Skip to main content

Another Proof That \(\mathcal{BPP}\subseteq \mathcal{PH}\) (and More)

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6650))

Abstract

We provide another proof of the Sipser–Lautemann Theorem by which \({\cal BPP}\subseteq{\cal MA}\) (\(\subseteq{\cal PH}\)). The current proof is based on strong results regarding the amplification of \({\cal BPP}\), due to Zuckerman (1996). Given these results, the current proof is even simpler than previous ones. Furthermore, extending the proof leads to two results regarding \({\cal MA}\): \({\cal MA}\subseteq{\cal ZPP}^{\cal NP}\) (which seems to be new), and that two-sided error \({\cal MA}\) equals \({\cal MA}\). Finally, we survey the known facts regarding the fragment of the polynomial-time hierarchy that contains \({\cal MA}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L.: Trading Group Theory for Randomness. In: 17th STOC, pp. 421–429 (1985)

    Google Scholar 

  2. Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has Subexponential Time Simulations unless EXPTIME has Publishable Proofs. Complexity Theory 3, 307–318 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Boppana, R., Håstad, J., Zachos, S.: Does Co-NP Have Short Interactive Proofs? IPL 25, 127–132 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canetti, R.: On BPP and the Polynomial-time Hierarchy. IPL 57, 237–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fürer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On Completeness and Soundness in Interactive Proof Systems. In: Micali, S. (ed.) Advances in Computing Research (Randomness and Computation), vol. 5, pp. 429–442 (1989)

    Google Scholar 

  6. Goldreich, O.: A Sample of Samplers – A Computational Perspective on Sampling. This volume. See also ECCC, TR97-020, TR97-020 (May 1997)

    Google Scholar 

  7. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge Complexity of Interactive Proofs. SIAM J. on Computing 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldwasser, S., Sipser, M.: Private Coins versus Public Coins in Interactive Proof Systems. In: Micali, S. (ed.) Advances in Computing Research (Randomness and Computation), vol. 5, pp. 73–90 (1989)

    Google Scholar 

  10. Impagliazzo, R., Wigderson, A.: P=BPP if E requires exponential circuits: Derandomizing the XOR Lemma. In: 29th STOC, pp. 220–229 (1997)

    Google Scholar 

  11. Lautemann, C.: BPP and the Polynomial Hierarchy. IPL 17, 215–217 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin Games using Hitting Sets. Computational Complexity 14(3), 256–279 (2005); Preliminary version in 40th FOCS (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Russell, A., Sundaram, R.: Symmetric Alternation Captures BPP. Journal of Computational Complexity (1995) (to appear); Preliminary version in Technical Report MIT-LCS-TM-54

    Google Scholar 

  14. Sipser, M.: A Complexity Theoretic Approach to Randomness. In: 15th STOC, pp. 330–335 (1983)

    Google Scholar 

  15. Zachos, S., Fürer, M.: Probabilistic Quantifiers vs. Distrustful Adversaries. In: Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 443–455. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  16. Zachos, S., Heller, H.: A decisive characterization of BPP. Information and Control 69(1-3), 125–135 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zuckerman, D.: Simulating BPP Using a General Weak Random Source. Algorithmica 16, 367–391 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldreich, O., Zuckerman, D. (2011). Another Proof That \(\mathcal{BPP}\subseteq \mathcal{PH}\) (and More). In: Goldreich, O. (eds) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. Lecture Notes in Computer Science, vol 6650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22670-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22670-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22669-4

  • Online ISBN: 978-3-642-22670-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics