
Types, Regions, and Effects for Safe Programming
with Object-Oriented Parallel Frameworks

Robert L. Bocchino Jr. Vikram S. Adve
Department of Computer Science

University of Illinois at Urbana-Champaign
dpj@cs.uiuc.edu

Abstract
Object-oriented frameworks can make parallel programmingeas-
ier by providing generic parallel algorithms such as map, reduce,
or scan, and letting the user fill in the details with sequential code.
However, such frameworks can produce incorrect behavior ifthey
are not carefully used, e.g., if a user-supplied function performs an
unsynchronized access to a global variable. We develop novel tech-
niques that a framework designer can use to prevent such errors.
Building on a language (Deterministic Parallel Java, or DPJ) with
an expressive region-based type and effect system, we show how
to write a framework API that enables sound reasoning about the
effects of unknown user-supplied methods. We also describenovel
extensions to DPJ that enable generic types and effects — essential
for flexible frameworks — while retaining soundness. Finally, we
show how to make the reasoning modular: using any desired test-
ing or verification technique, the framework author can guarantee
noninterference subject to the API constraints; and the compiler can
check the constraints to provide a noninterference guarantee for the
entire user program. We evaluate our technique by using it towrite
two parallel frameworks and two realistic parallel algorithms.

1. Introduction
The emergence of multicore desktop architectures is driving par-
allel programming into the mainstream, posing new productivity,
correctness, and performance challenges for programmers who are
used to writing sequential code. One way to alleviate these chal-
lenges is to use object-oriented frameworks. The frameworkwriter
provides most of the code for parallel construction of generic data
structures and for generic parallel algorithms such as map,reduce,
or scan; and the user fills in the missing pieces with sequential
code that is applied in parallel by the framework. Examples in-
clude the algorithm templates in Intel’s Threading Building Blocks
(TBB) [23] and Java’s ParallelArray framework [1]. Such a frame-
work is usually easier to reason about than general parallelpro-
gramming, because the user only has to write sequential code, let-
ting the framework orchestrate the parallelism.

However, current frameworks give no guarantee of noninterfer-
ence of effect, and this a serious deficiency in terms of correctness
and program understanding. For example, ParallelArray’sapply
method applies an arbitrary user-specified function to eachelement
of the array. If that operation performs an unsynchronized update to
a global, then an unexpected race will result. One could issue a set
of informal guidelines for how to use the API safely, but thisis un-
satisfactory. It would be much better if (1) the framework developer
could write an API expressing a contract (for example, the function
provided toapply is read-only with respect to global state); and
(2) the compiler could check that the contract is met by all code
supplied by the user to the framework.

While several tools and techniques exist that support writing and
checking assertions at interface boundaries [17,21,29], these ideas
have not yet been applied to enforceparallel noninterference, as
discussed in Section 7. Doing so involves several open challenges,
which we list below.

Maintaining internal linearity.Useful parallel frameworks need
to support parallel updates on contained objects. For example, we
would like aParallelArray of distinct objects, where the user
can provide anapply function that updates an element, and ask
the framework to apply it to each distinct object in parallel. To do
this safely, the framework must ensure that the objects are really
distinct; otherwise the same object could be updated in two parallel
iterations, causing a race. We call this propertyinternal linearity,
by analogy with linear types [31], because each contained object
occupies exactly one iteration slot of the container. It is “internal”
because we only care about aliasing in the container slots; arbi-
trary aliasing outside the container (or between containers) is still
allowed. For a language like Java with robust reference aliasing,
internal linearity is a nontrivial property.

Constraining the effects of user-supplied methods.For a parallel
update traversal over the objects in a framework, internal linearity
is necessary but not sufficient to ensure noninterference. The frame-
work must also ensure that the effects of the user-supplied methods
do not interfere, for example by updating a global variable,or by
following a link from one contained object to another.

Making the types and effects generic.Because different uses of
the framework need user-supplied methods with different effects,
the framework should constrain the effects of user-supplied meth-
ods as little as possible while retaining soundness. For example, one
use ofapply may write into each object only; while another may
read shared data and write into each object. The framework should
also be generic, not specialized to a specific type of contained ob-
ject. These requirements pose challenges when the framework au-
thor needs information about the type of the contained objects and
the effect of user-supplied methods in order to provide a noninter-
ference guarantee.

Verifying the framework implementation.The framework author
must verify that the internal framework implementation guaran-
tees safe parallelism, given that the API is enforced. For example,
even if the framework ensures that the same object is never inserted
twice, it must also ensure that any parallel loop inside the frame-
work iterates exactly once over each inserted object.

Notice that the first three challenges are about defining a frame-
work API that enables sound reasoning about uses of the frame-
work; while the fourth challenge is about writing a framework im-
plementationand proving it correct.

In this work we address the first three challenges, i.e., we show
how to write a framework API so that the framework author can
reason soundly about interference of effect in arbitrary instantia-

1 2009/9/8

tions of the framework, with unknown user-supplied methodsand
generic type bindings. We build on Deterministic Parallel Java
(DPJ) [5], which expresses effects in terms ofregionsthat partition
the heap. Regions provide an intuitive way to reason about sharing
patterns and a flexible way to express and check effects.

We do not try to solve the fourth challenge; instead we reduceit
to a simple logical predicate that can be discharged by othermeans,
such as program logic [14, 22], testing, or model checking. This
predicate is completely hidden from the user of the framework, so
that the user gets a strong guarantee, assuming a correct framework
implementation: if the program type checks, then there is nointer-
ference between parallel code sections. A framework such asPar-
allelArray can further providedeterministic execution[3], perhaps
subject to some additional requirements (e.g., that reduction opera-
tions are associative) that our system does not currently check.

Our approach fosters modular checking in two ways. First, we
show how to use a region-based type and effect system for what
it does very well — checking the use of a generic framework API
— while using any other appropriate form of verification to check
the inside of the framework, e.g., to verify set and tree properties.
Second, the framework author can verify the generic framework
once, and then rely on a type checker to verify each use separately;
the user does not have to re-verify the instantiated framework for
each use. This is important because the user may have no idea how
to verify the framework or how it even works.

Our contributions are the following:

1. We show how to write a framework API using the DPJ type and
effect system “off the shelf” so that the framework implementer
has all the information necessary to guarantee internal linearity
of reference and sound effects for user-supplied methods.

2. We show how to extend the DPJ type and effect system to add
generic effects and generic types, making the frameworks more
general and useful. For the effects, we addeffect variables;
here the technical challenges are constraining the unknownef-
fects appropriately and providing sound subtyping. For generic
types, we introducetype region parametersso that the frame-
work author has enough information about the types bound to
generic type variables to guarantee internal linearity andsound-
ness of effect, without knowing the exact type.

3. Using a simple logical predicate as the “glue,” we show how
to make different forms of verification interoperate so that
the framework author and user can separately check separate
parts of the program with separate verification mechanisms,
and guarantee that any composition of the parts results in a
correct program.

We formalize a core subset of the system and formally state the
soundness results. We also describe the results of an evaluation
showing that the system is expressive enough to capture two re-
alistic parallel algorithms, and that the extra annotations required
by the system are not unduly burdensome.

2. Background: Deterministic Parallel Java
We begin with a brief introduction to DPJ [5]. DPJ usesregionsto
specify access to the heap: every class field and array cell lies in
a single region, and distinct regions represent disjoint collections
of memory locations. A region can be a declared name, or afinal
local variable representing a dynamic object reference, asin owner-
ship systems [9,10]. All the regions are arranged in a tree hierarchy,
rooted at the special regionRoot. The regions in the subtree at re-
gionR can be named asR:*. DPJ useseffect summarieson method
interfaces, expressed in terms of reads and writes to regions, to en-
able method-local checking of noninterference.

1 public class ListNode<region R> {

2 int data in this;
3 ListNode<*> next in this;

4 public ListNode(int data, ListNode<R> next) pure {
5 this.data = data;
6 this.next = next;

7 }
8 }

Figure 1. ListNode class that will serve as a running example.

1 class NodePair {
2 region One, Two;

3 private Node<One> one in Root;
4 private Node<Two> two in Root;
5 NodePair(ListNode<One> one, ListNode<Two> two) pure {

6 this.one = one;
7 this.two = two;

8 }
9 void updateNodes(int oneData, int twoData) {

10 cobegin {

11 /* reads Root writes One : * */
12 one.data = oneData;

13 /* reads Root writes Two : * */
14 two.data = twoData;

15 }
16 }
17 }

Figure 2. Using region parameters to distinguish object instances.

As an example, Figure 1 defines a simple list node class that
we will also use in subsequent sections. The class has one region
parameterR. The fieldsdata and next in lines 2–3 are both
located in the object reference region associated withthis. A
reference region is a child of the first region appearing in its type:
for example, in Figure 1, regionthis is a child ofR. In line 4,
the effect of the constructor is declaredpure (no effect) because
in DPJ an object is not visible to the rest of the program until
the constructor returns, so constructors do not have to report their
effects on the constructed object.

Figure 2 presents a simple container class,ListNodePair, that
stores a pair of list nodes. Lines 3–4 instantiateListNode types
using the field region namesOne and Two, declared just above.
Herereads Root comes from the fact that the fieldsone andtwo
are located in regionRoot, the top-level region in the hierarchy,
as shown in lines 3–4. The effectwrites One:* comes from the
fact that line 12 writesdata, which is in this, which is under
the region bound toR in the type ofone, i.e., One; and similarly
for the effect shown in line 13. BecauseOne andTwo are distinct
names, and because the region hierarchy forms a tree, the compiler
can conclude that the updates in lines 12 and 14 are disjoint.With
these features, together with additional features for arrays, divide
and conquer parallelism, and commutative operations such as set
inserts, DPJ can express important patterns of parallelism[5].

3. Difficulties with Region-Based Effect Systems
As DPJ illustrates, region-based type and effect systems can be
quite expressive, and they are a natural choice for writing safe
object-oriented frameworks. However, existing systems impose
significant limitations that we must address in our framework de-
sign. As we will see, by shifting some of the burden of guarantee-
ing noninterference from the type system to the framework, we can
overcome some of these limitations.

One limitation is that, to guarantee soundness, we have to pro-
hibit swapping ofone andtwo in the example:

void swap() {
ListNode<One> tmp = one;

/* illegal, can’t assign ListNode<Two> to ListNode<One> */

2 2009/9/8

one = two;

/* illegal, can’t assign ListNode<One> to ListNode<Two> */
two = tmp;

}

If we could do such an assignment, then in general we could have
multiple references with conflicting types pointing to the same data,
and we would no longer be able to draw sound conclusions about
effects [4].

For this reason, researchers have introduced wildcard types
that allow freer assignments [5, 19]. For example, in lines 3–4 of
Figure 2, we could have written both typesListNode<*>, where
* stands in for any region. Now the swapping shown above is fine,
because the variable types don’t constrain what regions canappear
in the dynamic reference types. However, we have lost the ability
to distinguish writes toone.data andtwo.data using the type
system, because now all we know is that the writes in lines 12
and 14 are to*. This is true even though by inspecting Figure 2,
we (as opposed to the type system) can see that (1)one andtwo
are distinct coming into the constructor (line 5); and (2) the swap
operation preserves the distinctness ofone andtwo. So the state of
the art in region-based type systems forces us to choose: either we
can prove that two references don’t alias, or we can swap the two
references, but not both.

In fact, the situation is worse than this. Notice that in Figure 1,
we gave theListNode class a fieldnext of type ListNode<*>,
i.e., aListNode with an unspecified region bound to its parame-
ter. Therefore, as shown in Figure 3, aListNodePair holding list
nodes can have cross links. The effect system has to make surethat
(1) the references stored in the fieldsone andtwo are distinct; and
(2) when following the references to access the objects in parallel,
the cross links are never followed to update the same object.Fur-
ther, we probably don’t want to “hard code” the operation of writ-
ing to data into the framework implementation, as shown in lines
12 and 14. Instead, as discussed in the introduction, we would like
to express the operation abstractly, and let the user supplythe spe-
cific operation. We therefore must constrain the effects of the user-
supplied method so that we can argue that for any user-supplied
method, this kind of interference cannot happen.

d a t an e x t d a t an e x t
Figure 3. The references stored in theNodePair are distinct; but
we can still get a race if we follow the cross link representedby the
dotted arrow.

4. Writing Safe, Reusable Parallel Frameworks
In this section we show how to address the challenges discussed
above to write safe, reusable parallel frameworks. First wedefine an
abstract linear container, which provides a sample framework API
to illustrate our ideas. Second, we show how how to write the API
so that the framework writer can reason soundly about effects for a
container specialized to list nodes. Third, we show how to extend
the type system to make the API generic. Finally, we address the
problem of verifying the framework implementation.

4.1 Abstract Linear Containers

We define an abstract data type called anabstract linear container.
This type generalizes the trivialNodePair container introduced in

the previous section. In Section 6 we discuss how to apply our
techniques to more realistic examples.

An abstract linear container is an abstract data type with the
following properties:

1. It contains references to other objects. The number of stored
references can be fixed up front (as with an array) or changed
dynamically (as with a resizable array or set).

2. The elements are conceptually stored in slots. An iteration over
the elements in the container iterates over the slots. For exam-
ple, for an array, the slots are the array cells; for a set the slots
are the set elements; and for a tree the slots are the tree nodes.

3. For any two distinct slots, the references stored in the slots are
different (point to different objects). So, for example, a set is
allowed but a multiset is not (since two slots can have the same
element). However, one could emulate a multiset using a set of
sets.

Property 1 is standard for a container ADT, e.g., any of the contain-
ers injava.util. We introduce property 2 just so we have a way
to talk about the iteration space of a container that is independent of
the internal storage pattern (array, tree, etc.). Property3 is key to en-
suring soundness when the user calls an API method to iterateover
the container and update its contents in parallel. We call this prop-
erty internal linearity, by analogy with linear types [31]. The slots
are linear, in the sense that at most one slot of any particular linear
container points to any object. However, unlike general linear types,
multiple containers (or other references outside the container) can
point to the same object. Note that both versions ofNodePair from
Section 3 are instances of the abstract linear container type, where
the slots are the fieldsone andtwo. For conciseness, we refer to
the slots of the container and the container itself as “linear,” though
we mean that internal linearity holds as to the slots.

4.2 A List Node Container

We now show how to use the DPJ type system [5] to write an
abstract linear container API that allows safe parallel updates to
its contained objects. There are two problems: maintaininglinear-
ity, and reasoning about effects. Our key insight is that through
careful API design, together with judicious use of local variables
and method region parameters, we can enforce restrictions like “a
factory method must return a new object” or “an apply method
must write only under the region of the object it is given.” Further,
we can impose these restrictions without exposing global region
names (such asOne and Two in Figure 2), that would otherwise
prevent swapping and other linearity-preserving operations inside
the framework.

4.2.1 Maintaining Linearity

To maintain linearity, we use the following strategy: (1) every con-
tainer starts empty and so is trivially linear; and (2) everyoperation
provided by the linear container API is linearity preserving (takes
a linear container to another linear container). By a simpleinduc-
tion, we can then conclude that the container is linear throughout its
lifetime. The hard part is guaranteeing property (2). Thereare two
types of operations to consider: (a) operations that are totally under
the control of the container implementation and (b) operations that
must cooperate with (possibly unknown) user code.

An example of (a) is a tree rebalancing or array reshuffling that
operates only on internal structure of the container. Here the prob-
lem is entirely reduced to writing a correct framework implemen-
tation. We discuss this problem in Section 4.4 below.

In the case of (b), however, the framework must restrict whatthe
user can do so that the framework author can reason soundly about
uses of the container without knowing exactly what that use will

3 2009/9/8

look like. A core example here is putting things into a container. For
the container to be useful, the user has to retain control over what is
inserted in the container, and how and where those inserted things
are created. The trick is to allow some control while still being able
to reason about linearity. In our work to date we have explored
three strategies: controlled creation of contained objects, building
one linear container from another, and backing the container with a
set.

Controlled creation of contained objects.Lines 7–11 of Figure 4
illustrate this strategy, for aNodeContainer interface that could
be implemented in different ways (array, tree, etc). We define the
interface with two region parameters,Node andCont, because we
want to refer separately to the nodes stored in the container, and
the container itself. The container implementation does the actual
object creation, but the user specifies the number of objectsto
create and provides a factory method specifying how to create the
ith object. For example, a use could look like this, assuming aclass
NodeArray that implementsNodeContainer:

public class MyFactory implements NodeContainer.NodeFactory<N> {
public <region R>ListNode<R> create(int i) {

return new ListNode<R>(i, null);
}

}

NodeContainer<N,C> cont =
new NodeArray<N,C>(new MyFactory(), 10);

This code creates a newNodeArray with 10 list nodes, such that
the ith one has itsdata field set toi. HereN and C are region
names declared by the user (declarations not shown) and bound
to the region arguments in the instantiated types.

The important thing here is that the “factory method” must
really be a factory method and not, for example, just fetch some
object reference from the heap and store the same one into each slot
of the new linear container. The framework author can enforce this
requirement by judicious use of amethod region parameter. Notice
that in line 10, the return type of the factory method is written in
terms of a parameterR that is in scope only in that method. Further,
no reference of typeListNode<R> enters the method. Therefore,
the only way aListNode<R> can escape the method is if it is
created inside the method vianew. To our knowledge, no previous
work has shown that region parameters can be used to enforce a
restriction that a method must return a fresh object.

Building one linear container from another.If we start with a
linear containerA, and we create a new linear containerB and
populate it by copying the reference elements from the slotsof A
to the slots ofB, thenB will be linear. An example is creating a
tree out of the elements of an array or set.

Lines 4–5 of Figure 4 illustrate how we might implement
this strategy in DPJ. They just say that given one object of type
NodeContainer<Node,Cont> we can create another one. An im-
portant special case in DPJ is creating a linear container from
an index-parameterized array. In DPJ, the index-parameterized
array type is an arrayA such that cellA[i] has a type like
ListNode<[i]> that is parameterized by the integer valuei. This
guarantees the linearity property for the array, because cell i can
never point to typeListNode<[j]>, for i 6= j. However, because
the parameterized types are exposed to the rest of the program, it
also means that we cannot shuffle the array elements without com-
promising soundness. (This is exactly the same problem discussed
in Section 3, just with array cells rather than fields.) If we con-
struct a linear container by copying in elements from the cells of an
index-parameterized array, then we obtain a container thatis linear,
but on which we can also perform linearity preserving operations,
such as reshuffling, that were prohibited for the original array, by
doing theminternally within the framework.

1 public interface NodeContainer<region Node,Cont> {

2

3 /* One linear container from another */

4 public NodeContainer(NodeContainer<Node,Cont> cont)
5 writes Cont;
6

7 /* Controlled creation of contents */
8 public NodeContainer(NodeFactory fact, int size) writes Cont;

9 public interface NodeFactory {
10 public <region R>ListNode<R> create(int i) pure;

11 }
12

13 /* Backed by set */

14 public void add(ListNode<Node> elt) writes Cont;
15

16 /* Data parallel operation on all elements */
17 public void performOnAll(Operation<Node> op)
18 reads Cont writes Node:*;

19 public interface Operation<region Node> {
20 public void operateOn(final ListNode<Node> elt)

21 writes elt;
22 }

23

24 }

Figure 4. Framework API for an abstract linear list container.

Backing the container with a set.Line 14 of Figure 4 illus-
trates the third strategy: we just provide a standardadd method for
the container, but require that any implementation of that method
be backed by a set. This is most useful for a linear container
that actually is a set, where this backing happens “automatically.”
For a non-set container such as a tree or array, the implementer
must choose: either back insertion with a set (causing extrarun-
time overhead), or “implement” theadd method by throwing an
UnsupportedOperationException, which is effectively a run-
time check that this operation never occurs.

4.2.2 Using Linearity to Reason About Effects

Lines 17–22 of Figure 4 show the part of the API that allows the
user to define a method and then pass that method into the container
to be applied in parallel to all contained objects. For example, given
referencecont of typeNodeContainer<N,C>, the user could do
this:

public class MyOperation implements NodeContainer.Operation<N> {

public void operateOn(ListNode<N> elt) writes elt {
++elt.data;

}

}
cont.performOnAll(new MyOperation());

This code increments in parallel thedata field of each of the
objects stored incont.

We have carefully written the API so that any user-supplied
method updates at most the object it is applied to, and does not
(1) follow the cross links to read or write a different object(as il-
lustrated in Figure 3); or (2) update any other shared state (such
asstatic variables). In the definition of the abstractoperateOn
method in theOperation interface (lines 20–21 of Figure 4),
we specify the effect aswrites elt. The DPJ type system re-
quires that any user-supplied method implementingoperateOn
must have a declared effect that is asubeffectof writes elt.
Updating thedata field as shown above is legal, becausedata is
declared “in this” inside ListNode, which becomes “in elt”
(becauseelt is bound tothis) in the scope ofoperateOn. How-
ever, following thenext field to updatedata of a different ob-
ject is not legal: because thenext field has typeListNode<*>,
the effect of that update iswrites *, which is not a subeffect of
writes elt and so is not allowed.

4 2009/9/8

4.2.3 Using Hidden Regions for Strong Disjointness

The effect control strategy shown in Figure 4 works well whenwe
want to create an object or graph of objects all at once, then update
its fields in parallel with values (including immutable objects).
However, usingthis as a parameter prevents us from adding a
previously-constructedmutable object(i.e., one that supports write
effects on its members) as a member of another object, as shown
below:

class A<region R> {}

class B<region R> { A<this> x = new A<this>(); }
class C<region R> { A<this> x; }
B<Root> b = new B<Root>();

C<Root> c = new C<Root>();
/* Illegal, can’t assign A<c> to A */

b.x = c.x;

This deficiency can be severe when the user wants to use the
mutable result of one computation phase in a subsequent phase,
as illustrated in our Monte Carlo example (Section 6).

If the framework API excludes theadd method (line 14 of
Figure 4), and requires that the container contents be created under
control of the framework (i.e., the first two linearity strategies),
then it can allow more flexible effects by writing theOperation
interface with a region parameter, and allowing write effects under
that parameter:

public interface Operation {

public <region R>void operateOn(final ListNode<R> elt)
writes R:*, elt;

In this way the user can write to objects not parameterized bythis,
while the framework retains control over user-supplied effects.

This strategy is sound because the framework ensures that a
fresh object is created for each slot, so the framework can treat
each sloti as having a regionri bound to its parameter, such that
for any i 6= j, ri:* andrj:* are disjoint (i.e., neitherrj is under
ri nor vice versa in the region tree). In this case we say that theri

arestrongly disjoint. Strong disjointness of regions in the slot types
implies linearity (because strongly disjoint regions imply different
types and therefore different objects), but the converse isnot true.

In this approach, the user never sees the strongly disjoint regions
ri, and interacts with them only through the region parameterR in
theOperation API. We call this strategy using “hidden regions.”
It generalizes the strategy shown in Figure 2, where we argued that
one andtwo would have (strongly disjoint) regionsOne andTwo in
their dynamic types, even if the static type of both wereNode<*>.
The correctness of this strategy is subtle and, in fact, we initially
considered using it for a container supportingadd backed by a set.
That is not sound because in that case we have no control over
the actual regions in the objects coming into the set. However, for
data structures like arrays that are not backed by a set, it works
well. Further, the strategy of creating one container from another
(Section 4.2.1) still works, so long as the first container isrequired
to have strongly disjoint regions in its slot types.

4.3 Getting More Flexibility

While the list node container discussed in the previous section
is useful, it is too specialized. We now show how to make the
example generic. There are two issues to consider: generic effects
and generic types.

4.3.1 Making the Effects Generic

The first thing that is too restrictive is the bound on the effects of
the user-definedoperateOn. For instance, what if the user wants
to specify anoperateOn method that reads some other region that
is disjoint from elt for all ListNode objects? That is safe and

should be allowed, but it is disallowed by the effect specification
writes elt in the API.

To solve this problem, we use effect polymorphism [20]. We
give theOperation interface an effect parameterE (similar to a
region parameter, but it specifies an effect) that becomes bound
to an actual effect when the interface is instantiated into atype.
To make this strategy work, we need to solve two problems that
have not been solved in previous work: (1) constraining the effect
arguments so that the effects of invoking the user-suppliedmethod
on different objects are noninterfering; and (2) ensuring soundness
of subtyping when we add effect parameters.

1 public interface Operation<region Node, effect E> {
2 public void operateOn(final ListNode<Node> elt)
3 writes elt effect E;

4 }
5

6 public <effect E | effect E # writes Node:* effect E>
7 void performOnAll(Operation<Node, effect E> op)

8 reads Cont writes Node:* effect E;

Figure 5. Making the effects of theOperation interface generic.

Constraining the effect arguments.Obviously the framework
cannot let the effect variableE become bound to an arbitrary effect
in the user’s code, because then we would be back to the problem
of a user-supplied method with unregulated effects. Instead, we
introduce aneffect constraintthat restricts the effect of the user-
supplied method.

Figure 5 shows how to write the effect variables and constraints.
We define theOperation interface (line 1) with one region param-
eterNode and one effect variableE. We define theperformOnAll
method (lines 6–8) with amethod effect parameterE. After the
parameter declaration is a vertical bar, followed by a constraint
specifying that the effect bound toE must be noninterfering with
writes Node:* effect E. This constraint ensures that (1) the
supplied effect will not interfere with the effectwrites Node:*
of updating the nodes; and (2) the supplied effect will not interfere
with itself. This means thatE must either be a read-only effect, or
it must be an effect such as a set insert that is declared to commute
with itself [5].

As an example, here is a user-supplied method that puts all the
ListNode objects in regionN and reads regionG to initialize all the
objects with the same global value:

public class MyOperation implements
NodeContainer.Operation<N,reads G> {
public void operateOn(ListNode<N> elt) reads G writes elt {

/* Assume global is stored in G */
elt.data = global;

}
}
cont.<reads G>performOnAll(new MyOperation());

Notice that the constraints are satisfied. First,G andN are different
regions, soreads G does not interfere with the effectwrites N:*
of updating the nodes. Second,reads G is a read-only effect, so it
is noninterfering with itself.

Soundness of subtyping.Once we add class types likeC<E>,
whereE is an effect argument, we need a rule for whenC<E1>
is a subtype ofC<E2>. We can then easily extend the rule to
handle subclasses, using the same technique as for DPJ with region
parameters only [4]. We could require thatE1 andE2 be identical
effects, but this would be unnecessarily restrictive. Instead, we let
E1 be asubeffectof E2. This is similar to the approach we took in
DPJ with region parameters only, where we defined subtyping as
equivalence up to inclusion of regions [4,5].

With this approach, soundness of effect falls out naturallyif we
can showtype preservation, i.e., that the dynamic types of object
references always agree with the static types of variables that hold

5 2009/9/8

them. This can be quite subtle, however. For example, if we assign
C<writes r> to C<writes *>, the weaker effect tells us that we
don’t know the real region, and we have to treat any uses ofC’s
effect parameter aswrites * when operating through a reference
of the weaker type. However, we have to be careful not to allow
assignments that would violate type preservation. For example,
if class A<effect E> has a fieldf of type B<effect E>, then
we cannotsimply givef the typeB<writes *> as a member of
A<writes *>. Instead, we must use the typeB<writes P>, where
P is a fresh region parameter (called acapture parameter). This
is similar to how Java handles generic wildcards and how DPJ
already handles partially specified regions [4, 5]. The new part is
that we are capturing effects by capturing their component regions.
We formalize this notion in the next section.

4.3.2 Making the Type Generic

The second thing that is too restrictive is that we made the class spe-
cialized to list nodes. Instead, we would like to write a generic lin-
ear container classLinearContainer<type T, region Cont>.
Notice, however, that there are two places where we used the re-
gion parameter ofListNode to write the API. First, in writing the
NodeFactory interface (line 10 of Figure 4), we used a method-
local parameterR in the return type ofcreate. Second, in writing
the effect ofperformOnAll (lines 6–8 of Figure 5), we used the
regionNode to write both the effect constraint and the effect of up-
dating the contained objects. If we just replaced these types with
an ordinary type variableT, then we would not be able to write the
node factory pattern at all, we would not be able to constrainthe ef-
fectE properly, and we would be forced to use a more conservative
effect (such aswrites *) for the effect ofoperateOn.

To solve this problem, we introduce the notion of atype region
parameter, which works as follows:

1. In declaring a type variableT, we can writetype T<region R>,
whereR declares a fresh parameter. This is analogous to declar-
ing a parameter in a class definition. When a typet becomes
bound toT, t must have at least one region argument, andR
represents the first region argument.

2. We write uses of the variableT as T<r>, wherer is a valid
region in scope.R itself is valid (because it was declared in the
type variable).T<R> represents the unmodified type provided
as an argument to the variable, whileT<r> represents the same
type with the region in its first argument position replaced by r.

For convenience, a bare use ofT is allowed within the class body,
and this is equivalent toT<R>. We can also writen parameters
(T<region R1,. . .,Rn>) and arguments (t<r1,. . .,rn>), for n ≥
1. In this case the argument must have at leastn parameters, and
the firstn region arguments are captured, starting from the left.

Figure 6 shows how to write the final linear container API with
generic effects and generic types. Line 1 declares aLinearContainer
interface with one type parameterT and one region parameterCont.
The type parameter has one region parameterElt that names the
first region argument of the type bound toT. In line 10, we write
T<R> to require that the return type ofcreate have the method
region parameterR as its first region argument. In lines 15 and 17,
the regionElt is available to constrain the effect variableE and to
write the effects ofperformOnAll.

We could also have followed the C++ mechanism calledtem-
plate template parameters[30], allowing the user to provide a tem-
plate C and a regionR as separate arguments, and having the
framework put them together to construct the typeC<R>. We did
not adopt this approach because, in addition to the fact thatJava
does support templates, it obscures the relationship between the
type and its region argument in the framework API.

1 public interface LinearContainer<type T<region Elt>,region Cont> {

2

3 public LinearContainer(LinearContainer<T,Cont> cont)

4 writes Cont;
5

6 public <effect E | effect E # writes Cont effect E>

7 LinearContainer(Factory<T, effect E> fact, int size)
8 writes Cont effect E;

9 public interface Factory<type T<region Elt>, effect E> {
10 public <region R>T<R> create(int i) effect E;

11 }
12

13 public void add(T elt) writes Cont;

14

15 public <effect E | effect E # reads Cont writes Elt:* effect E>

16 void performOnAll(Operation<T,effect E> op)
17 reads Cont writes Elt:* effect E;
18 public interface Operation<type T, effect E> {

19 public void operateOn(final T elt) writes elt effect E;
20 }

21

22 }

Figure 6. API for an abstract linear container with generic types
and effects.

4.4 Verifying the Framework Implementation

1 public class LinearArray<type T<region Elt>, region Cont>
2 implements LinearContainer<T,Cont> {

3

4 /* Internal array representation */

5 private ArrayList<T,Cont> elts;
6

7 public <effect E | effect E # writes Elt:* effect E>

8 void performOnAll(Operation<T,effect E> op)
9 reads Cont writes Elt:* effect E {

10 foreach (int i in 0, elts.size()) {
11 op.operateOn(elts.get(i));

12 }
13 }
14

15 }

Figure 7. Array implementation of a linear container (partial).

Having studied the framework API, we now focus on how to
write a correct framework implementation. Figure 7 shows what
the inside ofperformOnAll might look like, in the case of an
array implementation ofLinearContainer. We have chosen to
represent the array internally as anArrayList, as shown in line 5.
TheperformOnAll method uses the DPJforeach construct (line
10) to iterate in parallel over the elements of theArrayList and
apply the user-supplied operation to each of its elements.

To verify noninterference (and in this case, deterministicparal-
lelism), it suffices to show that for any two distinct iterations of the
foreach, the reference valueselts.get(i) are distinct. We can
formalize this statement as a logical predicate:

I 6= J

disjoint-ref(elts.get(i)I , elts.get(i)J)

HereI andJ represent loop iterations. Given just this predicate,
and the way we wrote the framework API, we can push through a
proof of noninterference using the DPJ type system rules, extended
to support effect parameters and type region parameters. Wefor-
mally state these rules in the following section. We also formally
state that the rules aresound, in the sense that once we push through
the proof we really do get noninterference.

Now, how do we show the predicate? In the case of our ar-
ray example, we must show two things: (1) for distinct valuesi,
elts.get(i) is distinct; and (2)i attains distinct valuesi on dis-
tinct iterations of theforeach. The first statement follows from

6 2009/9/8

program ::= class∗ e

class ::= class C<τ<ρ>, ρ, η|K> { field∗ method∗ }
K ::= η # E

field ::= T f in R
method ::= T m(T x) E { e }

R ::= z | ρ | ∗
T ::= C<T, R, E> | τ<R> | void
E ::= ∅ | reads R | writes R | η |E ∪ E

e ::= let z = e in e | this.f | this.f = z |
z.m(z) | z | new C<T, R, E>

z ::= this | x

Figure 8. Syntax of the core language.C, τ , ρ, η, f , m, andx are
identifiers.

the inductive argument we made in Section 4.2.1 about maintain-
ing linearity. This argument can easily be formalized, but we do
not do so here. The second statement follows from the semantics of
foreach in DPJ [5]. More generally, one would follow the same
two-pronged strategy to discharge the distinctness predicate for an
iterative traversal over an arbitrary linear container: first show lin-
earity of slots, and then show uniqueness of traversal over the slots.
To use the hidden regions strategy (Section 4.2.3), we woulddo
the same thing with a predicate disjoint-rgn(z, z′) saying that the
regions in the types ofz andz′ are strongly disjoint.

In the case of a recursive traversal (such as over a tree), the
problem is more difficult. Here it is not sufficient to prove a pred-
icate like “expressione refers to distinct references on distinct it-
erations”; instead, we need a predicate like “all references in the
left subtree are distinct from all references in the right subtree.”
The DPJ type system supports predicates like this [4, 5], butonly
by constraining the types such that we cannot rebalance the tree
soundly, for the reasons discussed in Section 3. Here we could give
up on using the type system to prove disjointness of effect inside
the framework and verify it some other way, e.g., through more
general program logic [14, 22] or testing. In this case, the “extra”
predicate we need is a predicate about disjointeffects. Potentially
interesting questions here are (1) exactly what such a proofwould
look like and (2) whether any extensions to our type system could
help in constructing such proofs, by providing further “glue” be-
tween the different forms of verification. We leave these questions
to future work.

In any event, once the framework implementer verifies the in-
side, the user never has to see or even know about how the verifi-
cation occurred. From the user’s point of view, if the program type
checks, then the noninterference property holds. We can thus think
of the techniques presented here as making DPJ into anextensible
language. By writing a suitable API, and doing appropriate proofs,
the framework writer can add new capabilities for parallel opera-
tions that provide the same guarantees as if those capabilities had
been built in as first-class parts of the language. This makesDPJ
much more powerful than if the only available verification mecha-
nism were the type system itself.

5. Formal Elements
In this section we formalize the ideas developed in the previous
section using a core language that is simple enough to formalize
yet illustrates all the essential features.

5.1 Syntax

Figure 8 shows the syntax for the core language. A program con-
sists of zero or more class definitions and an expression to evaluate.
A class has one type parameterτ , one region parameterρ, and one
effect parameterη. The type parameter has a region parameter that
captures the region argument of the type bound to it. There isone

Judgment Meaning Judgment Meaning
⊲ program Valid program ⊲ class Valid class
Γ ⊲ field Valid field Γ ⊲ method Valid method
Γ ⊲ R Valid region Γ ⊲ R ⊆ R′ R included inR′

Γ ⊲ R # R′ R disjoint fromR′ Γ ⊲ T Valid type
Γ ⊲ T ≤ T ′ T a subtype ofT ′ Γ ⊲ E Valid effect
Γ ⊲ E ⊆ E′ E a subeffect ofE′ Γ ⊲ E # E′ Noninterfering effects
Γ ⊲ e : T, E e has typeT and effectE

Figure 9. Type judgments for the core language. We extend the
judgments to groups of things (e.g.,Γ ⊲ field∗) in the obvious way.

(PROGRAM) ⊲class∗ ∅ ⊲ e : T, E

⊲class∗ e

(CLASS) Γ = {(this, C<τ<ρ>, ρ′, η>), τ<ρ>, ρ, ρ′, η, K}
Γ ⊲ K Γ ⊲ field∗ Γ ⊲ method∗

⊲class C<τ<ρ>, ρ′, η|K> { field∗ method∗ }

(CONSTRAINT) Γ ⊲ η Γ ⊲ E

Γ ⊲ η # E

(FIELD) Γ ⊲ T Γ ⊲ R

Γ ⊲ T f in R

(METHOD) Γ ⊲ Tx Γ′ = Γ ∪ {(x, Tx)} Γ′ ⊲ Tr , E

Γ′ ⊲ e : T ′, E′ Γ′ ⊲ T ′ ≤ Tr Γ′ ⊲ E′ ⊆ E

Γ ⊲ Tr m(Tx x) E { e }

Figure 10. Typing of program elements.

(REGION-PARAM) ρ ∈ Γ
Γ ⊲ ρ

(REGION-VAR) (z, T) ∈ Γ
Γ ⊲ z

(REGION-STAR)
Γ ⊲ ∗

(REGION-CAPTURE) (z, C<T, ∗, E>) ∈ Γ
Γ ⊲ rgn(z)

(DISJOINT-REF) disjoint-ref(z, z′)
Γ ⊲ z # z′

(DISJOINT-RGN) disjoint-rgn(z, z′)
Γ ⊲ rgn(z)# rgn(z′)

Figure 11. Regions.Γ ⊲ R # R′ is symmetric.

effect constraintK = η # E specifying that the effect argument
bound toη must be disjoint from the effectE.

A region is a final variablez, a region parameterρ, or ∗ indicat-
ing an unspecified region. A type either instantiates a namedclass
with a type, region, and effect; or it instantiates a type parameter
with a region; or it isvoid, indicating an unused type parameter.
An effect is a possibly empty union of read effects, write effects,
and effect parameters.

5.2 Static Semantics

Judgments.Figure 9 shows the judgments defining the static se-
mantics for the core language. The judgments are defined withre-
spect to an environmentΓ containing zero or more of the following
elements:(z, T) means that variablez has typeT ; τ<ρ>means that
type parameterτ is in scope with region parameterρ; ρ means that
region parameterρ is in scope;η means that effect parameterη is
in scope; andη # E means that effect variableη is constrained to
be noninterfering with effectE.

Program elements.Figure 10 shows how to make the judgments
for typing of top-level program elements. In rule CLASS, we form
the environmentΓ containingthis, the parameters, and the effect
constraint, and then we check the effect constraint and the class
body in Γ. In rule METHOD, we form the environmentΓ′ by
adding the formal parameterx with its type, then we check the
formal parameter type, the method body, and the return type;and
we check that the type and effect of the method body are a subtype
and subeffect of the return type and declared effect.

Regions.Figure 11 gives the rules for valid regions and disjoint
regions. rgn(z) represents the (statically unknown) region in the
dynamic type ofz, when a∗ appears in the region of the type.
As explained in Section 4.4, the predicate disjoint-ref(z, z′) means

7 2009/9/8

(TYPE-CLASS) classC<τ<ρ>, ρ′, η|η # E′>{field∗method∗} ∈ program
Γ ⊲ T, R, E Γ ⊲ E # φC<T,R,E>(E

′)
Γ ⊲ C<T, R, E>

(TYPE-PARAM) τ<ρ> ∈ Γ Γ ⊲ R

Γ ⊲ τ<R>

(TYPE-VOID)
Γ ⊲ void

(SUBTYPE-CLASS) Γ ⊲ R ⊆ R′ Γ ⊲ E ⊆ E′

Γ ⊲ C<T, R, E> ≤ C<T, R′, E′>

(SUBTYPE-PARAM) Γ ⊲ R ⊆ R′

Γ ⊲ τ<R> ≤ τ<R′>

Figure 12. Types.Γ ⊲ T ≤ T ′ is reflexive and transitive.

(NI-EMPTY)
Γ ⊲ ∅# E

(NI-UNION) Γ ⊲ E # E′′ Γ ⊲ E′ # E′′

Γ ⊲ E ∪ E′ # E′′

(NI-RD)
Γ ⊲ reads R # reads R′

(NI-RD-WR) Γ ⊲ R # R′

Γ ⊲ reads R # writes R′

(NI-WR) Γ ⊲ R # R′

Γ ⊲ writes R # writes R′

(NI-PARAM) η # E ∈ Γ Γ ⊲ E′ ⊆ E

Γ ⊲ η # E′

Figure 13. Noninterfering effects.Γ ⊲ E # E′ is symmetric.

that variablesz andz′ evaluate to distinct object reference values
at runtime; while the predicate disjoint-rgn(z, z′) says thatz and
z′ have different regions in their types. The warrant for these
predicates is provided from outside the type system.

Types.Figure 12 shows the rules for checking types. The in-
teresting rules are TYPE-CLASS and the two subtyping rules.In
TYPE-CLASS we check the validity of the type, region, and effect
used to instantiate the type. We use the translation mappingφT (de-
fined below) to instantiate the effect, and then we check the effect
constraint. In the subtyping rules, we allow one class type to be a
subtype of another if the regions are related by inclusion and the
effects related by subeffects.

Effects.The rules for valid effects and subeffects are identical
to the rules given in [5], with the addition of effect parameters. For
completeness we state the rules in full in an Appendix. Figure 13
gives the rules for noninterfering effects. Rule NI-PARAM says
that if the environment guarantees disjointness between a parameter
and some effect, then we can infer disjointness of that parameter
with any subeffect of the effect.

Expressions.Figure 14 gives the rules for typing expressions. In
rule LET, we replacex with ∗ to generate valid types, regions, and
effects when the variablex goes out of scope [5, 10]. In rule IN-
VOKE, we use the mappingφT (defined below) to translate from
the callee to the caller context. As discussed in Section 4.3.1, we
need to capture any regions or effects containing∗ to maintain
soundness of subtyping. We represent the captured region parame-
ter argument as rgn(z) in order to apply the rule DISJOINT-RGN
from Figure 11.

Translation mapping.The mappingφT translates a type, region,
or effect from the context in which it is defined to the contextof its
use via the typeT = C<T ′, R, E>. It is the same as the context
translation described in [4, 5], except that we need to handle effect
parameters and type region parameters, as well as plain region
parameters:

1. Types.To translate a class type, we translate its arguments:
φT (C′<T ′′, R′, E′>) = C′<φT (T ′′), φT (R′), φT (E′)>. To
translate a type parameter, we use the instantiating typeT , but
we replace its region argument with the parameter’s region ar-
gument, after translating it:φT (τ<R′>) = C<T ′, φT (R′), E>.
Finally, φT (void) = void.

(LET) Γ ⊲ e : T, E Γ ∪ {(x, T)} ⊲ e′ : T ′, E′

Γ ⊲ let x = e in e′ : T ′[x← ∗], E ∪ E′[x← ∗]

(ACCESS) (this, T) ∈ Γ field(T, f) = T ′ f in R

Γ ⊲ this.f : T ′, reads R

(ASSIGN) (this, T) ∈ Γ (z, T ′) ∈ Γ
field(T, f) = T ′′ f in R Γ ⊲ T ′ ≤ T ′′

Γ ⊲ this.f = z : T ′, writes R

(INVOKE) (z, T) ∈ Γ (z′, T ′) ∈ Γ
method(T, m) = Tr m(Tx x) E { e }

capture(z, T) = (T ′′, ρ) Γ ∪ ρ ⊲ T ′ ≤ φT ′′ (Tx)
Γ ⊲ z.m(z′) : φT (Tr), φT (E)

(VARIABLE) (z, T) ∈ Γ
Γ ⊲ z : T, ∅

(NEW) Γ ⊲ C<T, R, E>

Γ ⊲ new C<T, R, E> : C<T, R, E>, ∅

Figure 14. Expressions. field(T, f) means the defined field
f of the class named inT (which must be a class type).
method(T, m) means the defined methodm of the class named
in T . capture(z, T) = (T ′′, ρ) means thatρ is a fresh parameter,
andT becomesT ′′ after replacing (a) its type region parameter ar-
gument withρ, if it is ∗; and (b) its region parameter argument with
rgn(z), if it is ∗.

2. Regions.Let the type parameter ofC beτ<ρ′>, and let the re-
gion parameter ofC beρ. If T ′ = C′<T ′′, R′, E′> or τ ′<R′>,
then we replace the region parameter ofC with R and the region
parameter of the type parameter withR′: φT (R′′) = R′′[ρ ←
R][ρ′ ← R′]. If T ′ = void, thenφT (R′′) = R′′[ρ← R], and
it is an error forρ′ to appear inR′′.

3. Effects.Let the effect parameter ofC be η. To form φT (E′),
first applyφT to all regions appearing inE′, and then replace
all occurrences ofη with E.

5.3 Dynamic Semantics

Execution state.The runtime values are object referenceso. These
are the only entities we would need in an actual implementation;
but to formulate and prove soundness results we also need to keep
track of dynamic typesdT , dynamic regionsdR, and dynamic
effectsdE corresponding to static types, regions, and effects. These
entities are defined by the following syntax:

dR ::= o | ∗

dT ::= C<dT, dR, dE> | void

dE ::= ∅ | reads dR | writes dR | dE ∪ dE

Notice that there are no type, region, or effect parameters in the run-
time syntax, because all such parameters are eliminated at runtime
via substitution.

The dynamic execution state consists of (1) a heapH , which is
a function taking values to objects; and (2) a dynamic environment
dΓ, which is a set of bindings(z, o) meaning that variablez
is bound to object referenceo. An object is a partial function
taking field names to object references. If the function is undefined
on all field names, then we say it is anull object. We use null
objects to avoid having to represent the special type ofnull. In
an actual implementation, we can just use the single valuenull
for uninitialized reference variables. Every object referenceo ∈
Dom(H) has a type, and we writeH ⊲ o : dT to mean that the
referenceo has typedT in the domain of heapH .

Evaluating programs.Figure 15 gives the rules for program
evaluation. A program evaluates to valueo with heapH and effect
dE if its main expression ise, and(e, ∅, ∅) → (o, H, dE). Notice
that in rules DYN-ACCESS, DYN-ASSIGN, and DYN-NEW, we
use the translation mappingφ defined in the previous section to

8 2009/9/8

(DYN-LET) (e, dΓ, H) → (o, H′, dE) (e′, dΓ ∪ {(x, o)}, H′)→ (o′, H′′, dE′)
(let x = e in e′, dΓ, H)→ (o′, H′′, dE ∪ dE′)

(DYN-VARIABLE) (z, o) ∈ dΓ
(z, dΓ, H) → (o, H, ∅)

(DYN-ACCESS) (this, o) ∈ dΓ H ⊲ o : C<dT, dR, dE> field(C, f) = T f in R

(this.f, dΓ, H) → (H(o)(f), H, reads φ
C<dT,dR,dE>(R))

(DYN-ASSIGN) (this, o) ∈ dΓ (z′, o′) ∈ dΓ H ⊲ o : C<dT, dR, dE> field(C, f) = T f in R

(this.f = z, dΓ, H)→ (o′, H ∪ {o 7→ (H(o) ∪ {f 7→ o′})}, writes φ
C<dT,dR,dE>(R))

(DYN-INVOKE) (z, o) ∈ dΓ (z′, o′) ∈ dΓ H ⊲ o : C<dT, dR, dE>

method(C, m) = Tr m(Tx x) Em { e } (e, {(this, o), (x, o′)}, H) → (o′′, H′, dE′)
(z.m(z′), dΓ, H) → (o′′, H′, dE′)

(DYN-NEW) (this, o) ∈ dΓ H ⊲ o : dT o′ 6∈ Dom(H) H′ = H ∪ {o′ 7→ new(C, dT)} H′ ⊲ o′ : φdT
(C<T, R, E>)

(new C<T, R, E>, dΓ, H)→ (o′, H′, ∅)

Figure 15. Program evaluation. Iff : A → B is a function, thenf ∪ {x 7→ y} is the functionf ′ : A ∪ {x} → B ∪ {y} defined by
f ′(a) = f(a) if a 6= x andf ′(x) = y. new(C, dT) is the function taking each field of classC with type T to a null reference of type
φdT

(T).

translate static regions and types to their corresponding runtime
representations. Here the use context is given by the runtime type
of the object bound tothis in dΓ.

5.4 Soundness Results

Dynamic judgments for regions, types, and effects.To state and
prove the preservation result, we need to establish runtimejudg-
ments for regions, types, and effects corresponding to the static
judgments defined in Section 5.2. The rules are nearly identical to
their static counterparts. We describe how to generate the rules via
simple substitution.

First, replace the rules REGION-CAPTURE, DISJOINT-REF,
DISJOINT-RGN, and TYPE-CLASS with the following rules:

(NI-WR) o 6= o′

H ⊲ writes o # writes o′

(NI-RD-WR) o 6= o′

H ⊲ reads o # writes o′

(DYN-TYPE-CLASS) classC<τ<ρ>, ρ′, η|η # E′>{field∗method∗} ∈ program
H ⊲ dE # φ

C<dT,dR,dE>(E
′)

H ⊲ C<dT, dR, dE>

Second, delete the rules REGION-PARAM, TYPE-PARAM, and
NI-PARAM (because there are no type, region, or effect parameters
at runtime). Third, for every other rule, do the following: (1) append
DYN- to the front of the name; (2) replaceΓ with H ; and (3)
replaceT with dT , R with dR, andE with dE.

Preservation of type and effect.We first define a valid heap:

Definition 1 (Valid heaps). A heapH is valid (⊲H) if (1) for each
o ∈ Dom(H), H ⊲ o : dT , H ⊲ dT , and dT = C<dT ′, dR, dE>;
and (2) for each fieldT f in R ∈ def(C), if H(o)(f) is defined,
thenH ⊲ H(o)(f) : dT ′′ andH ⊲ dT ′′ andH ⊲ dT ′′ ≤ φdT

(T).

This definition says that every object reference is well typed
with a valid type, and every field of every object is either undefined
(causing execution to fail if it is accessed) or contains a reference
with a valid type that is bounded by its static type, translated to the
dynamic environment.

Next we defineH ⊲ dΓ ≤ Γ (“dΓ instantiatesΓ in H”). We
write φdΓ,H

as a shorthand for “φdT
, where(this, o) ∈ dΓ and

H ⊲ o : dT .”

Definition 2 (Instantiation of static environments). A dynamic en-
vironment dΓ instantiates a static environmentΓ (H ⊲ dΓ ≤ Γ) if
the same variables appear in dΓ as inΓ; for each pair(z, dT) ∈ Γ
and (z, o) ∈ dΓ, H ⊲ o : dT andH ⊲ dT ≤ φdΓ,H

(T); and for
each constraintη # dE ∈ Γ, H ⊲ φdΓ,H

(η) # φdΓ,H
(E).

This definition specifies a correspondence between static typing
environments and dynamic execution environments, such that we

can use the typing in the static environment to draw sound infer-
ences about execution in the dynamic environment.

Finally, we state the type and effect preservation result:

Theorem 1 (Preservation). For a well-typed program, ifΓ ⊲ e :
T, E and H ⊲ dΓ ≤ Γ and (e, dΓ, H) → (o, H ′, dE′), then
⊲H ′; H ′ ⊲ o : dT ′; H ⊲ dT ′ ≤ φdΓ,H

(T); H ⊲ dE′; and
H ⊲ dE′ ⊆ φdΓ,H

(E).

Noninterference of effect.Now we can prove that expressions
with noninterfering static effects are noninterfering at runtime.
First we defineRf (o, H), the region of fieldf of object o ∈
Dom(H). This definition formalizes the idea that regionsR in the
field declarationsT f in R partition the heap:

Definition 3 (Region of a field). If H ⊲ o : C<dT, dR, dE> and
T f in R ∈ def(C), thenRf (o, H) = φ

C<dT,dR,dE>(R).

Proposition 1. At runtime, disjoint regions imply disjoint loca-
tions. That is, ifH ⊲ Rf (o, H)#Rf ′(o′, H), then eithero 6= o′

or f 6= f ′.

Next we state a proposition about the dynamic effects produced
by program execution: if we evaluatee ande′ with the same dy-
namic environmentdΓ, and if the two evaluations have noninter-
fering effects, then the individual read and write effects of e ande′

can be arbitrarily interleaved, with identical results:

Proposition 2. If (e, dΓ, H0)→ (o, H1, dE) and(e′, dΓ, H ′

0)→
(o′, H ′

1, dE′) andH1 ∪ H ′

1 ⊲ dE # dE′, then the read and write
effects of the two evaluations are pairwise commutative.

By extending this result to static effects, we obtain the main
soundness property of the core language:

Theorem 2. If Γ⊲e : T, E andΓ⊲e′ : T ′, E′ andΓ⊲E #E′ and
H ⊲ dΓ ≤ Γ and(e, dΓ, H0) → (o, H1, dE) and(e′, dΓ, H ′

0) →
(o′, H ′

1, dE′), then the read and write effects of the two evaluations
are pairwise commutative.

Theorem 2 says that if two expressions have noninterfering
staticeffects, then their actual runtime effects are noninterfering as
well. Therefore, we can use the static effect information toreason
soundly about noninterference at runtime.

6. Evaluation
We have evaluated the techniques discussed above with two goals
in mind:

1. Can we use the techniques to write realistic frameworks and
user programs? Do any additional issues come up in real frame-

9 2009/9/8

works or user code that present difficulties for the abstractlinear
container model?

2. What is the user experience of using such an API? How bur-
densome is it to write the type and effect annotations, and how
difficult is it to get the annotations correct?

To perform our evaluation, we first extended the DPJ compiler[5]
to support effect variables, effect constraints, and type region pa-
rameters as discussed in Sections 4.3 and 5. Then we studied how to
(1) use our techniques to write generic array and tree frameworks;
and (2) use the frameworks to write two parallel codes: a Monte
Carlo simulation algorithm and a Barnes-Hut n-body computation
using a spatial octtree. We chose these two algorithms because they
exemplify different styles of parallelism: Monte Carlo uses direct
loop-style parallelism over arrays, while Barnes-Hut usesrecursive,
divide-and-conquer parallelism over trees.

6.1 Array and Tree Frameworks

We focused on the framework operations needed for the two bench-
marks but ensured that the operations themselves weregeneral, i.e.,
were not specifically tied to the needs of the benchmarks, as dis-
cussed below. Adding more operations is not difficult.

Parallel array framework.We implemented a framework called
DPJLinearArray with an interface similar to a subset of the Par-
allelArray API for Java [1]. The API supports the following opera-
tions:

1. A create method that creates an array with a user-supplied
factory method, as discussed in Section 4.2.1 and shown in its
final generic form in Figure 6.

2. A withMapping method that maps one array to another, ele-
ment by element, with a user-supplied mapping function. We
provide an indexed (taking an index variable) and an unindexed
form of the mapping, as ParallelArray does. As in the factory
method pattern, we use a method region parameterR to ensure
that the mapping function creates a new output object for each
element, and the mapping function is allowed to write underR.

3. A reduce method that reduces the array to an object, given a
starting element and a user-specifiedReducer that combines
two elements into one. Following the hidden regions pattern
discussed in Section 4.2.3, the two elements coming into the
Reducer method are parameterized by method region parame-
tersR1 andR2, and the user-supplied method is allowed to write
under these parameters. Using distinct parameters ensuresthat
theReducer cannot violate strong disjointness, e.g., by storing
one object into a field of the other.

The framework implementation is a thin wrapper that uses a
ParallelArray instance internally to provide all the operations.

Parallel tree framework.We also wrote a framework that pro-
vides a tree of user-specified arity (i.e., each inner node has at most
arity children) with data of generic typeT stored in every node.
The API supports the following operations:

1. A buildTree method that takes aDPJLinearContainer
elts of objects of typeT and a positivearity and inserts the
bodies into the leaves of the tree. The user provides anindex
function that, given aT to insert, aT at the current (inner or
leaf) node, and aT at the parent node (if any) of the current
node, says which of the children of the current node to follow
next when inserting the object in the subtree rooted at the cur-
rent node. The framework creates the inner nodes as necessary
and populates each one with a fresh object of typeT, using a
user-specified factory method.

2. A visitPO method that recursively does a parallel postorder
tree traversal. As shown in Figure 16, this method takes a user-

suppliedvisit method that, given aT object at the current node
and an ArrayList ofV (result) objects produced from visiting
the children (ornull if the current node is a leaf), produces
a V object for this node. Again we use two region parameters,
R1 andR2, to ensure that strong disjointness of theT objects is
preserved by the traversal.

1 public class DPJLinearTree<type T<region Elt>, region Cont> {
2

3 public <effect E | effect E # reads Cont writes Elt:* effect E>

4 double visitPO(POVisitor<T, effect E> visitor)
5 reads Cont writes Elt:* effect E { ... }

6

7 public interface POVisitor<type T<region Elt>,

8 type V<region VR>, effect E> {
9 public <region R1, R2> V<R2>

10 visit(final T<R1> data,

11 final ArrayList<V<R2>, Cont> childResults)
12 reads Cont writes data:*, R1:*, R2:* effect E;

13 }
14 }

Figure 16. Postorder visitor from region-based spatial tree.

6.2 Application Code

Monte Carlo simulation.We studied the Monte Carlo simulation
benchmark from the Java Grande suite [26]. The computation con-
tains three parallelizable loops: the first one createsTask objects;
the second one iterates over the objects to compute a return rate for
each one; and the third one reduces the return rates into a cumula-
tive average.

We parallelized all three loops usingDPJLinearArray. For
the first loop, we used the indexed form ofwithMapping. Apart
from writing to theTask object itself (which does not have to be
reported), the effect of theTask constructor is read-only, so it can
be validly used for aggregate array creation, as shown in line 6 of
Figure 6.

For the second loop, we used the unindexedwithMapping.
We wrote a mapping function that takes aTask<Tasks> object
to a Result<R> object, whereTasks is a declared region name,
and R is the method parameter provided by the framework. The
computation in the mapping function writes toR.

For the third loop, we wrote aReducer that takes two objects
of typeResult<R>, reads the accumulated sum out of both, adds
them, stores the result in the first one, and returns it. The write
effect is bounded bywrites R, as required in the API. We could
also have avoided the write effect entirely by creating a newobject
and returning it, but that would be less efficient.

Barnes-Hut center of mass computation.Next we studied the
Barnes-Hut n-body simulation [25], which uses an octtree (eight-
ary tree) to represent three-dimensional space hierarchically, stor-
ing the bodies in the leaves. We focused on the center-of-mass
computation, which recurses down the tree in parallel and com-
putes, for each node, the center of mass of the subtree rootedat
that node. Proving noninterference is nontrivial because the com-
putation writes into each node as it traverses it, so the computation
requires that the traversal is over a tree. Because of this fact, the
center of mass computation is hard to do efficiently in baseline in
DPJ; we discuss this point further in Section 6.3 below. It would be
straightforward to parallelize the force computation using the same
array-based techniques as we used for Monte Carlo, but for lack of
time we have not done that.

We wrote a program that builds a tree and performs a cen-
ter of mass computation for a binary tree computation in one-
dimensional (1-D) space. 1-D space simplifies the computation,
without changing the essential patterns of parallelism. Weinstanti-
atedDPJLinearTree with a Node class that has subclassesCell

10 2009/9/8

for the inner node data andBody for the leaf data, similarly to both
the original and Splash-2 versions of Barnes-Hut [25]. To build the
tree, we wrote anindex method that puts each inserted node in the
left or right subtree based on its position, and a factory method that
constructs freshCell objects for each inner node in the tree. To
compute the center of mass, we wrote apostOrderVisitor that
computes the average position and total mass for the bodies in the
subtree rooted at each inner node stores them at the node. This vis-
itor returns a pair ofdouble values (for typeV in the API) for the
average position and total mass at the current node.

6.3 Discussion of Evaluation Results

Difficulties for realistic frameworks.Our experience shows that the
framework techniques in this work can be used to write realis-
tic parallel algorithms. For example, Barnes Hut uses a complex
traversal pattern with in-place updates for both tree construction
and center-of-mass computation. For these codes, we did notfind
any significant challenges over and above the framework API we
discussed in Section 4. In the future, we could also easily support
other operations, such as ParallelArray’s filter and apply.

One question left open by our evaluation is whether we could
support some of ParallelArray’s operations for combining arrays,
for instance concatenating two arrays. It is hard to do this and
maintain linearity. The best we could do is probably to back the
array with a set and provide set union; but in this case we would
(1) pay the overhead of maintaining a set and (2) lose the benefit of
strong disjointness.

Framework user experience.We found that the annotations re-
quired to support the frameworks shifts much of the burden ofrea-
soning about safety from frameworkusersto frameworkdesigners.
First we found that getting the region and effect annotations correct
for the framework was sometimes tricky. However, the framework
user just has to use the API correctly, and the use is automatically
checked by the DPJ compiler. Second, most of the complexity in-
troduced by the effect variables (including the effect constraints)
was in the framework API itself. The user arguments to effectvari-
ables were simple: eitherpure or one or two read effects. We ex-
pect that many of the method effect arguments could be inferred
(similarly to how Java infers generic method arguments and DPJ
infers method region arguments), but we leave this to futurework.

It is also instructive to compare the user experience for these
algorithms written using frameworks to the corresponding ones us-
ing baseline DPJ, as presented in [5]. For Monte Carlo, we had
used an index-parameterized array to guarantee strong disjointness
in the first two loops, by making theTask andResult types pa-
rameterized by the indexi. For the third loop, we encapsulated the
reduction sum in a method implemented with locks and declared
that methodcommutative.

Similarly, we could use baseline DPJ to parallelize the center of
mass computation in Barnes-Hut. However, we would have to give
each tree node a distinct type andrecopy the bodies on insertion
into the tree, because we cannot soundly change the type of a
reference in DPJ, as discussed in Section 3. We could supportsuch
“ownership transfer” with runtime reference counting [2],but this
would add its own overhead.

Overall, the advantages of the framework approach are (1) sim-
plifying the DPJ types exposed to the user, by avoiding indexpa-
rameterized arrays or recursive types; (2) eliminating low-level
code for common patterns such as reductions; and (3) avoiding
copies where the baseline type system might require them, asin
Barnes-Hut. On the other hand, the baseline DPJ code is closer to
the original sequential code, because it uses parallel control con-
structs directly, rather than factoring the code into helper functions
and framework API calls. This last point is not specific to ourwork,
but is a general issue with using frameworks.

7. Related Work
Effect systems.The seminal work on types and effects for con-
currency is FX [16,20], which adds a region-based type and effect
system to a Scheme-like, implicitly parallel language. FX supports
effect polymorphic closures, which are similar to our Java inter-
faces annotated with effect variables.

Leino et al. [18] and Greenhouse and Boyland [15] first added
effects to an object-oriented language. Later work on ownership
types [6,9,10,19] introduced sophisticated ways of reasoning about
nested effects, which are necessary to support recursive structures.
DPJ [4, 5] builds upon this work to provide an expressive typeand
effect system for deterministic parallelism.

None of this work teaches how to write a framework API for
safe parallelism using linear data structures. Nor does it support
mechanisms such as effect constraints and type region parameters
that are necessary for generic frameworks.
Linear type systems.Wadler [31] introduced linear types as a way
to allow in-place updates while preserving the semantic guaran-
tees of pure functional programming. A linear type system can en-
force strong guarantees of program correctness [12]. However, lin-
ear types prohibit reference aliasing, which makes many common
patterns of imperative programming awkward or impossible.

Several researchers have looked at ways to make linear types
less restrictive while maintaining meaningful guarantees. Fähndrich
and DeLine [13] introducedadoption and focusto create aliases of
a linear reference with a limited lifetime. Clarke and Wrigstad [11]
have observed thatexternal uniqueness— the property that every
object has at most one reference to it located outside its containing
data structure — can express important patterns, such as a unique
reference to a doubly-linked list. Boyland and others [8, 28] have
usedfractional permissionsto enforce linearity of write references,
while allowing sharing of read-only references. Finally, several
researchers have shown how to combine unique references with
effect systems in interesting ways [7,15].

Our idea ofinternal linearityof data structures is related to these
mechanisms, but also different from all of them. Our insightis that
for parallel traversals over the slots of a data structure, all we care
about is whether the slots point to different objects. Thus we don’t
need the full power of a linear type system, or even one of the
weaker systems mentioned above.

Together, our ideas ofhidden regionsand strong disjointness
provide more power than linear data structures, while stillprovid-
ing more aliasing than linear types. However, this approachdoes
not support sets. DPJ’s indexed parameterized arrays [5] provide
both strong disjointness and linearity, but they do so by making
the type region arguments explicit in user code, thereby preventing
reference swapping as discussed in Section 3.
Enforcing API contracts. The Eiffel language [29] introduced the
idea ofdesign by contract, which uses preconditions and postcon-
ditions to specify interaction between classes. The Java Modeling
Language (JML) [17] provides a powerful way to write design-by-
contract specifications for Java, which can be checked with acom-
bination of static verification and online checking.

Design by contract ideas have been applied to concurrent pro-
gramming. Meyer’s Systematic Concurrent Object-OrientedPro-
gramming (SCOOP) concurrent programming model [21] is based
on Eiffel. The Fortress programming language [27] providesa way
to write assertions at interface boundaries that can be checked at
runtime. X10 [24] has a sophisticated dependent type systemthat
can specify and check interface assertions, also supportedwith run-
time checking. None of this work addresses parallel noninterfer-
ence or safe frameworks for shared memory parallelism.

Our annotated generic framework APIs also provide a kind
of design by contract, because the framework writer bounds the
effects of user-supplied methods. As far as we know, we are the

11 2009/9/8

first to study the problem of guaranteeing parallel noninterference
for a framework operating on linear data structures in a shared
memory context. We are also the first to show how to use atype and
effect systemfor design by contract in a parallel framework API.
Compared to more general specification methods (such as JML), an
effect system has the advantage that the annotations are easier for
the programmer to write and the compiler to check without runtime
checks or heavyweight constraint solving or theorem proving.

8. Conclusion
We have shown how to use a type and effect system with effect
variables and type region parameters to write a generic framework
API that enables sound reasoning about its uses. The framework
internals can be verified once, by the framework writer, and then
the compiler can provide a guarantee of noninterference (and con-
sequently, deterministic parallel semantics) for any userprogram
written using the framework. As future work, we would like toex-
plore ways to verify properties of the framework implementation,
such as linearity, using static and dynamic techniques. We would
also like to explore what if any additional “glue” is necessary to
connect this sort of checking with the guarantees provided by our
type system to do proofs of correctness for the composite program.

References
[1] http://gee.cs.oswego.edu/dl/jsr166/dist/extra166ydocs/index.html?

extra166y/package-tree.html.

[2] Z. Anderson et al. SharC: Checking data sharing strategies for
multithreaded C.PLDI, 2008.

[3] R. Bocchino, V. Adve, S. Adve, and M. Snir. Parallel programming
must be deterministic by default. InFirst USENIX Workshop on Hot
Topics in Parallelism (HotPar), 2009.

[4] R. L. Bocchino and V. S. Adve. Formal definition and proof of
soundness for Core DPJ. Technical Report UIUCDCS-R-2008-2980,
U. Illinois, 2008.

[5] R. L. Bocchino, V. S. Adve, et al. A Type and Effect System for
Deterministic Parallel Java. InOOPSLA, 2009.

[6] C. Boyapati et al. Ownership types for safe programming:Preventing
data races and deadlocks.OOPSLA, 2002.

[7] J. Boyland. The interdependence of effects and uniqueness.Workshop
on Formal Techs. for Java Programs, 2001.

[8] J. Boyland. Checking interference with fractional permissions. SAS,
2003.

[9] N. R. Cameron et al. Multiple ownership.OOPSLA, 2007.

[10] D. Clarke and S. Drossopoulou. Ownership, encapsulation and the
disjointness of type and effect.OOPSLA, 2002.

[11] D. Clarke and T. Wrigstad. External uniqueness. InFOOL, 2003.

[12] R. DeLine and M. Fähndrich. Enforcing high-level protocols in
low-level software. InPLDI, 2001.

[13] M. Fähndrich and R. DeLine. Adoption and Focus: Practical linear
types for imperative programming.PLDI, 2002.

[14] A. Gotsman et al. Thread-modular shape analysis.PLDI, 2007.

[15] A. Greenhouse and J. Boyland. An object-oriented effects system.
ECOOP, 1999.

[16] R. T. Hammel and D. K. Gifford. FX-87 performance measurements:
Dataflow implementation. Technical Report MIT/LCS/TR-421, 1988.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of
JML: A behavioral interface specification language for java. SIGSOFT
Softw. Eng. Notes, 2006.

[18] K. R. M. Leino et al. Using data groups to specify and check side
effects.PLDI, 2002.

[19] Y. Lu and J. Potter. Protecting representation with effect encapsula-
tion. POPL, 2006.

[20] J. M. Lucassen et al. Polymorphic effect systems. InPOPL, 1988.

[21] B. Meyer. Systematic concurrent object-oriented programming.
CACM, 1993.

[22] P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor.
Comp. Sci., 2007.

[23] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly Media, 2007.

[24] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: Concurrent
programming for modern architectures. InPPoPP, 2007.

[25] J. P. Singh et al. SPLASH: Stanford parallel applications for shared-
memory. Technical report, 1992.

[26] L. A. Smith and J. M. Bull. A multithreaded Java grande benchmark
suite. InThird Workshop on Java for High Performance Computing,
2001.

[27] Sun Microsystems, Inc. The Fortress language specification, version
1.0. Technical report, Sun Microsystems, Inc., March 2008.

[28] T. Terauchi and A. Aiken. A capability calculus for concurrency and
determinism.TOPLAS, 2008.

[29] P. Thomas and R. Weedon.Object-Oriented Programming in Eiffel:
2nd Ed.Addison-Wesley Longman, 1998.

[30] D. Vandevoorde and N. M. Josuttis.C++ Templates: The Complete
Guide. Addison-Wesley Professional, November 2002.

[31] P. Wadler. Linear types can change the world!IFIP, 1990.

A. Appendix
Here are the rules for valid effects:

(EFFECT-EMPTY)
Γ ⊲ ∅

(EFFECT-RD) Γ ⊲ R

Γ ⊲ reads R

(EFFECT-WR) Γ ⊲ R

Γ ⊲ writes R

(EFFECT-PARAM) η ∈ Γ
Γ ⊲ η

(EFFECT-UNION) Γ ⊲ E Γ ⊲ E′

Γ ⊲ E ∪ E′

Here are the rules for subeffects, repeated from [4]:

(SE-EMPTY)
Γ ⊲ ∅ ⊆ E

(SE-RD) Γ ⊲ R ⊆ R′

Γ ⊲ reads R ⊆ reads R′

(SE-WR) Γ ⊲ R ⊆ R′

Γ ⊲ writes R ⊆ writes R′

(SE-RD-WR) Γ ⊲ R ⊆ R′

Γ ⊲ reads R ⊆ writes R′

(SE-UNION-1) Γ ⊲ E ⊆ E′

Γ ⊲ E ⊆ E′ ∪ E′′

(SE-UNION-2) Γ ⊲ E′ ⊆ E Γ ⊲ E′′ ⊆ E

Γ ⊲ E′ ∪ E′′ ⊆ E

Γ ⊲E ⊆ E′ is reflexive and transitive. Inclusion of regions is given
by reflexivity and transitivity, together with the single rule

(REGION-INCLUDE)
Γ ⊲ R ⊆ ∗

which says that any region is included in∗.

12 2009/9/8

