Skip to main content

Object Flow: Learning Object Displacement

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6468))

Abstract

Modelling the dynamic behaviour of moving objects is one of the basic tasks in computer vision. In this paper, we introduce the Object Flow, for estimating both the displacement and the direction of an object-of-interest. Compared to the detection and tracking techniques, our approach obtains the object displacement directly similar to optical flow, while ignoring other irrelevant movements in the scene. Hence, Object Flow has the ability to continuously focus on a specific object and calculate its motion field. The resulting motion representation is useful for a variety of visual applications (e.g., scene description, object tracking, action recognition) and it cannot be directly obtained using the existing methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  2. Kanade, T., Lucas, B.: An iterative image registration technique with an application to stereo vision. In: Proc. Int. Joint Conf. on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  3. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.: SIFT flow: Dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Seitz, S., Baker, S.: Filter flow. In: Proc. ICCV (2009)

    Google Scholar 

  5. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: BMVC, London, UK (2009)

    Google Scholar 

  6. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: Proc. CVPR (2009)

    Google Scholar 

  7. Sun, D., Roth, S., Lewis, J., Black, M.: Learning optical flow. In: Proc. ECCV (2008)

    Google Scholar 

  8. Wu, Y., Fan, J.: Contextual flow. In: Proc. CVPR (2009)

    Google Scholar 

  9. Shi, J., Malik, J.: Motion segmentation and tracking using normalized cuts. In: Proc. ICCV (1998)

    Google Scholar 

  10. Odobez, J.-M., Daniel Gatica-Perez, S.B.: Embedding motion in model-based stochastic tracking. IEEE Transactions on Image Processing 15, 3515–3531 (2006)

    Article  Google Scholar 

  11. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Proc. CVPR (2007)

    Google Scholar 

  12. Santner, J., Werlberger, M., Mauthner, T., Paier, W., Bischof, H.: FlowGames. In: 1st Int. Workshop on CVCG in conjunction with CVPR (2010)

    Google Scholar 

  13. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, vol. II, pp. 246–252 (1999)

    Google Scholar 

  14. Leibe, B., Schindler, K., Gool, L.V.: Coupled detection and trajectory estimation for multi-object tracking. In: Proc. ICCV (2007)

    Google Scholar 

  15. Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Gool, L.V.: Robust tracking-by-detection using a detector confidence particle filter. In: Proc. ICCV (2009)

    Google Scholar 

  16. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)

    Google Scholar 

  17. Stalder, S., Grabner, H., Gool, L.V.: Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In: Proc. IEEE WS on On-line Learning for Computer Vision (2009)

    Google Scholar 

  18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  19. Yu, J., Amores, J., Sebe, N., Radeva, P., Tian, Q.: Distance learning for similarity estimation. IEEE Trans. on PAMI (2008)

    Google Scholar 

  20. Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image retrieval. In: Proc. CVPR, vol. 2, pp. 570–577 (2004)

    Google Scholar 

  21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, vol. I, pp. 511–518 (2001)

    Google Scholar 

  22. Prisacariu, V., Reid, I.: fasthog - a real-time gpu implementation of hog. Technical Report 2310/09 (Department of Engineering Science, Oxford University)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lalos, C., Grabner, H., Van Gool, L., Varvarigou, T. (2011). Object Flow: Learning Object Displacement. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6468. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22822-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22822-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22821-6

  • Online ISBN: 978-3-642-22822-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics