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Abstract. Abstraction is one of the most important strategies for dealing with the
state space explosion problem in model checking. In the abstract model, although
the state space is largely reduced, however, a counterexample found in such a
model may not be a real counterexample. And the abstract model needs to be
further refined where an NP-hard state separation problem isoften involved. In
this paper, a novel method is presented by adding extra variables to the abstract
model for the refinement. With this method, not only the NP-hard state separation
problem is avoided, but also a smaller refined abstract modelis obtained.

1 Introduction

Model checking is an important approach for the verificationof hardware, software,
multi-agent systems, communication protocols, embedded systems and so forth. The
term model checking was coined by Clarke and Emerson [1], as well as Sifakis and
Queille [2] independently. The earlier model checking algorithms explicitly enumerated
the reachable states of the system in order to check the correctness of a given specifica-
tion. This restricted the capacity of model checkers to systems with a few million states.
Since the number of states can grow exponentially in the number of variables, early im-
plementations were only able to handle small designs and didnot scale to examples with
industrial complexity. To combat this, kinds of methods, such as abstraction, partial or-
der reduction, OBDD, symmetry and bound technique are applied to model checking to
reduce the state space for efficient verification. Thanks to these efforts, model checking
has been one of the most successful verification approaches which is widely adopted in
the industrial community.

Among the techniques for reducing the state space, abstraction is certainly the most
important one. Abstraction technique preserves all the behaviors of the concrete system
but may introduce behaviors that are not present originally. Thus, if a property (i.e. a
temporal logic formula) is satisfied in the abstract model, it will still be satisfied in
the concrete model. However, if a property is unsatisfiable in the abstract model, it
may still be satisfied in the concrete model, and none of the behaviors that violate the
property in the abstract model can be reproduced in the concrete model. In this case,
the counterexample is said to be spurious. Thus, when a spurious counterexample is
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found, the abstraction should be refined in order to eliminate the spurious behaviors.
This process is repeated until either a real counterexampleis found or the abstract model
satisfies the property.

There are many techniques for generating the initial abstraction and refining the ab-
stract models. We follow the counterexample guided abstraction and refinement method
proposed by Clarke, etc [5]. With this method, abstraction is performed by selecting a
set of variables which are insensitive to the desired property to be invisible. In each iter-
ation, a model checker is employed to check whether or not theabstract model satisfies
the desired property. If a counterexample is reported, it issimulated with the concrete
model by a SAT solver or checked by other algorithms. Then, ifthe counterexample
is checked to be spurious, a set of invisible variables are made visible to refine the
abstract model. With this method, to find the coarsest (or smallest) refined model is
NP-hard [3]. Further, it is important to find a small set of variables in order to keep the
size of the abstract state space smaller. However, to find thesmallest set of variables
is also NP-hard [9]. To combat this, Integer Linear Program (ILP) based separation
algorithm which outputs the minimal separating set is given[5]. And a polynomial ap-
proximation algorithm based on Decision Trees Learning (DTL) is also presented [5].
Moreover, Heuristic-Guided separating algorithms are presented in [8], and evolutional
algorithms are introduced in [9] for the state separation problem. These approximate
algorithms are compared with experimental results.

In this paper, we follow the abstract method used in [5,8,9] by selecting some set of
variables to be invisible. Then we evaluate the counterexample with Algorithm Check-
Spurious. When a failure state is achieved, instead of selecting someinvisible variables
to be visible, extra variables are added to the abstract model for the refinement. With
this method, not only the NP-hard state separation problem is avoided, but also a smaller
refined abstract model is obtained.

The rest parts of the paper are organized as follows. The nextsection briefly presents
the related work concerning abstraction refinement in modelchecking. In section 3, the
abstraction algorithm is formalized by making insensitivevariables invisible. In section
4, by formally defining spurious counterexamples, the algorithm for checking whether
or not a counterexample in the abstract model is spurious is presented. Further, the new
abstraction refinement algorithm is given. Subsequently, abstraction model checking
framework based on the new proposed algorithms is illustrated in section 5. Finally,
conclusions are drawn in section 6.

2 Related Work

We focus on the Counter-Example Guided Abstraction Refinement (CEGAR) frame-
work which was fist proposed by Kurshan [10]. Recently, some variations of the basic
CEGAR were given [5,11,12,13,14,15,16]. Most of them use a model checker and try
to get rid of spurious counterexamples to achieve a concretecounterexample or a proof
of the desired property.

The closest works to ours are those where the abstract modelsare obtained by
making some of the variables invisible. To the best of our knowledge, this abstrac-
tion method was first proposed by Clarke, etc. [5,12]. With their approach, abstraction



is performed by selecting a set of variables (or latches in circuits) to be invisible. In
each iteration, a standard Ordered Binary Decision Diagram(OBDD)-based symbolic
model checker is used to check whether or not the abstract model satisfies the desired
property which is described by a formula in temporal logic. If a counterexample is re-
ported by the model checker, it is simulated with the concrete system by a SAT solver.
It tells us that the model is satisfiable if the counterexample is a real one, otherwise, the
counterexample is a spurious one and a failure state is foundwhich is the the last state
in the longest prefix of the counterexample that is still satisfiable. Subsequently, the
failure state is used to refine the abstraction by making someinvisible variables visible.
With this method, to find the smallest refined model is NP-hard[3]. To combat this,
both optimal exponential and approximate polynomial algorithms are given. The first
one is done by using an ILP solver which is known to be NP complete; and the second
one is based on machine learning approaches.

Some heuristics for refinement variables selection were first presented in [8]. It
studied on effective greedy heuristic algorithms on state separation problem. Further,
in [6], probabilistic learning approach which utilized thesample learning technique,
evolutionary algorithm and effective heuristics were proposed. The performances were
illustrated by experiment results.

3 Abstraction Function

As usual, a Kripke structure [4] is used to model a system. LetV = {v1, ..., vn} ranging
over a finite domainD∪{⊥} be the set of variables involved in a system. For anyvi ∈ V,
1 ≤ i ≤ n, a set of the valuations ofvi is defined by,

Σvi = {vi = d | d ∈ D ∪ {⊥}}

wherevi = ⊥ meansvi is undefined. Further, the set of all the possible states of the
system,Σ, is defined by,

Σ = Σv1 × ... × Σvn

LetAPbe the set of propositions. A Kripke structure overAP is a tupleK = (S,S0,R, L),
whereS ⊆ Σ is the set of states (i.e. a state inS is a valuation of variables inV), S0 ⊆ S
is the set of initial states,R⊆ S×S is the transition relation,L : S→ 2AP is the labeling
function. For convenience,s(v) is employed to denote the value ofv at states. A path in
a Kripke structure is a sequence of states,Π = s1, s2, ..., wheres1 ∈ S0 and (si , si+1) ∈ R
for anyi ≥ 1.

Following the idea given in [5], we separateV into two partsVV andVI with V =
VV ∪ VI . VV stands for the set of visible variables whileVI denotes the set of invisible
variables. Invisible variables are those that we do not careabout and will be ignored
when building the abstract model. In the original modelK = (S,S0,R, L), all variables
are visible (VV = V, VI = ∅). To obtain the abstract modelK̂ = (Ŝ, Ŝ0, R̂, L̂), some
variables, e.g.VX ⊆ V, are selected to be invisible (VV = V \ VX, VI = VX). Thus, the
set of all possible states in the abstract model will be:

Σ̂ = Σv1 × ... × Σvk



wherek = |VV | < n, and for each 1≤ i ≤ k, vi ∈ VV. That isŜ ⊆ Σ̂. For a states ∈ S and
a state ˆs ∈ Ŝ, we say ˆs is the projection ofs in the abstract model by makingVV visible,
denoted byh(s,VV), iff s(v) = ŝ(v) for anyv ∈ VV. Inversely,s is called the origin of ˆs,
and the set of origins of ˆs is denoted byh−(ŝ,VV).

Therefore, given the original modelK = (S,S0,R, L) and the the selected visible
variablesVV, the abstract model̂K = (Ŝ, Ŝ0, R̂, L̂) can be obtained by Algorithm Ab-
stract as shown below.

Algorithm 1 : Abstract(K,VV)
Input : the original modelK = (S,S0,R, L) and a set of selected visible variablesVV

Output : the abstract model̂K=(Ŝ,Ŝ0,R̂,L̂)

1: Ŝ = {ŝ∈ Σ̂ | there existss ∈ S such thath(s,VV) = ŝ};
2: Ŝ0 = {ŝ∈ Ŝ | there existss∈ S0 such thath(s,VV) = ŝ};
3: R̂ = {(ŝ1, ŝ2) | ŝ1, ŝ2 ∈ Ŝ, and there exists1, s2 ∈ S such thath(s1,VV) = ŝ1,h(s2,VV) =

ŝ2 and
(s1, s2) ∈ R};

4: L(ŝ) =
⋃

s∈S,h(s,VV )=ŝ
L(s);

5: returnK̂ = (Ŝ, Ŝ0, R̂, L̂);

Example 1 As illustrated in Figure1, the original model is a Kripke structure with four
states. Initially, the system has four variablesv1, v2, v3 andv4. Assume thatv3 andv4

s1 s2 s3 s4

v1 = 0
v2 = 0

v1 = 1
v2 = 1

v1 = 0
v2 = 0

v1 = 1
v2 = 1

v3 = 0
v4 = 0

v3 = 0
v4 = 1

v3 = 1
v4 = 0

v3 = 1
v4 = 1

V = {v1, v2, v3, v4}

VV = {v1, v2}

VI = {v3, v4}

ŝ1 ŝ2

v1 = 1
v2 = 1

v1 = 0
v2 = 0

Original model

Abstract model

{q}{p} {r, q} {p}

{p, q} {p, q, r}

Fig. 1.Abstraction

are selected to be invisible. By Algorithm Abstract, an abstract model with two states
is obtained. In the abstract model, ˆs1 is the projection ofs1 and s2, while ŝ2 is the
projection ofs3 ands4. (ŝ1, ŝ2) ∈ R̂ since (s2, s3) ∈ R, and ( ˆs1, ŝ1), (ŝ2, ŝ2) ∈ R̂ because
of (s1, s2), (s3, s4) ∈ R. �



4 Refinement

4.1 Why Refining?

It can be observed that the state space is largely reduced in the abstract model. However,
when implementing model checking with the abstract model, some reported counterex-
amples will not be real counterexamples that violate the desired property, since the
abstract model contains more paths than the original model.This is further illustrated
in the traffic lights controller example given below. The example was first presented in
[3].

Example 2 For the traffic light controller in Figure 2, we want to prove�^(state=
stop) (any time, the state of the light will bestop sometimes in the future). By im-
plementing model checking with the abstract model in the right hand side of Figure
2 where the variablecolor is made invisible, a counterexample, ˆs1, ŝ2, ŝ2, ŝ2, ... will be

color = red
state = stop

color = yellow
state = go

color = green
state = go

V = {color, state}

VV = {state}

VI = {color}

state = stop

state = go

Original model Abstract model

s1

s2

s3

ŝ1

ŝ2

Fig. 2.Traffic Light Controller

reported. However, in the concrete model, such a behavior cannot be found. So, this is
not a real counterexample. �

4.2 Spurious Counterexamples

As pointed in [5,6], a counterexample in the abstract model which does not exist in
the concrete model is called a spurious counterexample. To formally define a spurious
counterexample, we first introduce failure states. To this end, In0

ŝi
, In1

ŝi
, ..., Inn

ŝi
andInŝi

are defined first:

In0
ŝi
= {s | s ∈ h−(ŝi ,VV), s′ ∈ h−( ˆsi−1,VV) and

(s′, s) ∈ R}
In1

ŝi
= {s | s ∈ h−(ŝi ,VV), s′ ∈ In0

ŝi
and (s′, s) ∈ R}

...

Inn
ŝi
= {s | s ∈ h−(ŝi ,VV), s′ ∈ Inn−1

ŝi
and (s′, s) ∈ R}

...

Inŝi =
∞⋃

i=0
Ini

ŝi



Clearly, In0
ŝi

denotes the set of states inh−(ŝi ,VV) with inputting edges from the states
in h−( ˆsi−1,VV), and In1

ŝi
stands for the set of states inh−(ŝi ,VV) with inputting edges

from the states inIn0
ŝi
, andIn2

ŝi
means the set of states inh−(ŝi ,VV) with inputting edges

from the states inIn1
ŝi
, and so on. Thus,Inŝi denotes the set of states inh−(ŝi ,VV) that

are reachable from some state inh−( ˆsi−1,VV) as illustrated in the lower gray part in

Figure 3. Note that there must exist a natural numbern, such that
n+1⋃

i=0
Ini

ŝi
=

n⋃

i=0
Ini

ŝi
since

h−(ŝi ,VV) is finite. Similarly,Out0ŝi
, Out1ŝi

, ...,Outnŝi
andOutŝi can also be defined.

Fig. 3. Inŝi andOutŝi

Out0ŝi
= {s | s ∈ h−(ŝi ,VV), s′ ∈ h−( ˆsi+1,VV) and

(s, s′) ∈ R}
Out1ŝi

= {s | s ∈ h−(ŝi ,VV), s′ ∈ Out0ŝi
and (s, s′) ∈ R}

...

Outnŝi
= {s | s ∈ h−(ŝi ,VV), s′ ∈ Outn−1

ŝi
and (s, s′) ∈ R}

...

Outŝi =
∞⋃

i=0
Outiŝi

WhereOut0ŝi
denotes the set of states inh−(ŝi ,VV) with outputting edges to the states

in h−( ˆsi+1,VV), andOut1ŝi
stands for the set of states inh−(ŝi ,VV) with outputting edges

to the states inOut0ŝi
, andOut2ŝi

means the set of states inh−(ŝi ,VV) with outputting
edges to the states inOut1ŝi

, and so on. Thus,Outŝi denotes the set of states inh−(ŝi ,VV)
from which some state inh−( ˆsi+1,VV) are reachable as depicted in the higher gray part



in Figure 3. Similar toInŝi , there must exist a natural numbern, such that
n+1⋃

i=0
Outiŝi

=

n⋃

i=0
Outiŝi

. Accordingly, a failure state can be defined as follows.

Definition 1 (Failure States) A state ŝi in a counterexamplêΠ is a failure state if
Inŝi , ∅, Outŝi , ∅ andInŝi ∩Outŝi = ∅. �

Further, given a failure state ˆsi in a counterexamplêΠ , the set of the origins of ˆsi ,
h−(ŝi ,VV), is separated into three sets,D = Inŝi (the set of dead states),B = Outŝi (the
set of bad states) andI = h−(ŝi) \ (D∪ B) (the set of the isolated states). Note that by
the definition of failure state,D andB cannot be empty sets, whileI may be empty.

Definition 2 (Spurious Counterexamples)A counterexamplêΠ in an abstract model
K̂ is spurious if there exists at least one failure state ˆsi in Π̂ �

Example 3 Figure 4 shows a spurious counterexample where the state3̂ is a failure
state. In the set,h−(3̂,VV) = {7, 8, 9}, of the origins of statê3, 9 is a deadend state, 7 is

1

2

3

4

5

6

7

8

9

10

11

12

1̂ 2̂ 3̂ 4̂

Fig. 4.A Spurious Path

a bad state, and 8 is an isolated state. �

In [3], Algorithm SplitPath is presented for checking whether or not a counterex-
ample is spurious. And in [5], a SAT solver is used to check thecounterexample. We
also present Algorithm CheckSpurious for checking whether or not a counterexample is
spurious based on the formal definition of spurious paths. The algorithm takes a coun-
terexample as input and outputs the first failure state as well asD,B andI with respect
to the failure state. Note that a counterexample may be a finite path< s1, s2, ..., sn >,
n ≥ 1, or an infinite path< s1, s2, ..., (si, ..., sj)ω >, 1 ≤ i ≤ j, with a loop suffix (a suffix
produced by a loop). For the finite counterexample, it will bechecked directly while for
an infinite one, we need only check its finite prefix such as< s1, s2, ..., si, ..., sj, si >.

Compared with Algorithm SplitPath, to check whether or not a state ˆsi is a fail-
ure state, it only relies on its pre and post states, ˆsi−1 and ˆsi+1; while in Algorithm
CheckSpurious, to check state ˆsi , it relies on all states in the prefix, ˆs1, ..., ˆsi−1, of ŝi .
Based on this, to check a periodic infinite counterexample, several repetitions of the pe-
riodic parts are needed. In contrast, this can be easily doneby checking the finite prefix
< s1, s2, ..., si, ..., sj, si > by Algorithm CheckSpurious.



Algorithm 2 : CheckSpurious(Π̂)

Input : a counterexamplêΠ =< ŝ1, ŝ2, ..., ŝn > in the abstract model̂K = (Ŝ, Ŝ0, R̂, L̂), and the
original modelK = (S,S0,R, L)
Output : a failure statesf ,D, B andI

1: Initialization : int i = 2;
2: while i ≤ n− 1 do
3: if Inŝi ∩Outŝi , ∅, i = i + 1;
4: elsereturnsf = ŝi,D = Inŝi , B = Outŝi , andI = h−(ŝi) \ (B ∪D); break;
5: end while
6: if i = n, returnΠ̂ is a real counterexample;

4.3 Refining Algorithm

When a failure state and the correspondingD, B andI are reported by Algorithm
CheckSpurious, we need further refine the abstract model such thatD andB are sep-
arated into different abstract states. This can be achieved by making a set ofinvisible
variables,U ⊆ VI , visible [5]. With this method, to find the coarsest refined model is
NP-hard. Further, to keep the size of the refined abstract state space smaller, it is impor-
tant to makeU as small as possible. However, to find the smallestU is also NP-hard [6].
In [5], an ILP solver is used to obtain the minimal set. However, it is inefficient when
the problem size is large, since IPL is an NPC problem. To combat this, several approx-
imate polynomial algorithms are proposed [5,8,9] with non-optimal results. Moreover,
even though a coarser refined abstract model may be produced by makingU smaller, it
is uncertain that the smallestU will induce the coarsest refined abstract model. Moti-
vated by this, a new refinement approach is proposed by addingextra boolean variables
to the set of visible variables. With this approach, not onlythe NP-hard problem can be
avoided but also a coarser refined abstract model can be obtained. The basic idea for the
refining algorithm is described below.

Assume that a failure state is found withD = {s1, s2}, B = {s4} andI = {s3, s5}

as illustrated in Figure 5 where the abstract model is obtained by makingVv1 andVv2

visible and other variables invisible. To makeD andB separated into two abstract
states, an extra boolean variableB is added to the system with the valuation being 0
at the states inD, 1 at the state inB, and⊥ at the states inI and other states. That
is s1(B) = 0, s2(B) = 0, s4(B) = 1, andsi(B) = ⊥ wheresi ∈ S and i , 1, 2, or 4.
Subsequently, by makingV′V = VV ∪ {B} andV′I = VI , the failure state is separated into
three states in the refined abstract model as illustrated in Figure 6. Note that, only the
failure state is separated into three states, and other states are the same as in the abstract
model. Especially, whenI = ∅, the failure state is separated into two new states.

Therefore, given a failure statesi (as well asD, B andI) in the abstract model
K = (S,S0,R, L) whereS ⊆ Σ = Σv1 × ... × Σvn andVV = {v1, ..., vn}, to obtain the
abstract model̂K = (Ŝ, Ŝ0, R̂, L̂), a boolean variableB is added as a visible variable
with s(B) = 0 if s ∈ D, s(B) = 1 if s ∈ B, ands(B) = ⊥ if s < (D∪ B). Thus, the set of
all possible states in the refined abstract model will be:

Σ̂ = Σ × ΣB
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Fig. 5.A Failure State
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Fig. 6.Refined Abstract States



whereΣB = {B = d | d ∈ {0, 1,⊥}}. Accordingly, the refined abstract modelK̂ =
(Ŝ, Ŝ0, R̂, L̂) can be obtained by Algorithm Refine.

Algorithm 3 : Refine(K,D,B,I, B)
Input : the abstract modelK = (S,S0,R, L) with VV being visible;D, B andI reported by
Algorithm CheckSpurious; the new boolean variableB which will be added
Output : the refined model̂K = (Ŝ, Ŝ0, R̂, L̂)

1: s(B) = 0 if s∈ B; s(B) = 1 if s∈ D; s(B) = ⊥ if s< D∪ B;
2: Ŝ = {ŝ∈ Σ̂ | there existss ∈ S such thath(s,VV ∪ B) = ŝ};
3: Ŝ0 = {ŝ∈ Ŝ | there existss∈ S0 such thath(s,VV ∪ B) = ŝ};
4: R̂= {(ŝ1, ŝ2) | ŝ1, ŝ2 ∈ Ŝ,and there exists1, s2 ∈ S such thath(s1,VV∪B) = ŝ1,h(s2,VV∪B) =

ŝ2 and (s1, s2) ∈ R};
5: L(ŝ) =

⋃

s∈S,h(s,VV∪B)=ŝ
L(s);

6: returnK̂ = (Ŝ, Ŝ0, R̂, L̂);

It can be observed that, the new refinement algorithm is linear to the size of the state
space, since it only needs to assign to the new added boolean variable at each state.
Further, in each iteration, at most two more states are added(only one node is added
whenI is empty). With the algorithm by choosing some invisible variable visible, when
D andB are separated, other nodes (usually a huge number in the realsystems in
practise) will also be separated. To illustrate the intrinsic property of the new refining
algorithm, a simple example is given below.

Example 4 The Kripke structure illustrated in l.h.s of Figure 7 (1) presents an original
model where three variablesx1, x2 and x3 are involved. Assume thatx2 and x3 are
insensitive to the property which is expressed in a temporallogic formula. Thus, by
makingx2 andx3 invisible, the abstract model can be obtained by Algorithm Abstract
as illustrated in the r.h.s of Figure 7 (1).

Suppose that a counterexample is found by a model checker as depicted in Figure
7 (2). Then, by Algorithm CheckSpurious, it will report that ŝ2 is a failure state, and
D = {s3}, B = {s4}. First, we show the refined abstract models by the method in the
related works [5,12,8,9]. The refined abstract model obtained by makingx2 and x3

visible are illustrated in Figure 8 (1) and (2) respectively. It can be observed that the
one by makingx3 visible is the smallest refined model under the method by making
some invisible variables visible. Clearly, to find the coarsest refined model, in this way,
is an NP-hard problem.

By our method, as depicted in Figure 9, a new boolean variableB is added to the
system and made visible. Then the refined abstract model is obtained where only the
failure state is separated into two states with other statesunchanged. Clearly, the new
refining algorithm avoids the NP-hard problem for finding thesmallest set of visible
variables. Moreover, the new refined abstract model is smaller than the best result pro-
duced in the method by further making some invisible variables visible. �

Clearly, the refined model obtained by Algorithm Refine is not the smallest one.
And the smallest refined abstract model can be easily obtained by assigning the new
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ŝ3

ŝ6
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Fig. 8.Refinement by the old algorithm
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added variableB by 0 or 1 at the states inI, i.e. the failure state is separated into
D∪ I andB, orD andB ∪ I. This is intuitively presented in Figure 10. Compared to
Algorithm Refine, only one state is saved in the refinement. However, more iterations
will be introduced into the abstract model checking sinceD∪I orB∪Imay be found
as a failure state further.
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Fig. 10.Smallest refinement

5 Abstract Model Checking Framework

With the new proposed algorithms, the abstract model checking framework is presented.
First, the abstract model is obtained by Algorithm Abstract. Then a model checker is
employed to check whether or not the abstract model satisfiesthe desired property. If
no errors are found, the model is correct. However, if a counterexample is reported,
it is checked by Algorithms CheckSpurious. If the counterexample is not spurious, it



Algorithm 4 : AbstractMC
Input : A modelK = (S,S0,R, L) in Kripke structure, and a desired propertyφ in temporal logic
Output : a counterexample that violatesφ

1: Initialization : int i = 1;
2: K̂ =Abstract(K,VI );
3: MC(K̂, φ);
4: while a counterexamplêΠ is founddo
5: CheckSpurious(Π̂);
6: if Π̂ is a real counterexample, returnΠ̂; break;
7: elseK̂ =Refine(K̂,D,B,I, Bi); i = i + 1; MC(K̂, φ);
8: end while
9: if no counterexample is found,K satisfiesφ.

will be a real counterexample that violates the system; otherwise, the counterexample
is spurious, and Algorithm Refine is used to refine the abstract model by adding a new
visible boolean variableB to the system. Then the refined abstract model is checked
with the model checker again until either a real counterexample is found or the model
is checked to be correct. This process is formally describedin Algorithm AbstractMC
where a subscripti is used to identify different boolean variables that are added to the
system in each refinement process. Initially,i is assigned by 1. After each iteration of
Algorithm Refine, i is increased by 1. Basically, finitely many boolean variables will be
added since the systems to be verified with model checking arefinite systems.

6 Conclusion

An efficient method for abstraction refinement is given in this paper. With this approach,
the NP-hard state separation problem can be avoided, and thesmaller refined abstract
model can also be obtained. This can improve the abstract based model checking, es-
pecially the counterexample guided abstraction refinementmodel checking. In the near
future, the proposed algorithm will be implemented and integrated into the tool CE-
GAR. Further, some case studies will be conducted to evaluate the algorithm.
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