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Abstract. Following Wilson (J. Comb. Th. (B), 1975), Johnson (J. of
Alg., 1983), and Kornhauser, Miller and Spirakis (25th FOCS, 1984), we
consider a game that consists of moving distinct pebbles along the edges
of an undirected graph. At most one pebble may reside in each vertex
at any time, and it is only allowed to move one pebble at a time (which
means that the pebble must be moved to a previously empty vertex). We
show that the problem of finding the shortest sequence of moves between
two given “pebble configuations” is NP-Hard.
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1 Problem’s Definition

The following generalization of the “15-Puzzle” appeared in [4, 2, 3]:

Board: The game is played on a finite, undirected, simple graph. The graph will
be denoted by G(V, E).

Legal Board Configuration: Every vertex contains at most one pebble, and one
vertex is empty. That is, BC : V → {0, 1, 2, . . . , |V | − 1} is a legal board config-
uration if it is one-to-one and onto. The board configuration is interpreted as
follows: if BC(v) 6= 0, then vertex v contains pebble BC(v), and if BC(v) = 0, then
vertex v is empty.

Legal Moves: A legal move consists of moving a single pebble, along one of the
edges of the graph to an empty vertex. A legal move is a transformation on
the set of legal configurations. Let BC(·) be a legal configuration and BC

′(·) be
the configuration that results from BC(·) after a legal move. Then, there exist
two adjacent vertices, u, v ∈ V (i.e., (u, v) ∈ E), such that BC

′(u) = BC(v),
BC

′(v) = BC(u) = 0, and BC
′(w) = BC(w) for all w ∈ V \ {u, v}. In this move the

pebble BC(v) is moved from vertex v to vertex u.
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A sequence of moves: A sequence of t moves is a sequence of legal board con-
figurations, denoted BC0(·), BC1(·), BC2(·), . . . , BCt(·), such that for i = 1, . . . , t it
holds that BCi(·) is the result of applying a legal move to BCi−1(·). The configu-
ration BC0(·) is called the beginning configuration of the above sequence, and the
configuration BCt(·) is called the finishing configuration of the above sequence.

Solutions: A pair of legal board configurations is said to have a solution if there
exists a sequence of moves beginning at the first and finishing at the second.

2 Prior Work

Kornhauser, Miller and Spirakis [3] showed that, for any nonseparable graph
G(V, E), if a pair of legal board configurations has a solution, then it has a
solution by O(|V |3) moves. Furthermore, they showed that such a solution (by
O(|V |3) moves) can be found in O(|V |3) time. A natural algorithmic question
arises:

Given a pair of legal board configurations that does have a solution, Is it
feasible to find the shortest solution?

We answer this question negatively, proving that finding such a solution is NP-
Hard.

3 The NP-Completeness Result

In order to discuss the problem of finding the shortest solution to a solvable
pair of legal board configurations, we introduce the following decision problem,
herafter referred to as the Shortest Move Sequence (SMS) Problem:

Input: A nonseparable, simple, undirected graph G(V, E); a pair, B(·) and F (·),
of legal board configuration; and an integer K.

Question: Is there a sequence of K (or less) legal moves beginning at B(·) and
finishing at F (·)?

We prove the following result.

Theorem: The Shortest Move Sequence (SMS) problem is NP-Complete.

Proof: First note that SMS is in NP (since, w.l.o.g., K = O(|V |3)). We prove
that SMS is complete by reducing 3-Exact-Cover (3XC) to it. Recall that the
3XC is defined as follows:

Input: A set U = {ei}
3n

i=1 and a collection S = {sj}
m

j=1 of 3-element subsets

(3-subsets) of U .
Question: Is there a subcollection, S′ ⊆ S, such that every element in U occurs

in exactly one member of S′?
If existing, such a collection, S′, is called an exact cover. (Also, |S| = n.)
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Recall that Karp has proved that 3XC is NP-complete (see [1]). Now, given an

instance of 3XC, denoted (U = {ei}
3n

i=1 , S = {sj}
m

j=1), we construct the following
SMS instance:

– Let V = U0 ∪ U1 ∪ S ∪ {t}, where Uσ = {eσ : e∈U} for σ ∈ {0, 1}.
The vertices e0 and e1 will be associated with the element e ∈ U . The vertices
in S will be associated with the corresponding 3-subsets. The vertex t will
be called the temporary vertex.

– Let E = E3XC ∪ {(t, s) : s∈S} ∪ {(e0, e1) : e∈U}, where

E3XC = {(eσ, s) : σ∈{0, 1} ∧ e∈U ∧ e∈s}.

The edges in E3XC encode the description of the 3XC instance. Note that
(eσ, s) ∈ E3XC iff the element e ∈ U appears in the 3-subset s ∈ S.

– Let B(eσ
i ) = 2i − 1 + σ, for 1 ≤ i ≤ 3n and σ ∈ {0, 1}, and B(sj) = 6n + j,

for 1 ≤ j ≤ m. Let B(t) = 0.
In the begin configurations t is empty while the pebbles are placed in a
“canonical” order. In particular, the pebbles 2i − 1 and 2i, which are asso-
ciated with the element ei (for 1 ≤ i ≤ 3n), are placed in vertices e0

i and e1
i ,

respectively. The pebble 6n+ j, which is associated with the 3-subset sj (for
1 ≤ j ≤ m), is placed in vertex sj .

– Let F (eσ
i ) = 2i − σ, for 1 ≤ i ≤ 3n and σ ∈ {0, 1}, and F (sj) = 6n + j, for

1 ≤ j ≤ m. Let F (t) = 0.
In the finish configurations t is still empty and the pebbles in the vertices
that are associated with the 3-subsets remain invariant w.r.t the begin con-
figuration. The pebbles associated with each element of U are switched w.r.t
the begin configuration.

– Finally, let K = 11n.

Having presented our reduction it remains to show that it is indeed valid.
Assume that the 3XC instance has an exact cover, denoted S′ =

{

sij

}n

j=1
.

Let f : {1, 2, . . . , n} × {1, 2, 3} → {1, 2, . . . , 3n} such that ef(j,k) is the k-th
element in the 3-subset sij

(where the order on the elements in each 3-subset
is induced by an ordering of U). Note that sij

= {ef(j,1), ef(j,2), ef(j,3)} and
U = {ef(j,k) : 1 ≤ j ≤ n ∧ 1 ≤ k ≤ 3}. Then, following is a solution to the
corresponding SMS instance:

for j = 1 to n do begin
move pebble 6n + ij from sij

to t;
for k = 1 to 3 do begin

move pebble 2f(j, k) − 1 from e0
f(j,k) to sij

;

move pebble 2f(j, k) from e1
f(j,k) to e0

f(j,k);

move pebble 2f(j, k) − 1 from sij
to e1

f(j,k);

[Comment: At this stage, for every k ∈ {1, 2, 3},
the pebbles 2f(j, k) − 1 and 2f(j, k) are switched.]

end
move pebble 6n + ij from t to sij

;
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[Comment: At this stage all pebbles associated to elements in sij
are switched

and all the pebbles associated with 3-subsets are back in place.]
end

One can easily verify that the foregoing procedure transforms the begin config-
uration into the finish configuration in (1 + 3 · 3 + 1) · n = K moves

Assume, on the other hand, that the SMS instance has a solution in no more
than K = 11n moves. Let us denote this solution (i.e., sequence of moves) by
Q. Recall that in each move a single pebble is moved (to an empty vertex). The
following facts concerning Q can be easily verified:

Fact 1 : Switching pebble 2i − 1 with pebble 2i (1 ≤ i ≤ 3n) requires
at least two moves of one of these pebbles and at least one move of the
other pebble. Furthermore, this switching requires that at least one of
these pebbles passes through a vertex associated with a 3-subset that
contains the element ei.
The main part follows from the fact that each move must be to a pre-
viously empty vertex, and the furthermore part follows by the graph’s
structure.

Fact 2: If some pebble passes through a 3-subset vertex sj (1 ≤ j ≤ m)
during Q, then the pebble 6n + j must have been moved during Q.

Let M denote the set of pebbles that are associated with 3-subsets that moved
during Q. Using Facts 1 and 2, we get.

Fact 3: The number of moves in Q is at least 3 · 3n + 2 · |M |.

Recall the number of moves (in Q) is at most K = 11n. Thus:

Fact 4: |M | ≤ n.

Fact 5: The collection C = {sj : 6n + j ∈ M} constitutes a cover of the
set U . That is, for every element e ∈ U , there exists a 3-subset s ∈ C

such that e ∈ s.
Note that 2i− 1 has been switched with 2i, for each 1 ≤ i ≤ 3n, and by
Facts 1 and 2 this implies that for some j such that ei ∈ sj it holds that
6n + j ∈ M .

Combining Facts 4 and 5, we conclude that C is an exact cover of the 3XC
instance. This completes the proof of the theorem.
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