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Abstract

A d-dimensional polycube of size n is a connected set of n cubes in d dimensions,
where connectivity is through (d − 1)-dimensional faces. Enumeration of polycubes,
and, in particular, specific types of polycubes, as well as computing the asymptotic
growth rate of polycubes, is a popular problem in combinatorics and discrete geometry.
This is also an important tool in statistical physics for computations and analysis of
percolation processes and collapse of branched polymers. A polycube is said to be
proper in d dimensions if the convex hull of the centers of its cubes is d-dimensional.
In this paper we prove that the number of polycubes of size n that are proper in n− 3
dimensions is 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3.

1 Introduction

A d-dimensional polycube of size n is a connected set of n cubical cells on the lattice Z
d,

where connectivity is through (d − 1)-faces. Two fixed polycubes are considered equivalent
if one can be transformed into the other by a translation. A polycube is called proper in d
dimensions if the convex hull of the centers of all its cubes is d-dimensional. While in the
mathematical literature these objects are called polycubes (polyominoes in two dimensions),
they are usually referred to as (strongly-embedded) lattice animals in the literature of sta-
tistical physics. Following Lunnon [7], we let DX(n, d) denote the number of n-cell fixed
polycubes that are proper in d dimensions.

Counting polycubes (or animals) is a long-standing problem in discrete geometry, orig-
inating in statistical physics [3]. To-date, no formula is known for Ad(n), the number of
polycubes of size n in d dimensions, for any fixed value of d, not to mention the general
case. Klarner [5] showed that the limit λ2 = limn→∞

n

√

A2(n) exists. Thirty two years have
passed until Madras [9] proved the convergence of the sequence A2(n+1)/A2(n) to λ2 (and,
in fact, a similar claim in any fixed dimension d), as n tends to infinity. Thus, λ2 is the
growth rate limit (also known as the connective constant) of polyominoes. Its exact value
has remained elusive till these days. The currently best lower and upper bounds known on
λ2 are roughly 3.9801 [1] and 4.6496 [6], respectively.

Much less is known in higher dimensions, let alone in a general dimension d. Significant
progress has been obtained along the years in the literature of statistical physics, although the
computations usually relied on unproven assumptions or on formulae which were interpolated
empirically from a few known values of Ad(n). The expansion

lnλd = ln σ + 1−
2

σ
−

79

24σ2
−

317

24σ3
−

18321

320σ4
−

123307

240σ5
+O(

1

σ6
),

where σ = 2d − 1 (one less than the coordination number of the cubical lattice Z
d), is

provided by Gaunt and Peard [4]. This 1/d-expansion (of the free energy of animals, in
their terminology) is partly based on so-called “diagonal formulae,” that is, formulae for
DX(n, n−k), where k > 0 is a small constant. It turned out that this expansion is consistent
with the main result obtained by Barequet et al. [2], namely, that the growth-rate limit
of the number of polycubes in d dimensions is asymptotically 2ed − o(d), conjectured to
asymptotically be (2d− 3)e− 31e

48d
+O( 1

d2
).
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In the literature of statistical physics [8, 11], formulae for DX(n, n− k) are interpolated
for 1 ≤ k ≤ 7. (See also a discussion by Barequet et al. [2, p. 265] about how to derive these
formulae from more general formulae provided by Peard and Gaunt [11].) It is rather easy
to show, using Cayley trees, that

DX(n, n− 1) = 2n−1nn−3

(sequence A127670 in the On-Line Encyclopedia of Integer Sequences [10]). Barequet et
al. [2] proved rigorously, for the first time, that

DX(n, n− 2) = 2n−3nn−5(n− 2)(2n2 − 6n+ 9)

(sequence A171860 in the on-line encyclopedia of integer sequences). The proof uses a case
analysis of the possible structures of spanning trees of the polycubes, and the various ways
in which cycles can be formed in their cell-adjacency graphs.

In this paper we find the explicit formula for DX(n, n−3), the number of n-cell polycubes
that are proper in d = n − 3 dimensions (sequence A191092 in the on-line encyclopedia of
integer sequences), stated in the following theorem.

Theorem 1.

DX(n, n− 3) = 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3.

Similarly to our proof [2] of the formula for DX(n, n − 2), we prove the formula for
DX(n, n−3) by counting spanning trees of polycubes, yet the reasoning and the calculations
are significantly more involved. Indeed, we use the inclusion-exclusion principle in order
to count correctly polycubes whose cell-adjacency graphs contain cycles. Spanning trees
of such polycubes contain certain subgraphs, which we call “distinguished structures.” In
comparison with the case k = 2, the number of such structures is substantively higher, and
the ways in which they can appear in spanning trees are much more varied. Therefore, the
proof of Theorem 1 provides us with a better understanding of the difficulties that can be
expected in applying this technique for higher values of k. In particular, we believe that it
is not practical to achieve a similar proof manually for k > 3.

2 Overview of the Method

Denote by Pn the family of polycubes under consideration.
Let P ∈ Pn, and let γ(P ) denote the directed graph with labeled edges that is constructed

as follows: The vertices of γ(P ) correspond to cells of P ; two vertices of γ(P ) are connected
by an edge if the corresponding cells of P are adjacent; an edge has label i (1 ≤ i ≤ n− 3) if
the corresponding cells have different i-coordinate (that is, their common (d−1)-dimensional
face is perpendicular to the xi axis) and the direction of the edge is from the lower to the
higher cell (with respect to the xi direction). See Figure 1 for an example.

It is clear that P 7→ γ(P ) is an injection. Thus, it suffices to count the graphs obtained
from the members of Pn in this way. We shall accomplish this task by counting their spanning
trees.
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Figure 1: A polycube P , the corresponding graph γ(P ), and spanning trees of γ(P ).

Consider a spanning tree of γ(P ). It has n − 1 edges labeled by numbers from the set
{1, 2, . . . , n− 3}; all these labels actually are present, otherwise the polycube is not proper.
Thus, either there are two edge labels (say, i and j) that appear twice, or there is one
edge label (say, i) that appears three times. In the former case we distinguish members of
such pairs by labeling them i, i′ and j, j′, while in the latter—by labeling them i, i′, i′′ (see
Figure 1(c)). Whenever we consider a spanning tree of γ(P ), we assume that its repeated
labels are distinguished this way. In contrast, when considering γ(P ), repeated labels are
assumed not to be distinguished (as in Figure 1(b)).

Observation 2. Every label must occur an even number of times in any cycle of γ(P ).

In addition, the number of cycles in γ(P ), as well as the length of each such cycle, are
limited due to the limited multiplicity of labels. Therefore, we must have the following:

Observation 3. There are three possible cases concerning the structure of γ(P ):

1. γ(P ) is a tree itself. The number of such tree-like polycubes in Pn will be denoted
by X.

2. γ(P ) has exactly one cycle. The number of such polycubes in Pn will be denoted by Y.
The length of this cycle in γ(P ) is either 4 or 6.

3. γ(P ) has two 4-cycles. The number of such polycubes in Pn will be denoted by Z.
In this case, the two cycles are either edge-disjoint or have exactly one common edge,
thus forming a 6-cycle with a chord.

Indeed, all other possibilities (say, more than two 4-cycles, several 6-cycles, or an 8-cycle)
are excluded: They would cause γ(P ) to have a spanning tree with too many repeated labels.

Thus, DX(n, n − 3) = X + Y + Z. In order to find the formulae for X,Y,Z, we shall
count those directed trees with n− 1 labeled edges with two pairs of repeated labels or with
one triple of repeated labels, which are actually spanning trees of γ(P ) for some polycube
P ∈ Pn. Note that:

• If a tree with two pairs of repeated labels, i, i′ and j, j′, is a spanning tree of γ(P ) for
some polycube P ∈ Pn, then the trees obtained by exchanging i and i′ and/or j and
j′ are also spanning trees of γ(P ). Similarly, if a tree with a triple of repeated labels,
i, i′, i′′, is a spanning tree of a γ(P ), then the trees obtained by permuting i, i′ and i′′

are also spanning trees of γ(P ).
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• In particular, if γ(P ) itself is a tree with two pairs of repeated labels, then it has
four spanning trees.1 If γ(P ) is a tree with a triple of repeated labels, then it has six
spanning trees.

• The situation may be more complicated when γ(P ) is not a tree at all. There are
polycubes P such that γ(P ) has both types of spanning trees: those with two pairs of
repeated labels and those with a triple of repeated labels. (Such a polycube is shown
in Figure 1.)

In the next section we characterize all substructures that are present in some trees with
labeled edges due to the fact that the number of cells is greater than the number of dimen-
sions. By analyzing this substructures, we will be able to compute how many of such trees
actually represent polycubes. Then, in the following sections, we develop formulae for the
numbers of all possible spanning trees of the polycubes, and then derive the actual number
of polycubes.

3 Distinguished Structures

Our plan is to count polycubes by counting spanning trees of their adjacency graphs, taking
into account possible multiplicities. In the reasoning below we shall consider several small
structures, which may be contained in the spanning trees that we count. These structures
are listed in Figure 2, and they are interesting for the following reason. For each labeled tree,
we can attempt to build the corresponding polycube. Two things may happen: (a) We may
get coinciding cells, like in patterns A or I (shown by dotted frames around these points).
Such a tree is invalid and does not correspond to a polycube. (b) Two cells which are not
connected by a tree edge may be adjacent, like in pattern B or C (indicated by dotted lines).
Such a tree may correspond to a valid polycube, but it deserves special attention because
the polycube has cycles in its cell-adjacency graph and, therefore, its spanning tree is not
unique.

A distinguished structure is defined as a subtree that is responsible for the presence of
two coinciding or adjacent cells, as explained above. More precisely, a structure is the union
of all paths (edges plus incident vertices) that run between two coinciding or adjacent cells.

Consider a distinguished structure that leads to coinciding cells. Similarly to Observa-
tion 2, we see that for every label on the path between two vertices that correspond to such
cells, repetitions of this label occur on this path an even number of times (which can be
only 2). Moreover, in this case, these two edges are directed in opposite orientations. Due
to the limited number of repeated labels, we get only two possibilities corresponding to a
path of length 2 and a path of length 4 (see structures A and I in Figure 2).

Consider now a structure that leads to a non-existing adjacency. This clearly results in
an (even) cycle with one edge removed. By Observation 3, the length of such a cycle can be
only either 4 or 6. A reasoning similar to that above leads us to two possibilities: structures
B and C in Figure 2.

1 Recall that repeated labels are not distinguished in γ(P ), but they are distinguished in its spanning
tree.
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Figure 2: Distinguished structures used in the counting.
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Thus, the distinguished structures areA, I, B, C, and other structures that contain several
occurrences of these “basic” structures.2 The number of occurrences is limited, since each
occurrence uses up some repeated labels. The enumeration of the distinguished structures
is, thus, a finite task. Figure 2 gives the complete list.

It may happen that a distinguished structure is disconnected, like D, E, or G. We
consider the components of a structure as edge-connected components; thus, it is permitted
that the two parts in D, E, or G share a vertex.

The structures C, . . . , L occur only in trees with two pairs of repeated labels, while the
structures M, . . . , R occur only in trees with one triple of repeated labels. In contrast, A
and B occur in both kinds of trees.

Next, we clarify the notation and conventions used in Figure 2. Each pattern in Figure 2
stands actually for several substructures that may differ in edge directions or the precise
choice of labels from i, i′, i′′ or j, j′. The edges labeled i and i′ (respectively, i, i′, and i′′)
are all directed either according to black or to white arrows, and the same holds for j and
j′. The directions of j, j′ are independent of those of i, i′. The labels a, b are assumed to
be unrelated to any of the other labels i, i′, i′′, j, j′ appearing in each pattern. For example,
a in pattern B is distinct from i and i′ (but it could be another repeated label—say, j or
j′). Where a or b appear in patterns C, . . . , L, they are automatically distinct from i, i′, j, j′.
Finally, in the remaining patterns M, . . . , R, a and b are automatically distinct from i, i′, i′′.
Variations of the same label, say, i and i′, can be permuted, or replaced by other variations
of the same label, like i, i′′ or i′, i′′.

In counting directed trees with n− 1 labeled edges, which have subgraphs as in Figure 2,
two lemmas will be used. Lemma 4 was proved earlier [2]; we will here relate it to a result
from the literature.

Lemma 4. [2, Lemma 4] The number of ordered sequences T = (τ1, . . . , τk) of k ≥ 1 rooted
trees with a total of n− k edges and distinct edge labels 1, . . . , n− k is nn−k−1k.

Proof. Consider such a sequence T . It has a total of n vertices. For i = 1, . . . , k, denote the
root of the component τi by n− k + i. For any vertex v which is not a root, set its label to
be equal to the label of the first edge in the path from v to the root.

Now we have a forest T ′ on n labeled vertices, with roots labeled by n − k + 1, n − k +
2, . . . , n. The correspondence T ↔ T ′ is clearly a bijection. The number of forests on n
labeled vertices with k roots, whose labels belong to a specified set, is known to be nn−k−1k,
see Stanley [12, p. 25, Proposition 5.3.2]. (Stanley provides two proofs of this, both of them
differing from our proof [2].)

The other lemma is a direct application of the previous lemma.

Lemma 5. The number of ordered sequences T̃ = (τ1, . . . , τk) of k ≥ 1 trees, such that τ1
has two distinguished roots (which may coincide) and all other trees have one root, with a
total of n− k edges and distinct edge labels 1, . . . , n− k, is nn−k.

Proof. Consider a sequence T as in Lemma 4, and mark an arbitrary vertex as the extra
root. In this way nn−kk sequences T̃ are obtained. The component of T̃ that has two roots is

2 Notice that I itself contains two occurrences of B.
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any of τ1, . . . , τk, with equal probability. Therefore, in order to get the number of sequences
T̃ in which the component with two roots is τ1, we have to divide by k, obtaining nn−k.

We now introduce two functions that count ordered sequences of directed trees. Let
F1(k) denote the number of ordered sequences (τ1, . . . , τk) of k ≥ 1 directed rooted trees
with a total of n− k edges and distinct edge labels 1, . . . , n− k. Similarly, let F2(k) denote
the number of ordered sequences (τ1, . . . , τk) of k ≥ 1 directed trees, such that τ1 has two
distinguished roots (which may coincide) and all other trees have one root, with a total
of n − k edges and distinct edge labels 1, . . . , n − k. By fixing directions to the edges of
undirected trees, we obtain the following corollary of Lemmas 4 and 5.

Corollary 6.

1. F1(k) = 2n−knn−k−1k.

2. F2(k) = 2n−knn−k.

Finally, we will use Corollary 8, which follows directly from a previous result of ours [2].

Lemma 7. [2, Lemma 2] The number of directed trees with n vertices and n − 1 distinct
edge labels 1, . . . , n− 1 is 2n−1nn−3, for n ≥ 2.

Let T22 denote the number of directed trees with n vertices and labeled edges, with two
pairs of repeated labels.3 Similarly, let T3 denote the number of directed trees with n vertices
and labeled edges, with one triple of repeated labels.

Corollary 8.

1. T22 =
(

n−3
2

)

2n−1nn−3.

2. T3 = (n− 3)2n−1nn−3.

Let us turn to the enumeration of occurrences of A, . . . , R from Figure 2 in directed trees
with n vertices and edges labeled 1, 2, . . . , n−3, and with repeated labels as explained above.
For C,D,E, . . ., we let C,D,E, . . . denote the number of occurrences of these structures in
such trees. Recall that the structures C, . . . , L occur only in trees with two pairs of repeated
labels, while the structures M, . . . , R occur only in trees with one triple of repeated labels.
In contrast, A and B occur in both kinds of trees. Therefore, for A and B we shall consider
both cases (two pairs of repeated labels, and one triple of repeated labels), denoting the
corresponding numbers by A22, A3, and B22, B3. For some cases we shall explain in detail
how the formula is obtained; all other calculations are based on a similar reasoning.

We begin with counting occurrences of A22, B22, C, . . . , L in directed trees with two pairs
of repeated labels. By an occurrence of a pattern U in a tree T , we mean a pair (S, T ),
where S is a subset of edges of T that form a the pattern U .

3 Recall again that repeated labels in trees are distinguished.
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1. A22 = (n− 3) · (n− 4) · 2 · F1(3) = 6(n− 3)(n− 4)2n−3nn−4.
Here, we have the factors (n− 3) for choosing the repeated label (i, i′) that makes the
configuration and (n− 4) for choosing the second repeated label in the tree, a factor 2
for directing the edges i and i′ (i.e., both according to the black arrows or the white
arrows), and F1(3) for sequences of three trees that can be attached to the vertices.
At this stage, the three vertices are distinguishable from each other, and therefore we
count sequences of three trees. The same will be true for all other patterns.

2. B22 = (n− 3) · (n− 4) · 2 · (n− 3) · 2 · F1(4) = (n− 3)2(n− 4)2nnn−5.
Here, the factors (n − 3), (n − 4), and 2 are the same as in the previous case, an
additional factor (n− 3) is for choosing label a, an additional factor 2 is for directing
the edge a, and F1(4) is for sequences of four trees that can be attached to the vertices.

3. C =
(

n−3
2

)

· (n− 5) · 4 · 2 · 4 · F1(6) = 3(n− 3)(n− 4)(n− 5)2n−1nn−7.

Here, the factor
(

n−3
2

)

is for choosing the repeated labels, (n− 5) is for choosing edge
a, a factor 4 is for choosing which edge among i, i′, j, j′ is attached to the head of edge
a, and, once this choice is made, a factor 2 is for choosing which of the complementary
label is attached to the tail of a (e.g., if the first choice is i, then the second choice can
be only j or j′), an additional factor 4 is for directing i, i′ and j, j′, and F1(6) is for
sequences of six trees that can be attached to the vertices.

4. D =
(

n−3
2

)

· 4 · F2(5) · 9 = 9(n− 3)(n− 4)2n−4nn−5.

Here, the factors
(

n−3
2

)

and 4 are as in the previous case. The factor 3 ·3 = 9 stands for
choosing the pair of vertices through which the components are connected: one vertex
is chosen on each component. The factor F2(5) is for sequences of five trees that can be
attached to the vertices (one of which connects the components of the configuration).

5. E = (n− 3) · (n− 4) · (n− 5) · 8 · F2(6) · 12 = 3(n− 3)(n− 4)(n− 5)2n−1nn−6.
As above, we have the factors (n− 3), (n− 4), and (n− 5) for choosing the repeated
labels and the edge a, a factor 8 for directing for directing i, i′, j, j′, and a. The
factor 3 · 4 = 12 stands for choosing the pair of vertices through which the components
are connected. The factor F2(6) stands for sequences of six trees that can be attached
to the vertices (one of which connects the two components of the configuration).

6. F = (n− 3) · (n− 4) · 2 · 2 · 4 · F1(5) = 5(n− 3)(n− 4)2n−1nn−6.

7. G =
(

n−3
2

)

· (n− 5) · (n− 6) · 16 · F2(7) · 16 = (n− 3)(n− 4)(n− 5)(n− 6)2nnn−7.

8. H =
(

n−3
2

)

· (n− 5) · 4 · 4 · F1(6) = 3(n− 3)(n− 4)(n− 5)2n−2nn−7.

9. I =
(

n−3
2

)

· 4 · 4 · F1(5) = 5(n− 3)(n− 4)2n−2nn−6.

10. J = (n− 3) · (n− 4) · (n− 5) · 2 · 4 · 4 · F1(6) = 3(n− 3)(n− 4)(n− 5)2nnn−7.

11. K = (n− 3) · (n− 4) · (n− 5) · 4 · 4 · F1(6) = 3(n− 3)(n− 4)(n− 5)2n−1nn−7.

12. L = (n− 3) · (n− 4) · (n− 5) · 2 · 4 · 4 · F1(6) = 3(n− 3)(n− 4)(n− 5)2n · nn−7.
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Next, we count occurrences of A3, B3,M, . . . , R in directed trees with one triple of re-
peated labels.

13. A3 = (n− 3) · 3 · 2 · F1(3) = 9(n− 3)2n−2nn−4.
Here, the factor (n − 3) is for choosing the repeated label (i, i′, and i′′), the factor 3
is for choosing two labels from {i, i′, i′′}, the factor 2 is for directing these edges, and
F1(3) is for sequences of three trees attached to the vertices.

14. B3 = (n− 3) · 3 · (n− 4) · 2 · 2 · F1(4) = 3(n− 3)22nnn−5.
Here, we have the factors (n − 3) and 3 as in the previous case, an additional factor
(n− 4) for choosing the edge a (which is not a repetition of i), a factor 2 for directing
the edges i and i′, an additional factor 2 for choosing which edge with repeated label
is attached to the head of edge a, and F1(4) for sequences of four trees attached to the
vertices.

15. M = (n− 3) · 2 · F1(4) = (n− 3)2n−1nn−5.

16. N = (n− 3) · 3 · 2 · F1(4) = 3(n− 3)2n−1nn−5.
As above, the factor (n−3) is for choosing the repeated label (i, i′, and i′′), the factor 3
is for choosing which of these labels is found between the two others, the factor 2 is for
directing these edges, and F1(4) is for sequences of four trees attached to the vertices.

17. O = (n− 3) · (n− 4) · 2 · 3 · 2 · F1(5) = 15(n− 3)(n− 4)2n−3nn−6.
As in previous cases, the factor (n − 3) is for choosing the repeated label (i, i′, and
i′′), (n− 4) is for choosing the edge a, the factor 2 is for choosing whether one or two
edges with repeated labels are attached to the head of a, the factor 3 is for choosing
which edge (or edges, depending on the previous choice) among i, i′, i′′ is (resp., are)
attached to the head of a, the factor 2 is for directing the edges i, i′, i′′, and F1(5) is
for sequences of five trees attached to the vertices.

18. P = (n− 3) · (n− 4) · 2 · 3 · 2 · 2 · F1(5) = 15(n− 3)(n− 4)2n−2nn−6.

19. Q = (n− 3) · 3 · (n− 4) · (n− 5) · 2 · 4 · F1(6) = 9(n− 3)(n− 4)(n− 5)2n−2nn−7.

20. R = (n− 3) · 3 · (n− 4) · (n− 5) · 2 · 4 · F1(6) = 9(n− 3)(n− 4)(n− 5)2n−2nn−7.

Armed with these formulae, we can now count the various possible types of polycubes of
size n that are proper in n− 3 dimensions.

4 Polycubes with a Tree Structure

We split the counting according to the combinations of repeated labels in the tree.

10



Two pairs of repeated labels. Denote by X22 the number of polycubes P ∈ Pn, such
that γ(P ) is a tree that has two pairs of repeated labels. By Corollary 8.1, the total number of
directed trees with n vertices and directed labeled edges, with two pairs of repeated labels,
is T22 =

(

n−3
2

)

2n−1nn−3. Such a tree corresponds to a tree-like polycube in Pn unless it
contains a subtree of type A, . . . , J . Thus, subtrees of types A, B, or C are all that we need
to exclude. However, each of D, . . . , J includes two subtrees of the type A, B, or C, and
these are counted twice in the sum A22 +B22 +C. Therefore, the number of trees which do
not lead to tree-like polycubes is

A22 +B22 +C−D− E− F−G−H− I− J

(Each of the patterns K and L contains exactly one subtree of type A, B, or C,4 and hence,
they are correctly accounted for.)

Dividing by 4 (since each such polycube is represented by four trees), we obtain that

X22 = (T22 −A22 −B22 −C+D+ E+ F+G+H+ I+ J) /4

= 2n−6nn−7(n− 3)(n− 4)(4n4 − 28n3 + 97n2 − 200n+ 300). (1)

One triple of repeated labels. Denote by X3 the number of polycubes P ∈ Pn, such
that γ(P ) is a tree that has one triple of repeated labels. By Corollary 8.2, the total number
of directed trees with n vertices and directed labeled edges, with one triple of repeated labels,
is T3 = (n−3)2n−1nn−3. Such a tree corresponds to a polycube in Pn unless it has a subtree
of type either A or B. In addition, all of M, . . . , R include (at least) two subtrees of the types
A or B. The types M and O even include three subtrees of the types A or B. Therefore,
by applying the inclusion-exclusion principle, and dividing by 6 (since each such polycube is
represented by six trees), we obtain that

X3 = (T3 − (A3 +B3) + (3M+N+ 3O+P+Q+R)− (M+O)) /6

= 2n−3nn−7(n− 3)(2n4 − 21n3 + 106n2 − 282n+ 360)/3. (2)

In total, we have
X = X22 +X3.

5 Polycubes with One Cycle

As mentioned above, if γ(P ) has only one cycle, then the length of this cycle must be either 4
or 6.

Assume first that γ(P ) has one 4-cycle whose edges are labeled i, j, i, j. Then, either
γ(P ) has another edge with the label i or j, or it has no such edge; in the latter case γ(P )
has another pair of edges with a repeated label which is distinct from i and j. Denote,
therefore, the number of polycubes of the former type by Y23, and the latter type by Y222.

Each graph of the first type has two spanning trees with two pairs of repeated edge labels
and two spanning trees with a triple of repeated edge labels. Each graph of the second type
has four spanning trees with two pairs of repeated edge labels.

4 In fact, the pattern C is contained in no other distinguished structure.
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Denote by T1
22 the total number of spanning trees of these graphs (of both types), which

have two pairs of repeated labels, and by T1
3 the number of spanning trees of these graphs

(necessarily of the first type), which have one triple of repeated labels. Then, we have

T1
22 = 4(2Y23 + 4Y222) and T1

3 = 6(2Y23). (3)

Spanning trees with two pairs of repeated labels. All these spanning trees have a
single occurrence of B as a subtree. Thus, the number of occurrences of B in all such trees
is B22. From this number we have to subtract the number of occurrences of the forbidden
subtrees E, F , and I; the number of spanning trees of graphs that have two edge-disjoint
4-cycles (that is, G); and also the number of spanning trees (with two pairs of repeated
labels) of graphs that have two 4-cycles with a common edge (that is, H, J , K, and L).
Notice that in B22, trees with I, G, H, or J are counted twice. Therefore,

T1
22 = B22 − E− F− 2I− 2G− 2H− 2J−K− L

= 2n−1nn−6(n− 3)(n− 4)(2n2 − 13n+ 25). (4)

Spanning trees with one triple of repeated labels. In this case, possible spanning
trees have a subtree B (recall that a is neither i, i′, nor i′′). The number of occurrences of
B in all such trees is B3.

From this number we have to subtract the number of occurrences of the forbidden subtrees
O and P , and the number of spanning trees (with a triple of repeated labels) of graphs that
have two 4-cycles with a common edge (that is, Q and R). Note that in B3, trees with O,
Q, or R are counted twice. Therefore,

T1
3 = B3 − 2O−P− 2Q− 2R

= 3 · 2n−1nn−7(n− 3)(n− 4)(2n2 − 11n+ 30). (5)

By solving the system (3–5), we obtain

Y23 = 2n−3nn−7(n− 3)(n− 4)(2n2 − 11n+ 30),

Y222 = 2n−5nn−7(n− 3)(n− 4)(n− 5)(2n2 − 7n+ 12).

Polycubes with a 6-cycle. Denote the number of polycubes in Pn that have only one
cycle of length 6 by Y9. We have

Y9 =

(

n− 3

3

)

· 4 · F1(6) = 2n−4nn−7(n− 3)(n− 4)(n− 5).

In order to establish this quantity, we do not need to consider spanning trees. Notice that
the cells of a 6-cycle always form a 2 × 2 × 2 cube with two opposite cells removed, as in

. Thus,
(

n−3
3

)

counts the dimensions in which the cube lies, the factor 4 counts ways
to remove two reciprocal cells, and F1(6) counts ways to attach six trees to the remaining
six cells.

In total, we have Y = Y23 +Y222 +Y9.
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6 Polycubes with Two Cycles

Again, we do not consider spanning trees.

Two 4-cycles without a common edge. The number of polycubes P ∈ Pn, such that
γ(P ) has two 4-cycles without a common edge, is

Z =
1

2
·

(

n− 3

2

)

·

(

n− 5

2

)

· 16 · F2(7) = 2n−6nn−7(n− 3)(n− 4)(n− 5)(n− 6).

In this case, 1
2

(

n−3
2

)(

n−5
2

)

is the number of ways to choose the dimensions in which the
“squares” lie (note that these pairs of dimensions are disjoint, otherwise γ(P ) would have
a spanning tree with four repeated labels). The factor 4 · 4 = 16 is the number of ways
to choose a pair of vertices through which the squares will be connected, and F2(7) is the
number of ways to connect them by trees.

Two 4-cycles with a common edge. The number of polycubes P ∈ Pn, such that γ(P )
has two 4-cycles with a common edge, is

Z =

(

n− 3

3

)

· 12 · F1(6) = 3 · 2n−4nn−7(n− 3)(n− 4)(n− 5).

The cells of two 4-cycles with a common edge form a 2× 2× 2 cube with two adjacent cells

removed, as in . Thus,
(

n−3
3

)

counts the dimensions in which the cube lies. There are
12 ways to remove two adjacent cells, and there are F1(6) ways to attach six trees to the
remaining six cells.

In total, we have Z = Z + Z .

7 Epilogue

Finally, we have

DX(n, n− 3) = X+Y + Z

= X22 +X3 +Y23 +Y222 +Y9 + Z + Z

= 2n−6nn−7(n− 3)(n− 4)(4n4 − 28n3 + 97n2 − 200n+ 300)

+ 2n−3nn−7(n− 3)(2n4 − 21n3 + 106n2 − 282n+ 360)/3

+ 2n−3nn−7(n− 3)(n− 4)(2n2 − 11n+ 30)

+ 2n−5nn−7(n− 3)(n− 4)(n− 5)(2n2 − 7n+ 12)

+ 2n−4nn−7(n− 3)(n− 4)(n− 5)

+ 2n−6nn−7(n− 3)(n− 4)(n− 5)(n− 6)

+ 3 · 2n−4nn−7(n− 3)(n− 4)(n− 5)

= 2n−6nn−7(n− 3)(12n5 − 104n4 + 360n3 − 679n2 + 1122n− 1560)/3,

which completes the proof of Theorem 1.
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8 Conclusion

In this paper we provide a rigorous proof of the formula enumerating n-cell polycubes proper
in n − 3 dimensions, that is, DX(n, n − 3). The proof is based on the same method as in
the proof of DX(n, n− 2) [2], but is significantly more involved. This reveals the difficulties
expected with the general case, DX(n, n − k): The number of distinguished structures will
grow rapidly, the inclusion relations between them will be much more complicated, and the
ways in which they will be connected by forests will be much more varied. This will yield
a large number of terms in the inclusion-exclusion analysis. Therefore, we believe that a
complete manual analysis will not be feasible for the cases k > 3.

Peard and Gaunt [11, p. 6113, eq. (2.15)] predicted that the diagonal formula DX(n, n−k)
has the pattern 2n−2k+1 nn−2k−1 gk(n), where gk(n) is a polynomial in n. In fact, k has
to be a root of gk(n) since DX(n, 0) = 0 for n > 1. Therefore, the expected form is
2n−2k+1nn−2k−1(n − k)hk(n), where hk(n) is a polynomial in n. Luther and Mertens [8]
provide the explicit polynomials hk(n) for 1 ≤ k ≤ 7. Careful inspection of these polynomials
reveals that the leading coefficient of hk(n) has the form 2k−1/(k − 1)!. In conclusion, our
refined conjecture is that

DX(n, n− k) =
2n−knn−2k−1(n− k)

(k − 1)!
Pk(n),

where Pk(n) is a monic polynomial in n. It has also been conjectured [2, 8] that the degree
of Pk(n) is 3k − 4.

One can attempt to prove this pattern for the general case of k without actually writing
down all the expressions (respective of the cases in our method), but rather by showing that
one of them (containing the dominant term, that is, having the highest degree of n) has
the form 2nnn−2k−1(n− k) times a polynomial in n of degree 3k − 4, and that all the other
expressions have the same form multiplied by polynomials of at most the same degree. Then,
the polynomial Pk(n), and thus, DX(n, n − k), can be interpolated from any 3k − 3 known
values of DX(n, n− k).

Recently, Luther and Mertens [8] provided an argument supporting this hypothesis. They
showed that the highest-degree term in DX(n, n − k) is of the order 2nnn+k−4. They also
demonstrated (using a “physical argument”) that, in fact, only k + 1 known values suffice
for recovering the formulae of Pk(n) and DX(n, n− k).

We believe that the argument of Luther and Mertens can be refined as follows. The
dominant term in DX(n, n − k) should correspond to the case in which γ(P ) is a tree (our
X). More precisely, it should correspond to the subcase in which all the repeated labels
appear in pairs (our X22), that is, when there are (n − 1) − (n − k) = (k − 1) pairs of
repeated labels. Denote the corresponding term by X22...2. In its turn, the dominant term of
X22...2 (denote it by T22...2) should correspond to our T22: All the terms added or subtracted
in the calculation of X22...2 will have lower order. Note that the use of Lemma 7 will remain
unchanged. The statement corresponding to Corollary 8.1 will then be

T22...2 =

(

n− k

k − 1

)

2n−1nn−3 =
2n−1nn−3

(k − 1)!
(nk−1 + · · · ).
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Finally, we need to divide this expression by 2k−1, the number of trees that represent each
polycube in this case (cf. the factor 1/4 in Eq. (1)). Thus, the order of the dominant term
is indeed 2nnn+k−4, and the constant in this term is 1

2k(k−1)!
.

Our next attempt will, thus, be to implement a computer program which will automat-
ically generate, for a given value of k, all the “distinguished structures” and all the ways
they can be attached to form trees, and will compute the inclusion-exclusion formula for
DX(n, n− k).
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