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Abstract

This paper studies the problem of testing if an input(Γ, ◦), whereΓ is a finite set of unknown size and◦ is a
binary operation overΓ given as an oracle, is close to a specified class of groups. Friedl et al. [Efficient testing of
groups, STOC’05] have constructed an efficient tester usingpoly(log |Γ|) queries for the class of abelian groups.
We focus in this paper on subclasses of abelian groups, and show that these problems are much harder:Ω(|Γ|1/6)
queries are necessary to test if the input is close to a cyclicgroup, andΩ(|Γ|c) queries for some constantc are
necessary to test more generally if the input is close to an abelian group generated byk elements, for any fixed
integerk ≥ 1. We also show that knowledge of the size of the ground setΓ helps only fork = 1, in which
case we construct an efficient tester usingpoly(log |Γ|) queries; for any other valuek ≥ 2 the query complexity
remainsΩ(|Γ|c). All our upper and lower bounds hold for both the edit distance and the Hamming distance.
These are, to the best of our knowledge, the first nontrivial lower bounds for such group-theoretic problems in
the property testing model and, in particular, they imply the first exponential separations between the classical
and quantum query complexities of testing closeness to classes of groups.

1 Introduction

Background: Property testing is concerned with the task of deciding whether an object given as an oracle has
(or is close to having) some expected property. Many properties including algebraic function properties, graph
properties, computational geometry properties and regular languages have been proved to be efficiently testable.
We refer to, for example, Refs. [8, 15, 17] for surveys on property testing. In this paper, we focus on property
testing of group-theoretic properties. An example is testing whether a functionf : G → H, whereH andG are
groups, is a homomorphism. It is well known that such a test can be done efficiently [4, 5, 18].

Another kind of group-theoretic problems deals with the case where the input consists of both a finite setΓ
and a binary operation◦ : Γ × Γ → Γ over it given as an oracle. An algorithm testing associativity of the oracle
in timeO(|Γ|2) has been constructed by Rajagopalan and Schulman [16], improving the straightforwardO(|Γ|3)-
time algorithm. They also showed thatΩ(|Γ|2) queries are necessary for this task. Ergün et al. [9] have proposed
an algorithm usingÕ(|Γ|) queries testing if◦ is close toassociative, and an algorithm using̃O(|Γ|3/2) queries
testing if(Γ, ◦) is close to being both associative and cancellative (i.e., close to the operation of a group). They also
showed how these results can be used to check whether the input (Γ, ◦) is close to an abelian group with̃O(|Γ|3/2)
queries. The notion of closeness discussed in Ergün et al.’s work refer to the Hamming distance of multiplication
tables, i.e., the number of entries in the multiplication table of (Γ, ◦) that have to be modified to obtain a binary
operation satisfying the prescribed property.
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Friedl et al. [10] have shown that, when considering closeness with respect to the edit distance of multiplication
tables instead of the Hamming distance (i.e., by allowing deletion and insertion of rows and columns), there exists
an algorithm with query and time complexities polynomial inlog |Γ| that tests whether(Γ, ◦) is close to anabelian
group. An open question is to understand for which other classes ofgroups such a test can be done efficiently and,
on the other hand, if nontrivial lower bounds can be proved for specific classes of groups.

Notice that the algorithm in Ref. [10] has been obtained by first constructing a simplequantum algorithmthat
tests inpoly(log |Γ|) time if an input(Γ, ◦) is close to an abelian group (based on a quantum algorithm by Cheung
and Mosca [6] computing efficiently the decomposition of a black-box abelian group on a quantum computer), and
then replacing the quantum part by clever classical tests. One can find this surprising since, classically, computing
the decomposition of a black-box abelian group is known to behard [2]. This indicates that, in some cases, new
ideas in classical property testing can be derived from a study of quantum testers. One can naturally wonder if all
efficient quantum algorithms testing closeness to a given class of groups can be converted into efficient classical
testers in a similar way. This question is especially motivated by the fact that Inui and Le Gall [11] have constructed
a quantum algorithm with query complexity polynomial inlog |Γ| that tests whether(Γ, ◦) is close to asolvable
group(note that the class of solvable groups includes all abeliangroups), and that their techniques can also be used
to test efficiently closeness to severalsubclasses of abelian groupson a quantum computer, as discussed later.
Our contributions: In this paper we investigate these questions by focusing on subclasses of abelian groups. We
show lower and upper bounds on the randomized (i.e., non-quantum) query complexity of testing if the input is
close to a cyclic group, and more generally on the randomizedquery complexity of testing if the input is close to an
abelian group generated byk elements (i.e., the class of groups of the formZm1 ×· · · ×Zmr where1 ≤ r ≤ k and
m1, . . . ,mr are positive integers), for any fixedk ≥ 1 and for both the edit distance and the Hamming distance.
We prove in particular that their complexities vary dramatically according to the value ofk and according to the
assumption that the size ofΓ is known or not. Table 1 gives an overview of our results.

Table 1: Lower and upper bounds on the randomized query complexity of testing if(Γ, ◦) is close to specific classes
of groups. Hereǫ denotes the distance parameter, see Section 2 for details.

Target Distance Bound Reference
group edit or Hamming Õ(|Γ|3/2) [9]
abelian group edit O(poly(ǫ−1, log |Γ|)) [10]
cyclic group (size unknown) edit or Hamming Ω(|Γ|1/6) here (Th. 1)
abelian group withk generators

edit or Hamming Ω(|Γ|
1
6
− 4

6(3k+1) ) here (Th. 2)
[k: fixed integer> 1]

cyclic group (size known) edit or Hamming O(poly(ǫ−1, log |Γ|)) here (Th. 3)

Our results show that, with respect to the edit distance, testing closeness to subclasses of abelian groups gener-
ally requires exponentially more queries than testing closeness to the whole class of abelian groups. We believe that
this puts in perspective Friedl et al.’s work [10] and indicates both the strength and the limitations of their results.

The lower bounds we give in Theorems 1 and 2 also prove the firstexponential separations between the quantum
and randomized query complexities of testing closeness to aclass of groups. Indeed, the same arguments as
in Ref. [11] easily show that, when the edit distance is considered, testing if the input is close to an abelian group
generated byk elements can be done usingpoly(ǫ−1, log |Γ|) queries on a quantum computer, for any value ofk and
even if|Γ| is unknown. While this refutes the possibility that all efficient quantum algorithms testing closeness to a
given class of groups can be converted into efficient classical testers, this also exhibits a new set of computational
problems for which quantum computation can be shown to be strictly more efficient than classical computation.
Relation with other works: While Ivanyos [12] gave heuristic arguments indicating that testing closeness to a
group may be hard in general, we are not aware of any (nontrivial) proven lower bounds on the query complexity
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of testing closeness to a group-theoretic property prior tothe present work. Notice that a few strong lower bounds
are known for related computational problems, but in different settings. Babai [1] and Babai and Szemerédi [2]
showed that computing the order of an elementary abelian group in the black-box setting requires exponential time
— this task is indeed one of the sometimes called “abelian obstacles” to efficient computation in black-box groups.
Cleve [7] also showed strong lower bounds on the query complexity of order finding (in a model based on hidden
permutations rather than on an explicit group-theoretic structure). These results are deeply connected to the subject
of the present paper and inspired some of our investigations, but do not give bounds in the property testing setting.
The proof techniques we introduce in the present paper are indeed especially tailored for this setting.
Organization of the paper and short description of our techniques: Section 3 deals with the case where|Γ| is
unknown. Our lower bound on the complexity of testing closeness to a cyclic group (Theorem 1) is proven in a
way that can informally be described as follows. We introduce two distributions of inputs: one consisting of cyclic
groups of the formZp2, and another consisting of groups of the formZp×Zp, wherep is an unknown prime number
chosen in a large enough set of primes. We observe that each group in the latter distribution is far with respect to
the edit distance (and thus with respect to the Hamming distance too) from any cyclic group. We then prove that a
deterministic algorithm witho(|Γ|1/6) queries cannot distinguish those distributions with high probability.

Section 4 focuses on testing closeness to the class of groupsgenerated byk > 1 elements, and proves Theorem 2
in a similar way. For example, whenk > 1 is a fixed odd integer, we introduce two distributions consisting of
groups isomorphic toGp = Z

(k+1)/2
p2

× Z
(k−1)/2
p and toHp = Z

(k−1)/2
p2

× Z
(k+3)/2
p , respectively. Notice that

Gp andHp have the same size. WhileGp is generated byk elements, we observe thatHp is far from any group
generated byk elements. We then show that any deterministic algorithm with o(p(k−1)/4) = o(|Γ|1/6−4/6(3k+1))
queries cannot distinguish those distributions with high probability, even ifp (and thus|Γ|) is known.

Section 5 is devoted to constructing an efficient tester for testing closeness to cyclic groups when the size|Γ| of
the ground set is known. The idea behind the tester we proposeis that, when the size|Γ| of the ground set is given,
we know that if(Γ, ◦) is a cyclic group, then it is isomorphic to the groupZ|Γ|. We then take a random elementγ of
Γ and define the mapf : Z|Γ| → Γ by f(i) = γi for anyi ∈ {0, . . . , |Γ|− 1} (here the powers are defined carefully
to take into consideration the case where the operation◦ is not associative). If(Γ, ◦) is a cyclic group, thenγ is
a generating element with non negligible probability, in which case the mapf will be a group isomorphism. Our
algorithm will first test if the mapf is close to a homomorphism, and then perform additional tests to check thatf
behaves correctly on any proper subgroup ofZ|Γ|.

2 Definitions

Let Γ be a finite set and◦ : Γ × Γ → Γ be a binary operation on it. Such a couple(Γ, ◦) is called a magma. We
first define the Hamming distance between two magmas over the same ground set.

Definition 1. Let (Γ, ◦) and(Γ, ∗) be two magmas over the same ground setΓ. The Hamming distance between◦
and∗, denotedHamΓ(◦, ∗), isHamΓ(◦, ∗) = |{(x, y) ∈ Γ× Γ | x ◦ y 6= x ∗ y}|.

We now define the edit distance between tables. A table of sizek is a functionT from Π×Π→ N whereΠ is
an arbitrary subset ofN (the set of natural numbers) of sizek. We consider three operations to transform a table to
another. An exchange operation replaces, for two elementsa, b ∈ Π, the valueT (a, b) by an arbitrary element of
N. Its cost is one. An insert operation onT adds a new elementa ∈ N\Π: the new table is the extension ofT to the
domain(Π ∩ {a})× (Π ∩ {a}), giving a table of size(k + 1) where the2k + 1 new values of the function are set
arbitrarily. Its cost is2k+1. A delete operation onT removes an elementa ∈ Π: the new table is the restriction of
T to the domain(Π\{a}) × (Π\{a}), giving a table of size(k − 1). Its cost is2k − 1. The edit distance between
two tablesT andT ′ is the minimum cost needed to transformT to T ′ by the above exchange, insert and delete
operations.

A multiplication table for a magma(Γ, ◦) is a tableT : Π×Π→ N of size|Γ| for which the values are in one-to-
one correspondence with elements inΓ, i.e., there exists a bijectionσ : Π→ Γ such thatT (a, b) = σ−1(σ(a)◦σ(b))
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for anya, b ∈ Π. We now define the edit distance between two magmas, which will enable us to compare magmas
with distinct grounds sets, and especially magmas with ground sets of different sizes. This is the same definition as
the one used in Ref. [10].

Definition 2. The edit distance between two magmas(Γ, ◦) and (Γ′, ∗), denotededit((Γ, ◦), (Γ′, ∗)), is the min-
imum edit distance betweenT andT ′ whereT (resp.T ′) runs over all tables corresponding to a multiplication
table for(Γ, ◦) (resp.(Γ′, ∗)).

We now explain the concept of distance to a class of groups.

Definition 3. LetC be a class of groups and(Γ, ◦) be a magma. We say that(Γ, ◦) is δ-far fromC with respect to
the Hamming distance if

min
∗ : Γ×Γ→Γ

(Γ,∗) is a group inC

HamΓ(◦, ∗) ≥ δ|Γ|2.

We say that(Γ, ◦) is δ-far from C with respect to the edit distance if

min
(Γ′,∗)

(Γ′,∗) is a group inC

edit((Γ, ◦), (Γ′, ∗)) ≥ δ|Γ|2.

Notice that if a magma(Γ, ◦) is δ-far from a class of groupsC with respect to the edit distance, then(Γ, ◦) is
δ-far from C with respect to Hamming distance. The converse is obviouslyfalse in general.

Since some of our results assume that the size ofΓ is not known, we cannot suppose that the setΓ is given ex-
plicitly. Instead we suppose that an upper boundq of the size ofΓ is given, and that each element inΓ is represented
uniquely by a binary string of length⌈log2 q⌉. One oracle is available that generates a string representing a random
element ofΓ, and another oracle is available that computes a string representing the product of two elements of
Γ. We call this representation a binary structure for(Γ, ◦). This is essentially the same model as the one used in
Ref. [10, 11] and in the black-box group literature (see, e.g., Ref. [2]). The formal definition follows.

Definition 4. A binary structure for a magma(Γ, ◦) is a triple (q,O1, O2) such thatq is an integer satisfying
q ≥ |Γ|, andO1, O2 are two oracles satisfying the following conditions:

(i) there exists an injective mapπ fromΓ to Σ = {0, 1}⌈log2 q⌉;
(ii) the oracleO1 chooses an elementx ∈ Γ uniformly at random and outputs the (unique) stringz ∈ Σ such

that z = π(x).

(iii) on two stringsz1, z2 in the setπ(Γ), the oracleO2 takes the (unique) elementx ∈ Γ such thatx = π−1(z1)◦
π−1(z2) and outputsπ(x). (The action ofO2 on strings inΣ\π(Γ) is arbitrary.)

We now give the formal definition of anǫ-tester.

Definition 5. Let C be a class of groups and letǫ be any value such that0 < ǫ ≤ 1. An ǫ-tester with respect to
the edit distance (resp., to the Hamming distance) forC is a randomized algorithmA such that, on any binary
structure for a magma(Γ, ◦),

(i) A outputs “PASS” with probability at least2/3 if (Γ, ◦) satisfies propertyC ;

(ii) A outputs “FAIL” with probability at least2/3 if (Γ, ◦) is ǫ-far from C with respect to the edit distance
(resp., to the Hamming distance).
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3 A Lower Bound for Testing Cyclic Groups

Suppose that we only know that an input instance(Γ, ◦) satisfies|Γ| ≤ q, whereq is an integer known beforehand.
In this section, we show that any randomized algorithm then requiresΩ(q1/6) queries to test whether(Γ, ◦) is close
to the class of cyclic groups. More precisely, we prove the following result.

Theorem 1. Suppose that the size of the ground set is unknown and supposethat ǫ ≤ 1/23. Then the query
complexity of anyǫ-tester for the class of cyclic groups, with respect to the Hamming distance or the edit distance,
isΩ(q

1
6 ).

Theorem 1 is proved using Yao’s minimax principle. Specifically, we introduce two distributions of instances
DY andDN such that every instance inDY is a cyclic group and every instance inDN is far from the class of
cyclic groups. Then we construct the input distributionD as the distribution that takes an instance fromDY with
probability 1/2 and fromDN with probability 1/2. If we can show that any deterministic algorithm, givenD as
an input distribution, requiresΩ(q1/6) queries to correctly decide whether an input instance is generated byDY or
DN with high probability under the input distribution, we conclude that any randomized algorithm also requires
Ω(q1/6) queries to test whether an input is close to a cyclic group.

We now explain in details the construction of the distribution D . Defineq′ = ⌊√q⌋ and letR be the set of
primes in{q′/2, . . . , q′}. From the prime number theorem, we have|R| = Ω(q′/ log q′). We defineDY as the
distribution over binary structures(q,O1, O2) for Zp2 where the primep is chosen uniformly at random fromR
and the injective mapπ : Zp2 → {0, 1}⌈log2 q⌉ hidden behind the oracles is also chosen uniformly at random. We
defineDN as a distribution over binary structures forZ

2
p in the same manner. Indeed, the order of any instance

generated by those distributions is at mostq. Every instance inDY is a cyclic group. From Lemma 1 below, we
know that every instance inDN is 1/23-far (with respect to the edit distance, and thus with respect to the Hamming
distance too) from the class of cyclic groups. Its proof is included in Appendix.

Lemma 1. Let (G, ◦) and(H, ∗) be two nonisomorphic groups. Thenedit((G, ◦), (H, ∗)) ≥ 1
23 max(|G|2, |H|2).

In order to complete the proof of Theorem 1, it only remains toshow that distinguishing the two distributions
DY andDN is hard. This is the purpose of the following proposition.

Proposition 1. Any deterministic algorithm that decides with probabilitylarger than2/3 whether the input is from
the distributionDY or from the distributionDN must useΩ(q1/6) queries.

Let us first give a very brief overview of the proof of Proposition 1. We begin by showing how the distributions
DY andDN described above can equivalently be created by first taking arandom sequenceℓ of strings, and then
using some constructionsC ℓ

Y andC ℓ
N , respectively, which are much easier to deal with. In particular, the mapπ in

the constructionsC ℓ
Y andC ℓ

N is created “on the fly” during the computation using the concept of a reduced decision
tree. We then show (in Lemma 2) aΩ(q1/6)-query lower bound for distinguishingC ℓ

Y andC ℓ
N .

Proof of Proposition 1.Let A be a deterministic algorithm with query complexityt. We suppose thatt ≤ q,
otherwise there is nothing to do. The algorithmA can be seen as a decision tree of deptht. Each internal node
in the decision tree corresponds to a query to eitherO1 or O2, and each edge from such a node corresponds to an
answer for it. The queries toO2 are labelled asO2(s, s

′), for elementss ands′ in Σ = {0, 1}⌈log2 q⌉. Each answer
of a query is a binary string inΣ. Each leaf of the decision tree represents a YES or NO decision (deciding whether
the input is fromDY or from DN , respectively).

Since we want to prove a lower bound on the query complexity ofA , we can make freely a modification
that gives a higher success probability on all inputs (and thus makes the algorithmA more powerful). We then
suppose that, whenA goes through an edge corresponding to a string already seen during the computation, then
A immediately stops and outputs the correct answer. With thismodification,A reaches a leaf if and only if it did
not see the same string twice. We refer to Figure 1(a) for an illustration.
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O1

O2(s2, s2) O2(s3, s3)

O2(s2, s3) O2(s4, s3)

s1 s2 s3 s4

s1s2s3 s4 s1 s2s3 s4

s1s2 s3s4 s1s2 s3s4

1

O1

O2(s3, s3)

O2(s4, s3)

s3

s3 s4

s1 s3s4

1

(a) (b)

Figure 1: (a) The decision tree of a deterministic algorithmfor q = 4 andΣ = {s1, s2, s3, s4}. A dotted arrow
means that the computation stops and that the correct answeris systematically output. The leaves are the squared
nodes. (b) The reduced decision tree associated with the sequenceℓ = (s3, s4, s1, s2). The unseen edges are
represented by plain arrows.

We first consider the slightly simpler case where the algorithm A only uses strings obtained from previous
oracle calls as the argument of a query toO2. In other words, we suppose that, whenever an internal nodev
labelled byO2(s, s

′) is reached, then boths ands′ necessarily label some edge in the path from the root of the tree
to v (notice that this is the case for the algorithm of Figure 1(a)). We will discuss at the end of the proof how to
deal with the general case whereA can also queryO2 on strings created by itself (e.g., on the all zero string or on
strings taken randomly inΣ).

Let us fix a sequenceℓ = (σ1, . . . , σ|Σ|) of distinct strings inΣ. Starting from the rootu of the decision
tree (located at leveli = 1), for each internal node located at leveli ∈ {1, . . . , t}, we only keep the outgoing
branches labelled by stringsσ1, . . . , σi, and we call the edge corresponding toσi anunseen edge(remember that
t ≤ q ≤ |Σ|). This construction gives a subtree of the decision tree rooted atu that we call thereduced decision
tree associated withℓ. Note that this subtree has exactly one leaf. See Figure 1(b)for an illustration.

Let us fixp ∈ R and letG be eitherZp2 or Z2
p with the group operation denoted additively. We now describe

a process, invisible to the algorithmA , which constructs, using the sequenceℓ, a mapπ : G → Σ defining a
binary structure(q,O1, O2) for G. The mapπ is constructed “on the fly” during the computation. The algorithm
starts from the root and follows the computation through thereduced decision tree associated withℓ. On a node
corresponding to a call toO1, the oracleO1 chooses a random elementx of the group. If this element has not
already appeared, thenπ(x) is fixed to the string of the unseen edge of this node. The oracle O1 outputs this
string to the algorithmA , while x is kept invisible toA . If the elementx has already appeared, then the process
immediately stops — this is coherent with our convention that A stops whenever the same string is seen twice.
On a node corresponding to a call toO2(s, s

′), the elementsx andx′ such thatπ(x) = s andπ(x′) = s′ have
necessarily been already obtained at a previous step from our assumption. If the elementx + x′ has not already
appeared, thenπ(x + x′) is fixed to the string of the unseen edge of this node. Otherwise the process stops. By
repeating this, the part of the mapπ related to the computation (i.e., the correspondence between elements and
strings for all the elements appearing in the computation) is completely defined byℓ and by the elements chosen
by the oracleO1. If necessary, the mapπ can then be completed. On the example of Figure 1(b), if the input is
Z4 = {0, 1, 2, 3} andO1 chooses the element 3, then the path followed is the path starting from the root labelled
by s3, s4, s1 which definesπ(3) = s3, π(2) = s4, andπ(1) = s1.

For a fixed sequenceℓ, let C ℓ
Y (resp.C ℓ

N ) be the “on the fly” construction forZp2 (resp.Z2
p) obtained by first

choosingp uniformly at random fromR, and then definingπ while running the algorithm, as detailed above. The
distributionDY (resp.DN ) coincides with the distribution that takes a sequenceℓ = (σ1, . . . , σ|Σ|) of |Σ| strings in
Σ uniformly at random without repetition and then create binary structures(q,O1, O2) usingC ℓ

Y (resp.C ℓ
N ). Thus,

to prove Proposition 1, it suffices to use the following lemma.
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Lemma 2. Let ℓ be any fixed sequence of|Σ| distinct strings inΣ. If A decides correctly with probability larger
than2/3 whether the input has been created usingC ℓ

Y or usingC ℓ
N , thent = Ω(q1/6).

Proof of Lemma 2.Let v1, . . . , vn be the set of nodes in the reduced decision tree associated with ℓ, and letS ⊆
{1, . . . , n} (resp.,T ⊆ {1, . . . , n}) be the set of indexesi such thatvi is a query toO2 (resp., toO1). Notice that
|S| + |T | ≤ t. For each indexj ∈ T , we setαj as a random variable representing the element chosen byO1 at
nodevj. Here,αj ∈ Zp2 whenC ℓ

Y generatesZp2, andαj ∈ Z
2
p whenC ℓ

N generatesZ2
p. Since only additions

are allowed as operations on the set{αj}j∈T , the output to a queryvi for i ∈ S can be expressed asπ(ai) where
ai =

∑

j∈T kijαj is a linear combination of the variables in{αj}j∈T . Here all coefficientskij are non-negative and
at least one coefficient must be positive.

We define the functionaii′ = ai − ai′ =
∑

j∈T (k
i
j − ki

′

j )αj for everyi 6= i′ ∈ S. Without loss of generality,

we assume that eachaii′ is a nonzero polynomial (i.e., there exists at least one index j such thatkij 6= ki
′

j ). This
is because, otherwise, the element (and the string) appearing at nodevi is always the same as the element (and the
string) appearing at nodevi′ , and thus one of the two nodesvi andvi′ can be removed from the decision tree. For
any positive integerm, we say thataii′ is constantly zero modulom if m divideskij − ki

′

j for all indexesj ∈ T . We
say that a primep ∈ R is good if there existi 6= i′ ∈ S such that the functionaii′ is constantly zero modulop. We
say thatp ∈ R is bad if, for all i 6= i′ ∈ S, the functionaii′ is not constantly zero modulop (as shown later, when
p is bad, it is difficult to distinguish if the input isZp2 orZ2

p). We denote byRG(ℓ) ⊆ R the set of good primes.

We first suppose that|RG(ℓ)| > |R|/6. Let M denote the value|R|1/3

log2/3 q′
. Assume the existence of a subset

R′
G(ℓ) ⊆ RG(ℓ) of size|R′

G(ℓ)| ≥ M such that there existi 6= i′ ∈ S for which aii′ is constantly zero modulo
p for everyp ∈ R′

G(ℓ). Since allp ∈ R′
G(ℓ) are primes, andaii′ is not the zero-polynomial,aii′ must have a

nonzero coefficient divisible by
∏

p∈R′

G(ℓ) p. To create such a coefficient, we must havet ≥ log2
∏

p∈R′

G(ℓ) p =

Ω(|R′
G(ℓ)| log q′) = Ω((|R| log q′)1/3). Now assume that there exists no such subsetR′

G(ℓ). Then, for eachi 6=
i′ ∈ S, at mostM primesp have the property thataii′ is constantly zero modulop. This implies that|RG(ℓ)| ≤
M · |S|(|S|− 1)/2 ≤M · t(t− 1)/2. Since|RG(ℓ)| > |R|/6, it follows thatt = Ω((|R| log q′)1/3). Thus, for both
cases, we havet = Ω((|R| log q′)1/3) = Ω(q1/6).

Hereafter we suppose that|RG(ℓ)| ≤ |R|/6. Assume that the leaf of the reduced decision tree corresponds to a
YES decision. Recall that, if the computation does not reachthe leaf,A always outputs the correct answer. From
these observations, we give the following upper bound on theoverall success probability:

r+(1−r)(ρℓY ·1+(1−ρℓY )·1)
2

+
r+(1−r)(ρℓN ·1+(1−ρℓN )·0)

2
=

1+r+(1−r)ρℓN
2

,

wherer = |RG(ℓ)|
|R| is the probability ofp being good, andρℓY (resp.,ρℓN ) is the probability thatA does not reach

the leaf conditioned on the event that the instance is fromC ℓ
Y (resp., fromC ℓ

N ) and p is a bad prime. Since
|RG(ℓ)| ≤ |R|/6, the above success probability has upper bound7

12 + 5
12ρ

ℓ
N . When the leaf of the reduced

decision tree corresponds to a NO decision, a similar calculation gives that the overall success probability is at
most 7

12 + 5
12ρ

ℓ
Y .

We now give an upper bound onρℓY andρℓN . Let us fixp ∈ R\RG(ℓ). Sincep is bad, eachaii′ for i 6= i′ ∈ S is
not constantly zero modulop. WhenC ℓ

Y generatesZp2, the probability thataii′ becomes0 after substituting values
into {αj}j∈T is then exactly1/p2 (since the values of eachαj uniformly distribute overZp2 and there is a unique
solution inZp2 to the equationaii′ = 0 once all but one values are fixed). By the union bound, the probability

ρℓY thus satisfiesρℓY ≤
|S|(|S|−1)

2p2
≤ t(t−1)

2p2
≤ 2 · t(t−1)

(q′)2
. Similarly, whenC ℓ

N generatesZ2
p, the probability that

aii′ becomes0 after substituting values into{αj}j∈T is also exactly1/p2. Thus, the probabilityρℓN also satisfies

ρℓN ≤
|S|(|S|−1)

2p2
≤ t(t−1)

2p2
≤ 2 · t(t−1)

(q′)2
.

To achieve overall success probability at least2/3, we must have eitherρℓY ≥ 1/5 or ρℓN ≥ 1/5, and thus
t = Ω(q′) = Ω(q1/2).
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Finally, we briefly explain how to deal with the general case whereA can make binary strings by itself and use
them as arguments toO2. The difference is that now a strings not seen before can appear as an argument toO2.
Basically, what we need to change is the following two points: First, in the “on the fly” construction ofπ from ℓ, if
such a query appears then an elementx is taken uniformly at random from the set of elements of the input group
not already labelled, and the identificationπ(x) = s is done. Second, in the proof of Lemma 2, another random
variable is introduced to represent the element associatedwith s. With these modifications the same lower bound
t = Ω(q1/6) holds.

This concludes the proof of Proposition 1.

4 A Lower Bound for Testing the Number of Generators in a Group

In this section we show that, even if the size of the ground setΓ is known, it is hard to test whether(Γ, ◦) is close
to an abelian group generated byk elements for any valuek ≥ 2. We prove the following theorem using a method
similar to the proof of Theorem 1. See Appendix for details.

Theorem 2. Letk ≥ 2 be an integer and suppose thatǫ ≤ 1/23. Then the query complexity of anyǫ-tester for the
class of abelian groups generated byk elements is

{

Ω(|Γ|
1
6
− 2

6(3k+2) ) if k is even,

Ω(|Γ|
1
6
− 4

6(3k+1) ) if k is odd.

Moreover, these bounds hold with respect to either the Hamming distance or the edit distance, and even when|Γ|
is known.

5 Testing if the Input is Cyclic when |Γ| is Known

In this section we study the problem of testing, when|Γ| is known, if the input(Γ, ◦) is a cyclic group or is far from
the class of cyclic groups. Let us denotem = |Γ|, and suppose that we also know its factorizationm = pe11 · · · perr
where thepi’s are distinct primes. LetCm = {0, . . . ,m − 1} be the cyclic group of integers modulom and, for
anyi ∈ {1, . . . , r}, denote byCm,i = {0, mpi , . . . , (pi − 1)mpi } its subgroup of orderpi. The group operation inCm

is denoted additively.
For anyγ ∈ Γ, we now define a mapfγ : Cm → Γ such thatfγ(a) represents thea-th power ofγ. Since the

case where◦ is not associative has to be taken in consideration and sincewe want to evaluate efficientlyf , this map
is defined using the following rules.















fγ(1) = γ
fγ(a) = γ ◦ f(a− 1) if 2 ≤ a ≤ m− 1 anda is odd
fγ(a) = fγ(a/2) ◦ fγ(a/2) if 2 ≤ a ≤ m− 1 anda is even
fγ(0) = γ ◦ f(m− 1)

The value offγ(a) can then be computed withO(logm) uses of the operation◦. Notice that if(Γ, ◦) is a group,
thenfγ(a) = γa for anya ∈ {0, . . . ,m− 1}.

For anyǫ > 0, our ǫ-tester for cyclic groups is denoted CYCLICTESTǫ and is described in Figure 2. The input
(Γ, ◦) is given as a binary structure(q,O1, O2) with q ≥ m. In the description of Figure 2, operations in(Γ, ◦),
such as taking a random element or computing the product of two elements, are implicitly performed by using
the oraclesO1 andO2. The correctness of this algorithm and upper bounds on its complexity are shown in the
following theorem. A proof is given in Appendix.
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Algorithm CYCLICTESTǫ

INPUT: a magma(Γ, ◦) given as a binary structure(q,O1, O2)
the sizem = |Γ| and its factorizationm = pe11 · · · perr

1 decision ← FAIL; counter ← 0;
2 while decision = FAIL and counter ≤ d1 = Θ(log logm) do
3 decision ← PASS;
4 Take an elementγ uniformly at random inΓ;
5 Repeat the following testd2 = Θ(ǫ−1 log log logm) times:
6 take two elementsx, y uniformly at random inCm;
7 if fγ(x+ y) 6= fγ(x) ◦ fγ(y) then decision ← FAIL;
8 for i ∈ {1, . . . , r} do
9 take two arbitrary distinct elementsx, y in Cm,i;

10 taked3 = Θ(log log logm) elementsu1, . . . , ud3 at random inCm;
11 if there existsj∈{1, . . . , d3} such thatfγ(x+ uj) = fγ(y + uj)
12 then decision ← FAIL;
13 counter ← counter +1;
14 output decision ;

Figure 2: Algorithm CYCLICTESTǫ.

Theorem 3. For any value ǫ > 0, Algorithm CYCLICTESTǫ is an ǫ-tester for cyclic groups with
respect to both the edit distance and the Hamming distance. Its query and time complexities are

O
(

(logm+ log logm
ǫ ) · log q · log log logm

)

.
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Appendix

A. Proof of Lemma 1

The idea of this proof has been communicated to us by Ivanyos [13]. Work on other aspects of the distance between
non-isomorphic groups has subsequently been the subject ofa joint paper [14].

We will use the following lemma, which is a weak version of Corollary 1 in Ref. [14].

Lemma 3. Let (G, ◦) and(H, ∗) be two groups such that|G| ≤ |H|. If (G, ◦) is not isomorphic to a subgroup of
(H, ∗), then

Pr
x,y∈G

[γ(x ◦ y) = γ(x) ∗ γ(y)] ≤ 7

9
|G|2

for any injective mapγ : G→ H.

We now present our proof of Lemma 1.

Proof of Lemma 1.We assume without loss of generality that|G| ≤ |H| and prove the lemma by contraposition.
Namely, we show thatG andH are isomorphic ifedit((G, ◦), (H, ∗)) < |H|2/23.

Suppose thatedit((G, ◦), (H, ∗)) < δ|H|2, whereδ ≤ 1/23. LetTG : ΠG×ΠG → N andTH : ΠH×ΠH → N

be multiplication tables ofG andH, respectively, such that the edit distance betweenTG andTH is at mostδ|H|2.
Here,ΠG andΠH are subsets ofN of size|G| and|H|, respectively. LetσG : ΠG → G andσH : ΠH → H be the
bijections associated withTG andTH , respectively.

First notice that|G| ≥ (1− δ)|H|. Otherwise, at leastδ|H| elements should be added toTG to obtain the table
TH , which would cost at least

δ|H|
∑

i=1

(2|H| − 2i+ 1) = 2δ|H|2 − δ|H|(δ|H| + 1) + δ|H| = δ(2 − δ)|H|2 > δ|H|2

operations.
We now consider the transition fromTG to TH through the process of computing the edit distance. Observe

that the number of removed elements through the transition is at mostδ|G|, otherwise it would cost more than

δ|G|
∑

i=1

(2|G| − 2i+ 1) = 2δ|G|2 − δ|G|(δ|G| + 1) + δ|G|

= δ(2 − δ)|G|2 ≥ δ(2 − δ)(1 − δ)2|H|2 > δ|H|2

operations. LetS ⊆ ΠG be the set of elements that are not removed in the transition and defineU = {σG(s)|s ∈
S} ⊆ G. From the argument above, we have|U | ≥ (1− δ)|G|.

We define a mapf : G → H as follows. Forx ∈ U , f(x) = σH(σ−1
G (x)). Forx 6∈ U , we choosef(x) so

thatf(x) becomes an injective map (this is possible since|G| ≤ |H|). Suppose that, for two elementsx, y ∈ U ,
the elementx ◦ y is inU . Also, suppose that the valueTG(σ

−1
G (x), σ−1

G (y)) was not modified in the transition, i.e.,
TG(σ

−1
G (x), σ−1

G (y)) = TH(σ−1
G (x), σ−1

G (y)). In this case,

σ−1
H (f(x) ∗ f(y)) = TH(σ−1

H (f(x)), σ−1
H (f(y)))

= TH(σ−1
G (x), σ−1

G (y))

= TG(σ
−1
G (x), σ−1

G (y))

= σ−1
G (x ◦ y).
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Thus, we havef(x) ∗ f(y) = σH(σ−1
G (x ◦ y)) = f(x ◦ y). Since the number of exchange operations done to the

tableTG is at mostδ|H|2 ≤ δ|G|2/(1 − δ)2, by the union bound we obtain

Pr
x,y∈G

[f(x ◦ y) = f(x) ∗ f(y)] ≥ 1− 3δ − δ/(1 − δ)2 ≥ 1− 5δ.

Thus, since5δ < 2/9, Lemma 3 implies that the group(G, ◦) is isomorphic to a subgroup of(H, ∗). If (G, ◦) is
isomorphic to a proper subgroup of(H, ∗), then|G| ≤ |H|/2, which contradicts the fact that|G| ≥ (1 − δ)|H|.
Thus,(G, ◦) is indeed isomorphic to(H, ∗).

B. Proof of Theorem 2

To show the lower bound, we use Yao’s minimax principle as in the proof of Theorem 1. We introduce two
distributionsDY andDN such that every instance inDY is generated byk elements while every instance inDN is
far from abelian groups generated byk elements. Moreover, all instances inDY andDN have the same order. Then
we construct the input distributionD as the distribution that takes an instance fromDY with probability 1/2 and
from DN with probability1/2. By showing that any deterministic algorithm requires manyqueries to distinguish
them, we obtain the desired result.

We first consider the case wherek is even. Letr ≥ 2 be a fixed integer and denotek = 2r − 2. For any fixed
(and known) primep, we defineDY as the distribution over binary structures for the groupZ

r
p2 × Z

r−2
p where the

injective mapπ hidden behind the group oracles is chosen uniformly at random. We defineDN as the uniform
distribution over binary structures forZr−1

p2
×Z

r
p in the same manner. The order of every instance inDY andDN is

p3r−2. Every instance inDY has2r − 2 = k generators while every instance inDN needs at least2r − 1 = k + 1
elements to be generated. Moreover, from Lemma 1, every instance inDN is 1/23-far from groups ofk generators.
The part of Theorem 2 fork even then follows from the following proposition.

Proposition 2. Any deterministic algorithm that decides with probabilitylarger than2/3 whether the input is from
the distributionDY or from the distributionDN must useΩ(

√

pr−1) queries.

Proof. Let us consider the decision tree associated with a deterministic algorithmA usingt queries. As in Section
3, we rely on the fact that the distribution of instances generated byD can be created through a more convenient
“on the fly” construction ofπ using a random sequenceℓ of strings. We suppose hereafter thatℓ is fixed and denote
by C ℓ

Y (resp.,C ℓ
N ) the associated construction of positive (resp., negative) instances. We assume again that, when

A goes through an edge corresponding to a string already seen during the computation, thenA immediately stops
and outputs the correct answer (this modification only improves the ability ofA ).

We denote again byv1, . . . , vn the set of nodes in the reduced decision tree associated withℓ, and byS ⊆
{1, . . . , n} (resp.,T ⊆ {1, . . . , n}) the set of indexesi such thatvi is a query toO2 (resp.,O1). Notice that
|S| + |T | ≤ t. For eachj ∈ T , we setαj as a random variable representing the element obtained by performing
a query toO1. The answer to a queryvi for i ∈ S can be expressed asπ(ai) whereai =

∑

j∈T kijαj is a linear

combination of the variables{αj}j∈T . We define the functionaii′ = ai − ai′ =
∑

j∈T (k
i
j − ki

′

j )αj for every
i 6= i′ ∈ S. Remember that, for any positive integerm, we say thataii′ is constantly zero modulom if m divides
kij − ki

′

j for all indexesj ∈ T . Note that we can suppose without loss of generality that forall indexesi 6= i′ ∈ S

the functionaii′ is not constantly zero modulop2 (otherwise it would give no useful information sincep2x = 0 for
any elementx in an instance created byC ℓ

Y or C ℓ
N ).

Suppose that the leaf of the reduced decision tree associated with ℓ corresponds to a YES decision. The success
probability of the algorithmA for this fixed sequenceℓ is at most

1

2
(ρℓY · 1 + (1− ρℓY ) · 1) +

1

2
(ρℓN · 1 + (1− ρℓN ) · 0) = 1

2
(1 + ρℓN ),

whereρℓY (resp.,ρℓN ) is the probability thatA does not reach the leaf conditioned on the event that the instance
is from C ℓ

Y (resp., fromC ℓ
N ). When the leaf of the reduced decision tree corresponds to aNO decision, a similar
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calculation gives that the success probability is at most1
2(1+ ρℓY ). Notice thatρℓY andρℓN are the probabilities that

the same string is seen twice during the computation. We willnow show that, when the instance is created by either
C ℓ
Y or C ℓ

N , the inequality

Pr
{αj}j∈T



∃i 6= i′ ∈ S such that
∑

j∈T

kii
′

j αj = 0



 ≤ t(t− 1)

2 · pr−1

holds. This implies thatmax(ρℓY , ρ
ℓ
N ) ≤ t(t−1)

2·pr−1 and then the algorithmA cannot distinguishC ℓ
Y from C ℓ

N with

probability at least 2/3 unlesst = Ω(
√

pr−1).
Let us fix some pair of indexesi 6= i′ ∈ S. If there exists some indexj ∈ T such thatkii

′

j 6≡ 0 (mod p), then
for instances generated byC ℓ

Y andC ℓ
N we have

Pr
{αj}j∈T





∑

j∈T

kii
′

j αj = 0



 =
1

p3r−2
. (1)

Now suppose thatkii
′

j ≡ 0 (mod p) for all j ∈ T . Since there arep2r−2 elements of order at mostp in Z
r
p2×Z

r−2
p ,

andp2r−1 elements of order at mostp in Z
r−1
p2
× Z

r
p, for instances generated byC ℓ

Y andC ℓ
N we have

Pr
{αj}j∈T





∑

j∈T

kii
′

j αj = 0



 ≤ p2r−1

p3r−2
=

1

pr−1
. (2)

The union bound then implies that

Pr
{αj}j∈T



∃i 6= i′ ∈ S such that
∑

j∈T

kii
′

j αj = 0



 ≤ t(t− 1)

2 · pr−1

in both cases.
Since the same argument holds for any sequenceℓ, we conclude that the algorithmA cannot distinguishDY

from DN with overall success probability at least 2/3 unlesst = Ω(
√

pr−1).

We now consider the case wherek is odd. Let us fixr ≥ 2 and denotek = 2r − 1. We define similarlyD ′
Y

as the uniform distribution over binary structures for the groupZ
r
p2 × Z

r−1
p , andD ′

N as the uniform distribution

over binary structures forZr−1
p2
×Z

r+1
p . The order of every instance inD ′

Y andD ′
N is p3r−1. Every instance inD ′

Y

has2r − 1 = k generators while every instance inD ′
N needs at least2r = k + 1 elements to be generated. From

Lemma 1, every instance inD ′
N is 1/23-far from abelian groups generated byk generators. The part of Theorem 2

for k odd follows from the following proposition.

Proposition 3. Any deterministic algorithm that decides with probabilitylarger than2/3 whether the input is from
the distributionD ′

Y or from the distributionD ′
N must useΩ(

√

pr−1) queries.

Proof. The proof is exactly the same as the proof of Proposition 2, except that Equality (1) becomes

Pr
{αj}j∈T





∑

j∈T

kii
′

j αj = 0



 =
1

p3r−1

and Inequality (2) becomes

Pr
{αj}j∈T





∑

j∈T

kii
′

j αj = 0



 ≤ p2r

p3r−1
=

1

pr−1
.
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C. Proof of Theorem 3

The proof of Theorem 3 relies on the following theorem.

Theorem 4. Let (Γ, ◦) be a magma and letη be a constant such thatη < 1/120. Let G be a (not necessary
abelian) group with order|G| = |Γ| in which the multiplication of two elementsx, y is denoted byxy. Letf denote
a map fromG to Γ. Suppose that the following two conditions are satisfied:

(a) Prx,y∈G[f(xy) = f(x) ◦ f(y)] ≥ 1− η;

(b) for any subgroupH 6= {e} of G there exist two distinct elementsx, y ∈ H such that the inequality
Pru∈G[f(xu) = f(yu)] ≤ 1/2 holds.

Then there exists a binary operation∗ : Γ × Γ → Γ such that(Γ, ∗) is a group isomorphic toG and such that
HamΓ(◦, ∗) ≤ 46η|G|2.

We need an auxiliary lemma to prove Theorem 4.
Suppose that(Γ, ◦) is a magma,η is a constant such that0 ≤ η < 1/120, G is a (not necessary abelian) group,

andf is a map fromG to Γ. The order ofG does not matter for now. The multiplication of two elementsx, y ∈ G
is denoted byxy. Following definitions introduced in the work by Friedl et al. [10], we say that an elementx of G is
well-behavingif both the two inequalitiesPru∈G[f(xu) = f(x)◦f(u)] ≥ 4/5 andPru∈G[(f(x)◦f(u))◦f(u−1) =
f(x)] ≥ 4/5 hold. Friedl et al. showed the following results.

Lemma 4 (Lemmas 1-6 of [10]). Suppose that

Pr
x,y∈G

[f(xy) = f(x) ◦ f(y)] ≥ 1− η. (3)

ThenPrx∈G[x is not well-behaving] ≤ 15η. Moreover, there exists a normal subgroupK of G such that, for any
x, y ∈ G:

(i) if Kx = Ky thenPru∈G[f(xu) = f(yu)] ≥ 1− 4η;

(ii) if Kx 6= Ky thenPru∈G[f(xu) = f(yu)] ≤ 4η;

(iii) f(x) 6= f(y) for any two well-behaving elementsx andy of G such thatKx 6= Ky.

We now give the proof of Theorem 4. The idea is similar to the one used in the proof of Theorem 2 in Ref. [10].

Proof of Theorem 4.Suppose that all the conditions of Theorem 4 are satisfied. Weexplicitly construct a binary
operation∗ : Γ × Γ → Γ such that(Γ, ∗) is isomorphic toG and such that the Hamming distance between(Γ, ◦)
and(Γ̃, ∗) is at most46η|G|2.

Let K denote the subgroup ofG whose existence is ensured by Lemma 4. From the properties ofK stated in
Lemma 4, and from Condition (b) in the statement of Theorem 4,we conclude thatK = {e}.

Let Γ1 = {f(x) | x is a well-behaving element ofG} ⊆ Γ and defineΓ2 = Γ\Γ1. Notice that|Γ1| is equal to
the number of well-behaving elements ofG from Lemma 4.

We now define a one-one map̃f : G → Γ as follows. Ifx ∈ G is well-behaving, theñf(x) = f(x); if x ∈ G
is not well-behaving theñf(x) is an element inΓ2 chosen arbitrarily in a way such as̃f(x) 6= f̃(y) for distinct not
well-behaving elementsx, y of G.

We define the multiplication∗ overΓ as follows. For anyα, β ∈ Γ, there exist (unique)xα andxβ in G such
thatα = f̃(xα) andβ = f̃(xβ). We then setα ∗ β = f̃(xαxβ). With this definition, the map̃f becomes an
isomorphism fromG to (Γ, ∗).

We now show the following inequality:

Pr
x,y∈G

[f̃(x) ∗ f̃(y) 6= f̃(x) ◦ f̃(y)] ≤ 46η. (4)
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By definition of∗, we havef̃(x) ∗ f̃(y) = f̃(xy). With probability at least1 − 45η the three elementsx, y, and
xy are well-behaving elements (from Lemma 4), in which casef̃(x) = f(x), f̃(y) = f(y), andf̃(xy) = f(xy).
Remember that we also know that with probability at least1− η the equalityf(xy) = f(x) ◦ f(y) holds. Then the
equalityf̃(x) ∗ f̃(y) = f(x) ◦ f(y) holds with probability at least1− 46η.

Sincef̃ is one-one fromG to Γ, Inequality (4) implies thatHamΓ(◦, ∗) ≤ 46η|Γ|2.

We are now ready to give the proof of Theorem 3.

Proof of Theorem 3.Since anyǫ-tester with respect to the Hamming distance is also anǫ-tester with respect to the
edit distance, we consider hereafter the Hamming distance.

Suppose that the input(Γ, ◦) is a cyclic group of orderm. Suppose that the elementγ chosen at Step 4 is a
generator of(Γ, ◦). ThenPrx,y∈Cm [fγ(x + y) = fγ(x) ◦ fγ(y)] = 1 andPru∈Cm [fγ(x + u) = fγ(y + u)] = 0
for anyi ∈ {1, . . . , r} and any distinctx, y ∈ Cm,i. Thus the value of the variabledecision at the end of the loop
of Steps 3-13 for this specific value ofγ will always be PASS. Since with probabilityΩ(1/ log logm) an element
chosen uniformly at random in a cyclic group of orderm is a generator (see for example Ref. [3]), by taking an
appropriate valued1 = Θ(log logm) the algorithm outputs PASS with probability at least 2/3.

Now suppose that(Γ, ◦) is ǫ-far from the class of cyclic groups and letγ be any element ofΓ. Denoteǫ̃ =
min(ǫ, 46/120) and suppose that the following two assertions hold:

(i) Prx,y∈Cm [fγ(x+ y) = fγ(x) ◦ fγ(y)] ≥ 1− ǫ̃/46;

(ii) for each indexi ∈ {1, . . . , r}, there exist two distinct elementsx, y ∈ Cm,i such that
Pru∈Cm [fγ(x+ u) = fγ(y + u)] ≤ 1

2 .

Notice that any nontrivial subgroupH of Cm contains at least one of the subgroupsCm,1, . . . , Cm,r. Then Theo-
rem 4 implies that(Γ, ◦) is ǫ̃-close (and thusǫ-close) to the class of cyclic groups, which contradicts ourhypothesis.

We conclude that, when(Γ, ◦) is ǫ-far from the class of cyclic groups, for each valueγ chosen by the algorithm
at Step 4, at least one among Assertion (i) or Assertion (ii) should not hold. If Assertion (i) does not hold for a
specific valueγ, then this is detected with probability at least1−(1− ǫ̃/46)d2 in the tests performed at Steps 5-7. If
Assertion (ii) does not hold for a specific valueγ, then there exists a valuei0 ∈ {1, . . . , r} such thatPru∈Cm [fγ(x+
u) = fγ(y + u)] ≥ 1

2 for all distinctx, y ∈ Cm,i0. This is detected with probability at least1 − (1/2)d3 in the
tests performed at Steps 8-12. By taking appropriate valuesd2 = Θ(ǫ̃−1 log d1) = Θ(ǫ−1 log log logm) and
d3 = Θ(log d1) = Θ(log log logm), the fact that Assertion (i) or Assertion (ii) not hold will be detected with
overall probability at least2/3 for all the values ofγ chosen by the algorithm. Algorithm CYCLICTESTǫ then
outputs FAIL with probability at least2/3.

The query complexity follows from the fact thatfγ can be evaluated usingO(logm) queries and from the
observation thatr = O(logm/ log logm) since an integern has at mostO(log n/ log log n) distinct prime divi-
sors (see for example Ref. [3]). The time complexity followsfrom the fact that, additionally, elements ofΓ are
represented by strings of length⌈log2 q⌉.
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