updating the nodes; and (2) the supplied effect will ntiifere
with itself. This means th& must either be a read-only effect, or
it must be an effect such as a set insert that is declared tonciben
with itself [5].

As an example, here is a user-supplied method that putseall th
ListNode objects in regionl and reads regio@ to initialize all the
objects with the same global value:

public class MyOperation implements
NodeContainer.Operation<N,reads G> {
public void operateOn(ListNode<N> elt) reads G writes elt {
/* Assume global is stored in G */
elt.data = global;

That is not sound because in that case we have no control over,

the actual regions in the objects coming into the set. Howdwe
data structures like arrays that are not backed by a set, rkswo
well. Further, the strategy of creating one container fromather
(Section 4.2.1) still works, so long as the first containeetpuired
to have strongly disjoint regions in its slot types.

4.3 Getting More Flexibility

While the list node container discussed in the previousi@ect
is useful, it is too specialized. We now show how to make the
example generic. There are two issues to consider: gerfégittse
and generic types.

4.3.1 Making the Effects Generic

The first thing that is too restrictive is the bound on the afeof
the user-definedperateOn. For instance, what if the user wants
to specify aroperateOn method that reads some other region that
is disjoint fromelt for all ListNode objects? That is safe and

cont.<reads G>performOnAll(new MyOperation());

Notice that the constraints are satisfied. FigshndN are different
regions, saeads G does not interfere with the effegtites N:*
of updating the nodes. Secontiads G is a read-only effect, so it
is noninterfering with itself.

Soundness of subtypin@nce we add class types likixE>,
where E is an effect argument, we need a rule for whexE; >
is a subtype ofc<FE>>. We can then easily extend the rule to
handle subclasses, using the same technique as for DP kgjitimr
parameters only [4]. We could require that and £ be identical
effects, but this would be unnecessarily restrictive.dadt we let
E; be asubeffecbf E». This is similar to the approach we took in
DPJ with region parameters only, where we defined subtyping a
equivalence up to inclusion of regions [4, 5].

With this approach, soundness of effect falls out natuiifilye
can showtype preservationi.e., that the dynamic types of object
references always agree with the static types of variahkgshiold

2009/9/8

them. This can be quite subtle, however. For example, if wgas *

C<writes r> 1o C<writes *>, the weaker effect tells us that we 2
don’t know the real region, and we have to treat any usesf ,
effect parameter asrites * when operating through a references
of the weaker type. However, we have to be careful not to alloW
assignments that would violate type preservation. For @kam
if class A<effect E> has a fieldf of type B<effect E>, then

we cannotsimply give f the typeB<writes *> as a member of
A<writes *>.Instead, we must use the typewrites P>, where

P is a fresh region parameter (calleccapture parametgr This ;
is similar to how Java handles generic wildcards and how DRJ
already handles partially specified regions [4,5]. The newt {3 15
that we are capturing effects by capturing their componegions. ¢
We formalize this notion in the next section.

8
9
10
11

-
N

18
19
20
21
22

4.3.2 Making the Type Generic

The second thing that is too restrictive is that we made thesdpe-
cialized to list nodes. Instead, we would like to write a gémkn-
ear container cladsinearContainer<type T, region Cont>.
Notice, however, that there are two places where we usedethe r
gion parameter ofistNode to write the API. First, in writing the
NodeFactory interface (line 10 of Figure 4), we used a method-
local parameter in the return type otreate. Second, in writing
the effect ofperformOnAll (lines 6-8 of Figure 5), we used the
regionNode to write both the effect constraint and the effect of up-,
dating the contained objects. If we just replaced thesestygith 3
an ordinary type variablg, then we would not be able to write the 4
node factory pattern at all, we would not be able to constraref- 2
fectE properly, and we would be forced to use a more conservative
effect (such asrites *) for the effect ofoperateOn. 8
To solve this problem, we introduce the notion dfype region °
10

parameter which works as follows: 11

1. Indeclaring a type variabfe we can writetype T<region R>, ﬁ
wherer declares a fresh parameter. This is analogous to declas-
ing a parameter in a class definition. When a tygeecomes 15
bound toT, ¢ must have at least one region argument, and
represents the first region argument.

. We write uses of the variable as T<r>, wherer is a valid
region in scoper itself is valid (because it was declared in the
type variable) T<R> represents the unmodified type provided
as an argument to the variable, whiler> represents the same
type with the region in its first argument position replacgd-b

For convenience, a bare useis allowed within the class body,
and this is equivalent ta<R>. We can also writex parameters
(T<region Ri,...,R,>) and argumentst{ry,...,r,>), forn >

1. In this case the argument must have at leaparameters, and
the firstn region arguments are captured, starting from the left.

Figure 6 shows how to write the final linear container API with
generic effects and generic types. Line 1 declalesm@arContainer
interface with one type parameteand one region parametesnt.
The type parameter has one region paramgterthat names the
first region argument of the type boundToln line 10, we write
T<R> to require that the return type efreate have the method
region parameteg as its first region argument. In lines 15 and 17,
the regiorElt is available to constrain the effect varialdlend to
write the effects operformOnAl1l.

We could also have followed the C++ mechanism catkyd-
plate template parametef80], allowing the user to provide a tem-
plate C' and a regionR as separate arguments, and having the
framework put them together to construct the typeR>. We did
not adopt this approach because, in addition to the factJéna
does support templates, it obscures the relationship leetvree
type and its region argument in the framework API.

public interface LinearContainer<type T<region Elt>,region Cont> {

public LinearContainer(LinearContainer<T,Cont> cont)
writes Cont;

public <effect E | effect E # writes Cont effect E>
LinearContainer(Factory(T, effect E> fact, int size)
writes Cont effect E;
public interface Factory<type T<region Elt>, effect E> {
public <region R>T<R> create(int i) effect E;
}

public void add(T elt) writes Cont;

public <effect E | effect E # reads Cont writes Elt:* effect E>
void performOnAll(Operation<T,effect E> op)
reads Cont writes Elt:* effect E;
public interface Operation<type T, effect E> {
public void operateOn(final T elt) writes elt effect E;
}

Figure 6. API for an abstract linear container with generic types
and effects.

4.4 Verifying the Framework Implementation

1 public class LinearArray<type T<region Elt>, region Cont>

implements LinearContainer<T,Cont> {

/% Internal array representation */
private ArrayList<T,Cont> elts;

public <effect E | effect E # writes Elt:* effect E>
void performOnAll(Operation<T,effect E> op)
reads Cont writes Elt:* effect E {
foreach (int i in 0, elts.size()) {
op.operateOn(elts.get(i));
}

}

Figure 7. Array implementation of a linear container (partial).

Having studied the framework API, we now focus on how to
write a correct framework implementation. Figure 7 showsatvh
the inside ofperformOnAll might look like, in the case of an
array implementation ofinearContainer. We have chosen to
represent the array internally as mrrayList, as shown in line 5.
TheperformOnAll method uses the DREdreach construct (line
10) to iterate in parallel over the elements of therayList and
apply the user-supplied operation to each of its elements.

To verify noninterference (and in this case, determinigtical-
lelism), it suffices to show that for any two distinct iteats of the
foreach, the reference valueslts.get (i) are distinct. We can
formalize this statement as a logical predicate:

147
disjoint-reflelts.get (i) ;, elts.get (i) ;)

Here I and J represent loop iterations. Given just this predicate,
and the way we wrote the framework API, we can push through a
proof of noninterference using the DPJ type system rulgsnebed

to support effect parameters and type region parametergoit/e
mally state these rules in the following section. We alsanfalty
state that the rules aseund in the sense that once we push through
the proof we really do get noninterference.

Now, how do we show the predicate? In the case of our ar-
ray example, we must show two things: (1) for distinct valies
elts.get (4) is distinct; and (2)i attains distinct valueson dis-
tinct iterations of theforeach. The first statement follows from

2009/9/8

program = class e

class = class C<7<p>, p, n|K> { field* method }
K = n#E

field == T finR

method == T m(Tz)E{e}

R = z|pl|=*
T = C<T,R,E>|7<R>|void
E i= (|reads R |vwritesR|n|EUE
e := letz = eine|this.f | this.f = 2|

z.m(z) | z | new C<T, R, E>
this |z

w
|

Figure 8. Syntax of the core languag€., 7, p, n, f, m, andz are
identifiers.

the inductive argument we made in Section 4.2.1 about mainta
ing linearity. This argument can easily be formalized, bet do
not do so here. The second statement follows from the secsanfti
foreach in DPJ [5]. More generally, one would follow the same
two-pronged strategy to discharge the distinctness paglior an
iterative traversal over an arbitrary linear containestfghow lin-
earity of slots, and then show uniqueness of traversal tweslbts.
To use the hidden regions strategy (Section 4.2.3), we wdald
the same thing with a predicate disjoint-fgnz’) saying that the
regions in the types of andz’ are strongly disjoint.

Judgment Meaning Judgment Meaning

> program Valid program > class Valid class

I' > field Valid field T" > method Valid method

I'>R Valid region I'sRC R RincludedinR’

' R# R R disjoint from R’ I'>T Valid type

T <T' T asubtypeofl’ I'>E Valid effect
I'>ECE E asubeffect o2’ ' E#E’ Noninterfering effects
I'be:T,E ehastypel and effecttl

Figure 9. Type judgments for the core language. We extend the
judgments to groups of things (e.@.p> field*) in the obvious way.

(PROGRAM) rclass® Op>e:T,E
>class e

(CLASS) T = {(this, C<7<p>, p',m>), 7<p>, p, p’, 1, K}
I'> K TIpfield T > method

>class C<T<p>, p’, n|K> { field® method }

(CONSTRAINT) 'pnp I'> E
Ton#E

(FIELD) '>T TR
ToTfinR

(METHOD) I'nT, I'=TU{(z,Ts)} I'>T. E

I'be:T,E T's>T' <T, T'bE CE
ToT,m(T,z)E{e}

Figure 10. Typing of program elements.

In the case of a recursive traversal (such as over a tree), the

problem is more difficult. Here it is not sufficient to prove ieg@-
icate like “expressiore refers to distinct references on distinct it-
erations”; instead, we need a predicate like “all refersricethe
left subtree are distinct from all references in the righbteze.”
The DPJ type system supports predicates like this [4, 5]phiyt
by constraining the types such that we cannot rebalancerdke t
soundly, for the reasons discussed in Section 3. Here wel giveé
up on using the type system to prove disjointness of effesitien
the framework and verify it some other way, e.g., through enor
general program logic [14, 22] or testing. In this case, thera”
predicate we need is a predicate about disjeifects Potentially
interesting questions here are (1) exactly what such a pvoafd
look like and (2) whether any extensions to our type systeutdco
help in constructing such proofs, by providing further ‘gjle-
tween the different forms of verification. We leave thesestjoas
to future work.

In any event, once the framework implementer verifies the in-
side, the user never has to see or even know about how the verifi
cation occurred. From the user’s point of view, if the progrgpe
checks, then the noninterference property holds. We catttink
of the techniques presented here as making DPJ inextamsible
language By writing a suitable API, and doing appropriate proofs,
the framework writer can add new capabilities for paralietia-
tions that provide the same guarantees as if those capebitiad
been built in as first-class parts of the language. This maies
much more powerful than if the only available verificationaha-
nism were the type system itself.

5. Formal Elements

In this section we formalize the ideas developed in the previ
section using a core language that is simple enough to farenal
yet illustrates all the essential features.

5.1 Syntax

Figure 8 shows the syntax for the core language. A program con
sists of zero or more class definitions and an expressiorato@e.
A class has one type parametgrone region parameter, and one
effect parameten. The type parameter has a region parameter that
captures the region argument of the type bound to it. Theoaés

(REGION-PARAM) p T
I'>p

(REGION-VAR) (2,T) €T
I'>z

(REGION-STAR)
I'>*

(REGION-CAPTURE) (z,C<T,x,E>) € '
T' > rgn(z)

(DISJOINT-REF) disjoint-refz, z’) (DISJOINT-RGN)

I'pz#z

disjoint-rgiiz, 2’)
T >rgn(z) # rgn(z")

Figure 11. RegionsI'> R # R’ is symmetric.

effect constraint’ = n # FE specifying that the effect argument
bound to must be disjoint from the effedt.

Aregion is a final variable, a region parameter, or x indicat-
ing an unspecified region. A type either instantiates a nacteess
with a type, region, and effect; or it instantiates a typeapaater
with a region; or it isvoid, indicating an unused type parameter.
An effect is a possibly empty union of read effects, writesef§,
and effect parameters.

5.2 Static Semantics

JudgmentsFigure 9 shows the judgments defining the static se-
mantics for the core language. The judgments are definedresth
spect to an environmeiit containing zero or more of the following
elements(z, T') means that variable has typel’; 7<p> means that
type parameter is in scope with region parametgy p means that
region parametep is in scopey means that effect parameteis

in scope; and) # E means that effect variablgis constrained to
be noninterfering with effeck.

Program elements:igure 10 shows how to make the judgments
for typing of top-level program elements. In rule CLASS, ween
the environment® containingthis, the parameters, and the effect
constraint, and then we check the effect constraint and ldmes c
body inT. In rule METHOD, we form the environmerit’ by
adding the formal parameter with its type, then we check the
formal parameter type, the method body, and the return tpe;
we check that the type and effect of the method body are apgebty
and subeffect of the return type and declared effect.

RegionsFigure 11 gives the rules for valid regions and disjoint
regions. rgiz) represents the (statically unknown) region in the
dynamic type ofz, when ax appears in the region of the type.
As explained in Section 4.4, the predicate disjoint-zet’) means

2009/9/8

(TYPE-CLASS) class C<1<p>, p’, n|n # E’>{field*method } € program
I'>T,R,E Tv>E#¢c<r.re>(E')

I'>C<T, R, E>

(TYPE-PARAM) 7<p> €T T'> R (TYPE-VOID)
I'> 7<R> I'>void
(SUBTYPE-CLASS) T>sRCR TrECE

I'>C<T,R,E>< C<T,R",E">

(SUBTYPE-PARAM) T'>RC R’

o <R> < 7<R>

Figure 12. Types.I'>T < T" is reflexive and transitive.

(NI-EMPTY) (NI-UNION) T>E#E" T E #E"
T>0#E I'>EUE #FE
(NI-RD) (NI-RD-WR) I'bR#R

T > reads R# reads R’ T >reads R# writes R’

(NI-WR) I'>R#R

I'>writes R # writes R

(N-PARAM) n#E €T I>E CE
I'on#E

Figure 13. Noninterfering effectsl’ > E # E’ is symmetric.

that variables: and 2’ evaluate to distinct object reference values
at runtime; while the predicate disjoint-rgn z’) says that: and

2’ have different regions in their types. The warrant for these
predicates is provided from outside the type system.

Types.Figure 12 shows the rules for checking types. The in-
teresting rules are TYPE-CLASS and the two subtyping rules.
TYPE-CLASS we check the validity of the type, region, aneeff
used to instantiate the type. We use the translation magpgir(ge-
fined below) to instantiate the effect, and then we check fieete
constraint. In the subtyping rules, we allow one class tgpbet a
subtype of another if the regions are related by inclusicnh tae
effects related by subeffects.

Effects.The rules for valid effects and subeffects are identical
to the rules given in [5], with the addition of effect paraerst For
completeness we state the rules in full in an Appendix. EidL8
gives the rules for noninterfering effects. Rule NI-PARAMys
that if the environment guarantees disjointness betweansaeter
and some effect, then we can infer disjointness of that petam
with any subeffect of the effect.

ExpressionsFigure 14 gives the rules for typing expressions. In
rule LET, we replace: with x to generate valid types, regions, and
effects when the variable goes out of scope [5, 10]. In rule IN-
VOKE, we use the mappingr (defined below) to translate from
the callee to the caller context. As discussed in Sectiorl4v@e
need to capture any regions or effects containintp maintain
soundness of subtyping. We represent the captured regiampa
ter argument as rdr) in order to apply the rule DISJOINT-RGN
from Figure 11.

Translation mappingThe mappingsr translates a type, region,
or effect from the context in which it is defined to the contekits
use via the typd’ = C<T’, R, E>. It is the same as the context
translation described in [4, 5], except that we need to lmafiect
parameters and type region parameters, as well as plaionregi
parameters:

1. Types.To translate a class type, we translate its arguments:

¢T(O/<TN7 Rl: El)) = Cl<¢T(T”)7 iy (Rl)7 ¢T(E/)>' To
translate a type parameter, we use the instantiating Fypmit
we replace its region argument with the parameter’s regien a
gument, after translating itir (T<R'>) = C<T", ¢ (R’), E>.
Finally, ¢ (void) = void.

(LET) I've:T,E TU{(z,T)}>e : T E

I'>bletz =eine : T'[z — %], EU E'[z «— x|

(ACCESS) (this,T) €T field(T, f) =T fin R
T > this.f : T ,reads R

(ASSIGN) (this, T) €T (2,7') €T
field(T, f) =T"” fin R T'>T' <T”
T this.f = 2 : T ,urites R
(INVOKE) (2,T)el (2, T)eTl

methodT", m) = T, m(T, z) E{e}
capturéz, T) = (T",p) T Up>T' < ¢ (Ty)
Tozm(2): o7 (Tr), o7 (E)

(NEW)

(VARIABLE) I'>C<T, R, E>

I'bnewC<T,R,E>: C<T,R,E>0

(2, T) el
T'oz:T,0

Figure 14. Expressions. field, f) means the defined field
f of the class named i’ (which must be a class type).
methodT, m) means the defined method of the class named
in T. capturéz, T)) = (T", p) means thap is a fresh parameter,
andT becomed™ after replacing (a) its type region parameter ar-
gument withp, ifitis *; and (b) its region parameter argument with
rgn(z), ifitis .

2. RegionsLet the type parameter &f be r<p’>, and let the re-
gion parameter of’ bep. If T' = C'<T" , R', E'> or 7'<R’>,
then we replace the region paramete€ofith R and the region
parameter of the type parameter with: ¢r(R") = R"[p «
R][p' < R']. If T" = void, thengr(R") = R"[p — R], and
it is an error forp’ to appear ink"”.

3. Effects.Let the effect parameter af' be n. To form ¢+ (E’),
first apply ¢ to all regions appearing ift’, and then replace
all occurrences of with E.

5.3 Dynamic Semantics

Execution stateThe runtime values are object referenee3hese
are the only entities we would need in an actual implemesmati
but to formulate and prove soundness results we also neezbt k
track of dynamic typesT', dynamic regionsdR, and dynamic
effectsd ¥ corresponding to static types, regions, and effects. These
entities are defined by the following syntax:

dR o] x*
dT = C<dT,dR,dE> |void
dE = 0 |readsdR |writesdR|dE UdE

Notice that there are no type, region, or effect parametetss run-
time syntax, because all such parameters are eliminatechtitne
via substitution.

The dynamic execution state consists of (1) a hHapvhich is
a function taking values to objects; and (2) a dynamic envirent
dr’, which is a set of bindinggz,0) meaning that variable
is bound to object reference. An object is a partial function
taking field names to object references. If the function @afimed
on all field names, then we say it israll object We use null
objects to avoid having to represent the special typawfl. In
an actual implementation, we can just use the single vaia
for uninitialized reference variables. Every object refareo €
Dom(H) has a type, and we writ&l > o : dT" to mean that the
referencer has typedT in the domain of heaji.

Evaluating programsFigure 15 gives the rules for program
evaluation. A program evaluates to valuwith heapH and effect
dE if its main expression is, and(e, 0,) — (o, H,dE). Notice
that in rules DYN-ACCESS, DYN-ASSIGN, and DYN-NEW, we
use the translation mapping defined in the previous section to

2009/9/8

(DYN-LET)

(e,dT, H) — (o, H',dE) (¢/,dl' U{(z,0)},H") — (o, H" dE’)

(DYN-VARIABLE) (z,0) € dl

(letz =eine’,dI',H) — (o', H",dE UdE")

(z,d0', H) — (o, H,0)

(DYN-ACCESS) (this,0) € dT' H o : C<dT,dR,dE> field(C, f) =T fin R

(this.f,dT', H) — (H(0)(f), H,reads ¢ <dr dr,de> ()

(DYN-ASSIGN)

(this,0) €dl’ (2/,0') €dl' Hpo:C<dT,dR,dE> field(C,f) =T fin R

(this.f = z,d[', H) — (o', HU {o+— (H(0o) U {f — 0'})}, urites ¢C<dT,dR,dE>(R))

(DYN-INVOKE)

(z,0) €dl' (2/,0') €dl’ Hp>o:C<dT,dR,dE>
methodC, m) = T, m(Ty) E,, { e}

(e, {(this, 0), (z,0")}, H) — (0", H' ,dE’)

(z.m(2"),dT, H) — (o”, H,dE")

(DYN-NEW) (this,o) €dl’ Hpo:dT' o gDom(H) H' = HU {0 — new(C,dT)} H'p>o’: ¢y, .(C<T, R, E>)

(new C<T, R, E>,dT', H) — (o', H, D)

Figure 15. Program evaluation. If : A — B is a function, thenf U {z — y} is the functionf’ : AU {z} — B U {y} defined by
f'(a) = f(a)if a # z and f'(z) = y. new(C, dT) is the function taking each field of clag with type T" to a null reference of type

bgr(T)-

translate static regions and types to their correspondimgime
representations. Here the use context is given by the reritje
of the object bound tehis in dI".

5.4 Soundness Results

Dynamic judgments for regions, types, and effe€ts state and
prove the preservation result, we need to establish runijichg-
ments for regions, types, and effects corresponding to tééc s
judgments defined in Section 5.2. The rules are nearly iciinid
their static counterparts. We describe how to generateulks via
simple substitution.

First, replace the rules REGION-CAPTURE, DISJOINT-REF,
DISJOINT-RGN, and TYPE-CLASS with the following rules:
(NI-WR) o # o

H > reads o # writes o

o# o

H > writes o # writes o

(NI-RD-WR)

- - class C<7<p>, p’, n|n # E’>{field*method } € program
DYN-TYPE-CLASS C / # E’>{field* hod

H>dE# éccdr dr.des>(B)

H > C<dT,dR,dE>

Second, delete the rules REGION-PARAM, TYPE-PARAM, and
NI-PARAM (because there are no type, region, or effect patars
at runtime). Third, for every other rule, do the following) @ppend
DYN- to the front of the name; (2) repladé with H; and (3)
replacel” with d7', R with dR, and E with dE.

Preservation of type and effethle first define a valid heap:

Definition 1 (Valid heaps) A heapH is valid (-H) if (1) for each
o € DomH), Hro: dT, H>dT,and d’ = C<dT’,dR,dE>;
and (2) for each field” f in R € def(C), if H(0)(f) is defined,
thenH > H(o)(f) : dI" and H > dT" and H > dT"" < ¢q.(T).

This definition says that every object reference is well type
with a valid type, and every field of every object is either efined
(causing execution to fail if it is accessed) or containsfaremce
with a valid type that is bounded by its static type, trareslab the
dynamic environment.

Next we defineH > dI’ < T (“dI instantiated” in H"). We
write ¢ ;; as a shorthand forgy,., where(this, o) € dI" and
Hpoo:dl'”

Definition 2 (Instantiation of static environmentsA dynamic en-
vironment d" instantiates a static environmeht(H > dl’ < T) if
the same variables appear if'dés inT"; for each pair(z,dT’) € T’
and(z,0) € dI', H>o : dT"and H > dT" < ¢q. ,(T)); and for

each constrainy # dE € I', H > ¢qp. (1) # dqr g (£)-

This definition specifies a correspondence between staiicgy
environments and dynamic execution environments, sudhntba

can use the typing in the static environment to draw sounet-nf
ences about execution in the dynamic environment.
Finally, we state the type and effect preservation result:

Theorem 1 (Preservation) For a well-typed program, if" > e :
T,E and H > dl’ < T and (e,dl’, H) — (o, H',dE"), then
bH'; H' >o : dI'; HedI" < ¢4, ,(T); H > dE'; and
HvrdE' C bdr g (E)-

Noninterference of effecNow we can prove that expressions
with noninterfering static effects are noninterfering ahtime.
First we defineR (o, H), the region of fieldf of objecto €
Dom(H). This definition formalizes the idea that regioRsn the
field declarationg” f in R partition the heap:

Definition 3 (Region of a field) If H > o : C<dT,dR,dE> and
T fin R € defC), thenR (0, H) = ¢C<dT,dR,dE>(R)'

Proposition 1. At runtime, disjoint regions imply disjoint loca-
tions. That is, ifH > R (o, H) # Ry (o', H), then eithero # o
or f # f'.

Next we state a proposition about the dynamic effects predluc
by program execution: if we evaluateande’ with the same dy-
namic environment', and if the two evaluations have noninter-
fering effects, then the individual read and write effedts ande’
can be arbitrarily interleaved, with identical results:

Proposition 2. If (e,dl", Ho) — (o0, H1,dE) and(e’,dl’, Hy) —
(o',Hi,dE’) and H1 U Hi > dE # dE’, then the read and write
effects of the two evaluations are pairwise commutative.

By extending this result to static effects, we obtain themmai
soundness property of the core language:

Theorem 2. If I'>e : T, EandI'se’ : T/, E' andI'>FE # E’ and
Hvedl < T and(e,dl’, Hy) — (o, H1,dE) and (€', dl’, Hy) —

(o', Hi,dE’), then the read and write effects of the two evaluations
are pairwise commutative.

Theorem 2 says that if two expressions have noninterfering
staticeffects, then their actual runtime effects are nonintereas
well. Therefore, we can use the static effect informationet@mson
soundly about noninterference at runtime.

6. Evaluation
We have evaluated the techniques discussed above with tale go
in mind:

1. Can we use the techniques to write realistic frameworkbs an
user programs? Do any additional issues come up in real frame

2009/9/8

works or user code that present difficulties for the abstiaear
container model?

2. What is the user experience of using such an API? How bur-
densome is it to write the type and effect annotations, amd ho
difficult is it to get the annotations correct?

To perform our evaluation, we first extended the DPJ comiiler
to support effect variables, effect constraints, and tygggon pa- |
rameters as discussed in Sections 4.3 and 5. Then we stuigd h
(1) use our techniques to write generic array and tree framey s
and (2) use the frameworks to write two parallel codes: a Eont*
Carlo simulation algorithm and a Barnes-Hut n-body comjiuta
using a spatial octtree. We chose these two algorithms becaay
exemplify different styles of parallelism: Monte Carlo asdirect
loop-style parallelism over arrays, while Barnes-Hut usesirsive,
divide-and-conquer parallelism over trees.

o

[
[SERERN-- NI}

11
12

6.1 Array and Tree Frameworks 13
We focused on the framework operations needed for the twehben *
marks but ensured that the operations themselvesgeseral i.e.,
were not specifically tied to the needs of the benchmarksjsas d
cussed below. Adding more operations is not difficult.

Parallel array frameworkWe implemented a framework called
DPJLinearArray with an interface similar to a subset of the Par-
allelArray API for Java [1]. The API supports the followingera-
tions:

1. A create method that creates an array with a user-supplied
factory method, as discussed in Section 4.2.1 and shows in it
final generic form in Figure 6.

. A withMapping method that maps one array to another, ele-
ment by element, with a user-supplied mapping function. We
provide an indexed (taking an index variable) and an uniedex
form of the mapping, as ParallelArray does. As in the factory
method pattern, we use a method region paranteterensure
that the mapping function creates a new output object fon eac
element, and the mapping function is allowed to write urkder

. A reduce method that reduces the array to an object, given a
starting element and a user-speciffegiucer that combines
two elements into one. Following the hidden regions pattern
discussed in Section 4.2.3, the two elements coming into the
Reducer method are parameterized by method region parame-
tersk1 andR2, and the user-supplied method is allowed to write
under these parameters. Using distinct parameters erthaites
theReducer cannot violate strong disjointness, e.g., by storing
one object into a field of the other.

The framework implementation is a thin wrapper that uses a
ParallelArray instance internally to provide all the operations.

Parallel tree frameworkWe also wrote a framework that pro-
vides a tree of user-specified arity (i.e., each inner nodahmost
arity children) with data of generic type stored in every node.
The API supports the following operations:

1. A buildTree method that takes @PJLinearContainer
elts of objects of typel and a positivearity and inserts the
bodies into the leaves of the tree. The user providesndex
function that, given a to insert, aT at the current (inner or
leaf) node, and & at the parent node (if any) of the current
node, says which of the children of the current node to follow
next when inserting the object in the subtree rooted at tihe cu

rent node. The framework creates the inner nodes as negessar

and populates each one with a fresh object of typasing a
user-specified factory method.

suppliedvisit method that, given @aobject at the current node
and an ArrayList ofv (result) objects produced from visiting
the children (omull if the current node is a leaf), produces
aV object for this node. Again we use two region parameters,
R1 andR2, to ensure that strong disjointness of thebjects is
preserved by the traversal.

public class DPJLinearTree<type T<region Elt>, region Cont> {

public <effect E | effect E # reads Cont writes Elt:* effect E>
double visitPO(POVisitor<T, effect E> visitor)
reads Cont writes Elt:* effect E { ... }

public interface POVisitor<type T<region Elt>,
type V<region VR>, effect E> {
public <region R1, R2> V<R2>
visit(final T<R1> data,
final ArrayList<V<R2>, Cont> childResults)
reads Cont writes data:*, Rl:*, R2:* effect E;

}

Figure 16. Postorder visitor from region-based spatial tree.

6.2 Application Code

Monte Carlo simulationWe studied the Monte Carlo simulation
benchmark from the Java Grande suite [26]. The computation ¢
tains three parallelizable loops: the first one creates objects;
the second one iterates over the objects to compute a retigrfor
each one; and the third one reduces the return rates into a@um
tive average.

We parallelized all three loops usiriPJLinearArray. For
the first loop, we used the indexed formwfthMapping. Apart
from writing to theTask object itself (which does not have to be
reported), the effect of theask constructor is read-only, so it can
be validly used for aggregate array creation, as shown é6iof
Figure 6.

For the second loop, we used the unindexadhMapping.
We wrote a mapping function that takesTask<Tasks> object
to aResult<R> object, whereTasks is a declared region name,
andR is the method parameter provided by the framework. The
computation in the mapping function writesko

For the third loop, we wrote Reducer that takes two objects
of type Result<R>, reads the accumulated sum out of both, adds
them, stores the result in the first one, and returns it. Thewr
effect is bounded byrites R, as required in the API. We could
also have avoided the write effect entirely by creating a object
and returning it, but that would be less efficient.

Barnes-Hut center of mass computatidtext we studied the
Barnes-Hut n-body simulation [25], which uses an octtreéghte
ary tree) to represent three-dimensional space hieraithistor-
ing the bodies in the leaves. We focused on the center-oémas
computation, which recurses down the tree in parallel and-co
putes, for each node, the center of mass of the subtree rabted
that node. Proving noninterference is nontrivial becabsecom-
putation writes into each node as it traverses it, so the ctettipn
requires that the traversal is over a tree. Because of thistfee
center of mass computation is hard to do efficiently in basein
DPJ; we discuss this point further in Section 6.3 below. ltlddoe
straightforward to parallelize the force computation ggime same
array-based techniques as we used for Monte Carlo, butdkrof
time we have not done that.

We wrote a program that builds a tree and performs a cen-
ter of mass computation for a binary tree computation in one-
dimensional (1-D) space. 1-D space simplifies the compmrtati

. A visitP0 method that recursively does a parallel postorder without changing the essential patterns of parallelismieanti-
tree traversal. As shown in Figure 16, this method takes & use atedDPJLinearTree with a Node class that has subclassgsl 1

10 2009/9/8

for the inner node data amBddy for the leaf data, similarly to both
the original and Splash-2 versions of Barnes-Hut [25]. Titdhe
tree, we wrote anndex method that puts each inserted node in the
left or right subtree based on its position, and a factoryhagthat
constructs fresltell objects for each inner node in the tree. To
compute the center of mass, we wrotpeatOrderVisitor that
computes the average position and total mass for the batulibe i
subtree rooted at each inner node stores them at the nodevi$hi
itor returns a pair oflouble values (for typev in the API) for the
average position and total mass at the current node.

6.3 Discussion of Evaluation Results

Difficulties for realistic frameworkOur experience shows that the
framework techniques in this work can be used to write realis
tic parallel algorithms. For example, Barnes Hut uses a ¢exnp
traversal pattern with in-place updates for both tree cangbn
and center-of-mass computation. For these codes, we difinaot
any significant challenges over and above the framework Adl w
discussed in Section 4. In the future, we could also easjpeu
other operations, such as ParallelArray’s filter and apply.

One question left open by our evaluation is whether we could
support some of ParallelArray’s operations for combiningygs,
for instance concatenating two arrays. It is hard to do thid a
maintain linearity. The best we could do is probably to bdu t
array with a set and provide set union; but in this case we avoul
(1) pay the overhead of maintaining a set and (2) lose thefibefie
strong disjointness.

Framework user experienci#/e found that the annotations re-
quired to support the frameworks shifts much of the burdereaf
soning about safety from framewoukersto frameworkdesigners
First we found that getting the region and effect annotatimerrect
for the framework was sometimes tricky. However, the fraomdw
user just has to use the API correctly, and the use is autoafigti
checked by the DPJ compiler. Second, most of the complexity i
troduced by the effect variables (including the effect ¢@ists)
was in the framework APl itself. The user arguments to efiacit
ables were simple: eithgrure or one or two read effects. We ex-
pect that many of the method effect arguments could be ederr
(similarly to how Java infers generic method arguments aRd D
infers method region arguments), but we leave this to fulmek.

It is also instructive to compare the user experience fosehe
algorithms written using frameworks to the correspondingsous-

7. Related Work

Effect systems.The seminal work on types and effects for con-
currency is FX [16, 20], which adds a region-based type afestief
system to a Scheme-like, implicitly parallel language. EXorts
effect polymorphic closures, which are similar to our Javer-
faces annotated with effect variables.

Leino et al. [18] and Greenhouse and Boyland [15] first added
effects to an object-oriented language. Later work on osipr
types [6,9,10,19] introduced sophisticated ways of reagpabout
nested effects, which are necessary to support recursivetstes.
DPJ [4, 5] builds upon this work to provide an expressive type
effect system for deterministic parallelism.

None of this work teaches how to write a framework API for
safe parallelism using linear data structures. Nor doesppert
mechanisms such as effect constraints and type region pseesn
that are necessary for generic frameworks.

Linear type systemsWadler [31] introduced linear types as a way
to allow in-place updates while preserving the semanticaua
tees of pure functional programming. A linear type systemexa
force strong guarantees of program correctness [12]. Hexyvér-
ear types prohibit reference aliasing, which makes manynoom
patterns of imperative programming awkward or impossible.

Several researchers have looked at ways to make linear types
less restrictive while maintaining meaningful guarant&éhndrich
and DeLine [13] introduceddoption and focuso create aliases of
a linear reference with a limited lifetime. Clarke and Wtag$[11]
have observed thaxternal uniqueness- the property that every
object has at most one reference to it located outside itsizong
data structure — can express important patterns, such asjaeun
reference to a doubly-linked list. Boyland and others [§,I28/e
usedfractional permissionso enforce linearity of write references,
while allowing sharing of read-only references. Finallgveral
researchers have shown how to combine unique referenchs wit
effect systems in interesting ways [7, 15].

Our idea ofinternal linearityof data structures is related to these
mechanisms, but also different from all of them. Our insigthat
for parallel traversals over the slots of a data structuteyecare
about is whether the slots point to different objects. Thesden't
need the full power of a linear type system, or even one of the
weaker systems mentioned above.

Together, our ideas dfidden regionsand strong disjointness
provide more power than linear data structures, while gtdlid-

ing baseline DPJ, as presented in [5]. For Monte Carlo, we had ing more aliasing than linear types. However, this appradms

used an index-parameterized array to guarantee strorgirdigss

in the first two loops, by making theask andResult types pa-
rameterized by the index For the third loop, we encapsulated the
reduction sum in a method implemented with locks and dedlare
that methoccommutative.

Similarly, we could use baseline DPJ to parallelize theeeoit
mass computation in Barnes-Hut. However, we would havev® gi
each tree node a distinct type aretopy the bodies on insertion
into the tree because we cannot soundly change the type of a
reference in DPJ, as discussed in Section 3. We could sugppcitt
“ownership transfer” with runtime reference counting [Blit this
would add its own overhead.

Overall, the advantages of the framework approach arertt) si
plifying the DPJ types exposed to the user, by avoiding irukex
rameterized arrays or recursive types; (2) eliminating-level
code for common patterns such as reductions; and (3) agpidin
copies where the baseline type system might require thenm as
Barnes-Hut. On the other hand, the baseline DPJ code isrd¢tmse
the original sequential code, because it uses paralletaocn-
structs directly, rather than factoring the code into hefpections
and framework API calls. This last point is not specific to work,
but is a general issue with using frameworks.

11

not support sets. DPJ’s indexed parameterized arrays djgqe
both strong disjointness and linearity, but they do so by ingak
the type region arguments explicit in user code, therebygpring
reference swapping as discussed in Section 3.

Enforcing API contracts. The Eiffel language [29] introduced the
idea ofdesign by contra¢twhich uses preconditions and postcon-
ditions to specify interaction between classes. The Javdelitty
Language (JML) [17] provides a powerful way to write designr-
contract specifications for Java, which can be checked witina
bination of static verification and online checking.

Design by contract ideas have been applied to concurrent pro
gramming. Meyer’'s Systematic Concurrent Object-Orierfed-
gramming (SCOOP) concurrent programming model [21] is hase
on Eiffel. The Fortress programming language [27] providesy
to write assertions at interface boundaries that can bekeleat
runtime. X10 [24] has a sophisticated dependent type syttam
can specify and check interface assertions, also suppoitedun-
time checking. None of this work addresses parallel norfiette
ence or safe frameworks for shared memory parallelism.

Our annotated generic framework APIs also provide a kind
of design by contract, because the framework writer bouhds t
effects of user-supplied methods. As far as we know, we ae th

2009/9/8

first to study the problem of guaranteeing parallel nonfetence
for a framework operating on linear data structures in aeshar
memory context. We are also the first to show how to uspeaand
effect systenfior design by contract in a parallel framework API.
Compared to more general specification methods (such as, L)
effect system has the advantage that the annotations aes fas
the programmer to write and the compiler to check withoutirne
checks or heavyweight constraint solving or theorem pigavin

8. Conclusion

We have shown how to use a type and effect system with effect

variables and type region parameters to write a genericeinark

API that enables sound reasoning about its uses. The frarkewo

internals can be verified once, by the framework writer, draht
the compiler can provide a guarantee of noninterference ¢an-
sequently, deterministic parallel semantics) for any ywegram
written using the framework. As future work, we would likedr-
plore ways to verify properties of the framework impleméioia,
such as linearity, using static and dynamic techniques. \A@dv
also like to explore what if any additional “glue” is neceassto
connect this sort of checking with the guarantees provideduy
type system to do proofs of correctness for the compositgram.

References

[1] http://gee.cs.oswego.edu/dl/jsr166/dist/extraiifes/index.html?
extral66y/package-tree.html.

[2] Z. Anderson et al. SharC: Checking data sharing strasefpr
multithreaded CPLDI, 2008.

[3] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel pragmming
must be deterministic by default. First USENIX Workshop on Hot
Topics in Parallelism (HotPar)2009.

[4] R. L. Bocchino and V. S. Adve. Formal definition and prodf o
soundness for Core DPJ. Technical Report UIUCDCS-R-2@E)2
U. lllinois, 2008.

[5] R. L. Bocchino, V. S. Adve, et al. A Type and Effect Systean f
Deterministic Parallel Java. @OPSLA 2009.

[6] C. Boyapati et al. Ownership types for safe programmPigventing
data races and deadlockROPSLA 2002.

[7] J. Boyland. The interdependence of effects and uniceeitorkshop
on Formal Techs. for Java Program®001.

[8] J. Boyland. Checking interference with fractional pé&sions. SAS
2003.

[9] N. R. Cameron et al. Multiple ownershi@OPSLA 2007.

[10] D. Clarke and S. Drossopoulou. Ownership, encapsulagind the
disjointness of type and effedOPSLA 2002.

[11] D. Clarke and T. Wrigstad. External uniquenessF@®OL, 2003.

[12] R. DeLine and M. Fahndrich. Enforcing high-level prools in
low-level software. IFPLDI, 2001.

[13] M. Fahndrich and R. DeLine. Adoption and Focus: Pradtlinear
types for imperative programming.LDI, 2002.

[14] A. Gotsman et al. Thread-modular shape analyBl<DI, 2007.

[15] A. Greenhouse and J. Boyland. An object-oriented &ffegstem.
ECOOR 1999.

[16] R. T. Hammel and D. K. Gifford. FX-87 performance measuents:
Dataflow implementation. Technical Report MIT/LCS/TR-42988.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary dasof
JML: A behavioral interface specification language for jg8EGSOFT
Softw. Eng. Note006.

[18] K. R. M. Leino et al. Using data groups to specify and ¢hsicle
effects. PLDI, 2002.

12

[19] Y. Lu and J. Potter. Protecting representation witleaffencapsula-
tion. POPL, 2006.

[20] J. M. Lucassen et al. Polymorphic effect systemsP@PL, 1988.

[21] B. Meyer. Systematic concurrent object-oriented paogming.
CACM, 1993.

[22] P. W. O’'Hearn. Resources, concurrency, and local réago Theor.
Comp. Sci.2007.

[23] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor ParallelismO’Reilly Media, 2007.

[24] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: Corentrr
programming for modern architectures. RRoPP, 2007.

[25] J. P. Singh et al. SPLASH: Stanford parallel applicatidor shared-
memory. Technical report, 1992.

[26] L. A. Smith and J. M. Bull. A multithreaded Java grandextiemark

suite. InThird Workshop on Java for High Performance Computing
2001.

[27] Sun Microsystems, Inc. The Fortress language spetidicaversion
1.0. Technical report, Sun Microsystems, Inc., March 2008.

[28] T. Terauchi and A. Aiken. A capability calculus for camgency and
determinism. TOPLAS 2008.

[29] P. Thomas and R. WeedoRbject-Oriented Programming in Eiffel:
2nd Ed.Addison-Wesley Longman, 1998.

[30] D. Vandevoorde and N. M. Josutti€++ Templates: The Complete
Guide Addison-Wesley Professional, November 2002.

[31] P. Wadler. Linear types can change the wotkelP, 1990.

A. Appendix
Here are the rules for valid effects:
(EFFECT-EMPTY) (EFFECT-RD) Tt R
I'o0 I'>reads R
(EFFECT-WR) I's R (EFFECT-PARAM) n € T’

I'>bwrites R I'>n

(EFFECT-UNION) T'>E TI'> E’

I'sEUE

Here are the rules for subeffects, repeated from [4]:

(SE-EMPTY) (SE-RD) T'>RCR
I'b0CE T'>reads R C reads R’
- I'>RCR -RD- I'>RCR
SE-WR ! SE-RD-WR /

T'>writes R C writes R’ T >reads R C writes R’

(SE-UNION-1) T EC E’

TbECE UE"

(SE-UNION-2) T E' CE T E’' CE
TSEUE CE

I's E C E'is reflexive and transitive. Inclusion of regions is given
by reflexivity and transitivity, together with the singldeu

(REGION-INCLUDE)
I'b R Cx

which says that any region is includedsin

2009/9/8

