Skip to main content

Hurst CGR (HCGR) – A Novel Feature Extraction Method from Chaos Game Representation of Genomes

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 190))

Abstract

The performance of a classifier depends on the exactness of the feature vectors extracted from the dataset. Here, a novel method for feature extraction from genome sequences is presented which combines Chaos Game Representation (CGR) and Hurst exponent. The former maps genome sequences into fractal images while the latter acts as a quantifier for such images. The suitability of the new feature vector is attested by classifying 8 categories of eukaryotic genomes accessed from NCBI. The classification results prove that application of Hurst exponent over Chaos Game Representation formats of genome sequences can extract signature features representative of the underlying sequences, thus presenting HCGR as a new feature for classification of genomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandberg, R., Winberg, G., Branden, C.I., Kaske, A., Ernberg, I., Coster, J.: Capturing Whole – Genome characteristics in short sequences using a naive Bayesian classifier. Genome Res. 11, 1404–1409 (2001)

    Article  Google Scholar 

  2. Narasimhan, S., Sen, S., Konar, A.: Species identification based on mitochondrial genomes. In: Proceedings of the International Conference of Cognition and Recognition, Mysore, India, December 22-23 (2005)

    Google Scholar 

  3. Deschavanne, P.J., Giron, A., Vilain, J., Fagot, G., Fertil, B.: Genomic signature: characterization and classification of species assessed by chaos game representation of sequences. Mol. Biol. Evol. 16, 1391–1399 (1999)

    Article  Google Scholar 

  4. Almeida, J.S., Carrico, J.A., Maretzek, A., Noble, P.A., Fletcher, M.: Analysis of genomic sequences by chaos game representation. Bioinformatics 17, 429–437 (2001)

    Article  Google Scholar 

  5. Nair, V.V., Nair, A.S.: Combined classifier for unknown genome classification using chaos game representation features. In: Proceedings of the International Symposium of Bio Computing, NITC Calicut, India, February 15-17 (2009)

    Google Scholar 

  6. Peitgen, H.O., Jurgens, H., Saupe, D.: Chaos and Fractals New Frontiers of Science, 2nd edn. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  7. Nair, A.S., Nair, V.V., Arun, K.S., Kant, K., Dey, A.: Bio-sequence Signatures Using Chaos Game Representation. In: Fulekar, M.H. (ed.) Bioinformatics: Applications in Life and Environmental Sciences, pp. 62–76. Springer, New York (2009)

    Chapter  Google Scholar 

  8. Hassan, S., Choudhury, P. P., Daya Sagar, B. S., Chakraborty, S., Guha, R., Goswam, A.: Understanding Genomic Evolution of Olfactory Receptors through Fractal and Mathematical Morphology. In: Nature Proceedings: hdl:10101/npre.2011.5674.1 (February 14, 2011)

    Google Scholar 

  9. Noble, W.S.: Support vector machine applications in computational biology. In: Kernel Methods in Computational Biology, pp. 71–92. MIT Press, Cambridge (2004)

    Google Scholar 

  10. Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18, 2163–2170 (1990)

    Article  Google Scholar 

  11. Joseph, J., Sasikumar, R.: Chaos game representation for comparison of whole genomes. BMC Bioinformatics 7, 243 (2006)

    Article  Google Scholar 

  12. Mandelbrot, B.: The fractal geometry of nature. W. H. Freeman, New York (1982)

    MATH  Google Scholar 

  13. http://www.bearcave.com/misl/misl_tech/wavelets/hurst/

  14. http://www.ncbi.nlm.nih.gov/Genomes/ORGANELLES/ organelles.html

  15. Bassingthwaighte, J.B., Raymond, G.M.: Evaluation of the dispersional analysis method for fractal time series. Annals Biomed. Engg. 23, 491–505 (1995)

    Article  Google Scholar 

  16. http://www.mathworks.com/matlabcentral/fileexchange/9842

  17. Qian, B., Rasheed, K.: Hurst exponent and financial market predictability. In: IASTED conference on Financial Engineering and Applications, pp. 203–209 (2004)

    Google Scholar 

  18. Cristianini, N., Taylor, J.S.: Support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nair, V.V., Mallya, A., Sebastian, B., Elizabeth, I., Nair, A.S. (2011). Hurst CGR (HCGR) – A Novel Feature Extraction Method from Chaos Game Representation of Genomes. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22709-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22709-7_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22708-0

  • Online ISBN: 978-3-642-22709-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics