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Abstract. In video surveillance and long term scene monitoring applications, it 
is a challenging problem to handle slow-moving or stopped objects for motion 
analysis and tracking. We present a new framework by using two feedback 
mechanisms which allow interactions between tracking and background 
subtraction (BGS) to improve tracking accuracy, particularly in the cases of 
slow-moving and stopped objects. A publish-subscribe modular system that 
provides the framework for communication between components is described. 
The robustness and efficiency of the proposed method is tested on our real time 
video surveillance system. Quantitative performance evaluation is performed on 
a variety of sequences, including standard datasets. With the two feedback 
mechanisms enabled together, significant improvement in tracking performance 
are demonstrated particularly in handling slow moving and stopped objects. 
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1   Introduction 

Automatic video surveillance is a rapidly expanding field, driven by increases in 
the affordability of technology and the perceived need for security. Demand and the 
constrained domain make it one of the most commercially viable application areas for 
computer vision technology. Many applications in the field require the tracking of 
moving objects (usually people and vehicles), so that events (such as entering a secure 
zone) can be detected or those objects can be found through a search interface. 

In most automatic surveillance systems, objects of interest are first detected, 
usually by background subtraction (BGS) which will find moving objects [2, 3, 17]. 
Detected objects are then tracked by a tracking module [1, 4]. Most surveillance video 



analysis systems operate in a feed-forward manner to pass detections from 
background subtraction to the tracker and then tracks are stored or processed further, 
for instance by behavior analysis modules. Such a system provides an efficient 
mechanism for detecting moving objects, but practical implementations suffer from a 
number of limitations when exposed to particular conditions (lighting variations, 
weather, heavy occlusion, crowding, non-rigid objects). A rich literature attempts to 
deal with each of these problems. In this paper, we concern the problems that arise in 
scenes with slow moving objects and where objects stop for significant periods of 
time. In particular these scenes challenge the fundamental assumption of a strict 
differentiation between foreground and background, and the pragmatic choice of 
using motion, or its proxies, to distinguish between the two. A given object may 
change from foreground to background and vice versa. For instance, a moving car 
may park and for all practical purposes needs to be treated as “background” — at least 
until it starts moving again. 

Background subtraction algorithms are generally designed to be adaptive to be able 
to deal with scene changes (changing lighting; backgrounds whose appearance 
changes, such as trees and water; static objects). However, a slow moving, or stopped, 
object can lead to just such repeated observations, and result in the object being 
adapted piecemeal into the background. This leads to errors in tracking, as the object 
dissolves into multiple fragments, and false “ghost” fragments appear where the 
background contains the object after it moves away. 

The tracking process usually treats groups of pixels collectively, as unitary objects, 
and this higher-level information derived by the tracker can be used to inform the 
process of background subtraction. The tracker explicitly models the objects, whose 
behaviors are subject to physical constraints (such as rigid motion) in ways different 
to the physical constraints that control the appearance of individual pixels. Many 
object tracking techniques focus on handling occlusions but neglect how to track slow 
moving or stopped objects. Boult et al. [4] describe a system that performs well at 
detecting slow moving objects. 

There have been a few systems that have investigated the possibility of feedback 
from the tracker to the background subtraction module. In order to improve the 
robustness and efficiency of background subtraction methods, some papers [3, 5, 6] 
introduced feedback from the frame level and some papers employed the feedback 
from the tracker [7–11]. Abbott et al. [7] proposed a method to reduce computational 
cost in visual tracking systems by using track state estimates to direct and constrain 
image segmentation via background subtraction and connected components analysis. 
Harville [8] used application-specific high level feedback (frame level, person 
detector and tracker, and non person detector) frame to locally adjust sensitivity to 
background variation. Senior [12] suggests recalculating the background and 
foreground segmentation using the model of the tracked object after the background 
subtraction stage. Wang et al. [11] proposed a unified framework to address detection 
and tracking simultaneously to improve the detection results. They feed the tracking 
results back to the detection stage. 

The interaction between the tracking and background subtraction can also be used 
to improve the tracking of the slow moving and stopped objects. Venetianer et al. [13] 
examine a way of pushing foreground objects into the background and vice versa. 
Yao and Odobez [14] use a similar layered background mechanism to remember 



stopped objects. Taycher et al. [15] proposed an approach that incorporates 
background modeling and object tracking to prevent stationary objects fading into the 
background. Our approach is most closely related to that of Pnevmatikakis and 
Polymenakos [9], who to overcome the problem of stationary targets fading into the 
background, propose a system combining a mixture of Gaussians background 
subtraction algorithm and a Kalman tracker in a feedback configuration. They control 
the learning parameters of the background adaptation on a pixel level in elliptical 
regions around the targets based on the tracking states from the Kalman tracker. A 
smaller learning parameter was used for a slow moving object. However, this 
mechanism will fail when the targets stay stationary for a long period. They will 
gradually fade into the background even with very small learning parameters. 

In contrast, we create two feedback mechanisms that allow the tracker to suppress 
background updating for slow moving objects that are being tracked. Further, we 
introduce an active, tracker-driven, object-level healing process where whole objects 
are pushed to the background to solve the challenges in tracking caused by the 
stopped objects. 

 
Fig. 1. Diagram of the interaction of background subtraction and tracking, showing the 
passing of metadata messages. 

2   Interaction between BGS and Tracking 

2.1   Feedback Mechanisms for Interactions between BGS and Tracking 

In order to improving tracking accuracy, we create two feedback mechanisms that 
allow interactions between BGS and tracking. The feedback required to handle slow 
and stopped objects are implemented by adding information to metadata of tracking 
observations which are accessible by BGS processing through following three 
requests: 1) “heal request”—tracking requests BGS to push the region back to 
background model; 2) “unheal request” ”—tracking requests BGS to convert the 
background model of a healed region back to that before the heal happened; 3) “hold 
in foreground”—tracking requests BGS to hold a region without updating.  Figure 1 
shows the diagram of the interaction between BGS and tracking with the passing of 
metadata messages. 



2.2   BGS Adaption Suppression for Tracking Slow Moving Objects 

Slow Moving Objects Tracking Problem: Slow moving objects can present a 
significant problem to conventional background subtraction algorithms. In multiple 
Gaussian mixtures based BGS algorithms [2, 5], on which many current systems are 
based, each pixel is modeled by a mixture of Gaussians distribution. Observations of a 
pixel’s color are assigned to the closest mode of the mixture, or to a newly created 
mode (replacing the least observed previous mode). The most frequently observed 
mode is considered the “background” mode, and observations matching that are 
considered to be background. Other values are flagged as foreground. When an object 
moves slowly or stops, any pixel may fall on the object for many frames and, if it is of 
a consistent color, that pixel will eventually be considered background. If multiple 
pixels are affected in the same way, parts of the object will be considered to be 
background and the object will progressively be “lost”. 

Previous systems have partially addressed this problem by detecting groups of 
foreground pixels that are being adapted into the background, and actively push the 
whole group in to the background [5]. Here, however the problem is that the detection 
may come only after some pixels have already been adapted into the background, and 
may only affect part of the object. Thus, while the switch to background is no-longer 
independent for each pixel, it may still occur in several fragments, and results in part 
of an object being background and part being foreground. 

BGS Adaption Suppression: To deal with this situation, we institute a feedback 
mechanism that allows the tracker to suppress background updating for slow moving 
objects that are being tracked. When the tracker detects a slow-moving object (based 
on conditions of centroid movement � 3 pixels in 0.5s; number of observations > 30, 
and no recent splitting behavior), it flags the object observations as “slow moving” 
and the background subtraction algorithm suppresses the adaptation in the region 
where the slow moving object was observed (as indicated by a mask passed in the 
metadata). 

Typically adaptation will already have been carried out by the background 
subtraction (as the video frame was received), although some algorithms may wait 
until the video frame processing has completed. According to the algorithm used, 
adaptation is suppressed in the region of a slow moving object by copying pixels from 
a copy of the model saved before adaptation, or by carrying out the inverse operation 
on those pixels (for instance decreasing the observation counts). 

Suppressing adaption in this way has the effect of maintaining the tracked object in 
the foreground, and uses object level information from the tracker — that the pixels 
belong to a known object that is moving slowly and has been reliably detected and 
tracked for some period — to which the background subtraction module by itself does 
not have access. 

A drawback of this mechanism is that it inhibits the process by which false alarm 
foreground objects are removed. For instance a shadow or a reflection which appears 
but is tracked for a while, would ordinarily quickly be forgotten as the background 
model adapts, but, if the “hold in foreground” method engages then these objects can 
be preserved indefinitely. However, the following mechanism can prevent this from 
happening 



2.3   Tracking-based BGS Healing for Stopped Objects 

Stopped Objects Tracking Problem: Stopped objects lead to a different problem, 
and a dilemma for the design of a tracking system. Background modeling needs to 
adapt to changes in order to ignore “irrelevant” changes such as lighting. In a simple 
adaptive background subtraction system, when an object stops, as with slow moving 
objects above, then it will become part of the background and cease to be tracked. 
However the object is still present in the scene, and for some purposes (for instance 
the query “show me all cars present at 3p.m.”) the system needs to explicitly represent 
that presence. A further problem is that since background subtraction algorithms 
typically operate independently on each pixel, then different pixels of the object will 
be declared background at different times, resulting in a progressive fragmentation as 
the object is incorporated into the background. 

 
Fig. 2. Selected frames demonstrate ghosting. The car starts in the background and 
moves forward, leading to multiple foreground fragments and ultimately a large “ghost” 
or “hole” where it had been covering up the “true” background by using mixture of 
Gaussians BGS method. 

When a static object starts moving, the background subtraction algorithm detects 
difference regions around the edges of an object, and as the original background is 
revealed, those pixels are detected as “foreground regions” and a “ghost” of revealed 
background is detected as foreground along with the true moving object, as shown in 
Figure 2. Toyama et al. describe this as the “waking person” problem, and conclude 
that it is not solvable in a self-contained background subtraction module. This 
presents several challenges to a tracking algorithm: (1) the object appears as many 
small foreground fragments; (2) the growing object is made up of a moving 
component and a static region; (3) the true object eventually separates from the static 
“ghost” region. Some background subtraction methods explicitly tackle this problem 
[3]. 

Tracking-based BGS Healing: With the adaptation-inhibition described in 
Section II.B, slow moving and stationary objects are not adapted into the background 
at all, so healing and fragmentation are no longer a problem. However static objects 
will now be held indefinitely in the foreground. As a parking lot fills slowly with cars, 
the number of “tracked” objects increases and their interactions and mutual occlusions 
become progressively more complex and unmanageable. 

Consequently, we introduce an active, tracker-driven, object-level healing process 
where whole objects are pushed to the background. In this process, the tracker tracks 



whole objects and monitors their movement. When an object is stationary for a 
sufficient period (dependent on the scene context, for example dependent on the 
amount of activity in the scene and typical behaviors — whether objects stop for long or 
short periods) then the tracker determines that the object can be pushed to the 
background. The tracker sends a “heal request” message to the background subtraction 
algorithm, including a foreground mask indicating which pixels belong to the object. 

On receiving the message, the BGS algorithm takes the selected pixels and adjusts 
the background model so that the currently observed pixels become categorized as 
background. The original contents of the region’s background model are sent back to 
the tracker in a “heal” message. The heal message can also incorporate a categorization 
of the region, indicating whether it looks like a foreground object or a hole, based on 
integral of the edges in the object perimeter. On receiving the heal message, the tracker 
can optionally keep the track in a suspended state, ready to be reactivated if the object 
moves again. Alternatively (if the region was classified as a “hole”) the entire track can 
be discarded as a false positive. 

In this manner, stopped objects are quickly pushed to the background and cease to 
need active tracking. This reduces the complexity of the tracking problem since fewer 
tracked objects leads to fewer occlusions and difficult tracking situations, and also 
reduces the computational load by not “tracking” objects once they are stationary. 

When the stopped object begins to move, the background subtraction will detect 
motion in the region and generate one or more foreground regions in or around the 
object. Any otherwise unexplained foreground region is compared to the stack of 
suspended tracks and if a matching track is found it is popped. The background 
subtraction module is sent an “unheal” request, with the old, stored background 
appearance, which is pushed into the background model, causing the entire object to 
again be detected as foreground in the following frame, and thus avoiding the 
ghosting of Figure 2. 

Depending on the scene and typical behavior, the suspended “parked” tracks can be 
maintained indefinitely or forgotten when too old, invalid or too numerous. A grocery 
parking lot with rapid turnover may warrant keeping the suspended tracks until a car 
moves again, but an airport lot where cars are parked for days will not. Lighting 
changes can lead to significant changes in the background appearance while a stopped 
object is present, and make the stored background patches invalid. The age of a 
suspended track may also be of interest — for instance picking out parking violations 
or understanding parking behavior. 
This layered approach will also fail in complex environments. Consider an oblique 
view, looking along a row of vehicles in a parking lot. As vehicles come and go, 
many different foreground layers will obscure a particular pixel, and the background 
exposed by an object’s departure may be different from the background that was 
covered by its arrival. A more complex management of layers is imaginable for this 
scenario, but was not thought likely to be robust. 

3   Interaction Mechanisms Implementation 

In this section we describe a publish-subscribe architecture that supports the 
feedback mechanisms described above. The system processes video through a number 



of self-contained modules that are linked together through a publish-subscribe 
framework. Each component receives and transmits metadata packets exclusively 
through a “first-in, first-out” queue of messages managed by the framework. A 
metadata packet is taken from the front of the queue and is offered in turn to each of 
the components for processing before being discarded. While a component is 
processing a piece of metadata, it may add result metadata to the end of the queue. 
Most metadata packets are ignored by most components, and many packets will only 
be relevant to one other “downstream” component, but the architecture allows for 
considerable flexibility for broadcasting and feedback mechanisms in addition to a 
simple pipeline model. Components are able to request a priority, which allows the 
correct ordering of processing for metadata that is processed by multiple components. 

The publish-subscribe system encapsulates the functionality of each component and 
allows for great flexibility in customizing processing on each channel of video, 
independently selecting one or more detection, tracking and classification algorithms 
and allowing optional components, such as camera stabilization or performance 
analysis modules to be added. 

In practice the system processes multiple channels of video on a single machine, 
and each channel is handled by a single “engine” operating in a separate thread but 
with all engines managed by a single framework. The framework thus scales 
automatically to multiple processors, and can also handle load-sharing onto embedded 
coprocessors. The architecture also makes some processing amenable to pipelining of 
video frames (e.g. running BGS on one frame while tracking is executing on the 
previous frame in a separate thread), though the feedback mechanisms complicate 
this. Network relaying of selected metadata between processors permits multi-camera 
operations on a distributed system such as camera hand-off and multi-camera 
compound alerts. 

The framework initiates processing of video by sending a “grab frame” message, 
which is handled by the video source, which responds by putting a video frame onto 
the queue. Where appropriate the first component may be stabilization which 
compensates for motion of the camera (from vibration, wind or active control) and 
can suspend other processing operations when motion is too great. The background 
subtraction algorithm operates on the video frame and outputs a foreground mask to 
the back of the queue. References to the video frame are held by all the components 
that will subsequently need it, but most other components require further metadata to 
begin their processing. 

The tracker can begin processing when it receives the foreground mask, and it 
outputs a variety of result metadata, including “track start”, “track end” and “track 
observation”. Subsequent plug-ins such as object classifier, color classifier and alert 
detector all process the output of the background subtraction and tracker, and finally 
the index writer plug in sends information to be stored in a database. 

Before issuing another “grab frame” message, the framework will issue an “end of 
sample” message to allow components to clean up before the next frame. 
As shown in Figure 1, the feedback required to handle slow and stopped objects has 
been implemented by adding “heal request” and “unheal request” metadata to the 
original architecture. “hold in foreground” was implemented by adding a flag to the 
existing “track observation” metadata which were previously ignored by the 
background subtraction system, but are now acted upon when flagged in this way. 



4   Experimental Results 

The feedback mechanism of interactions between BGS and tracking is tested and 
evaluated on our surveillance system. The quantitative evaluation is performed on a 
set of six video sequences include four videos from the PETS2001 dataset [16] of cars 
and pedestrians crossing a university campus (about 2800 frames each) and two our 
own sequences: a top-down view of a four way intersection with cars stopping and 
waiting for a traffic light to change (Figure 3(a)) and an overhead view of a retail 
store taken through a fish-eye lens (Figure 3(b)). 

 
                         (a)                                      (b) 

Fig. 3.  Camera views of the test data with tracker output. (a) the traffic intersection (3400 
frames, 64 tracks), (b) the store view (3100 frames, 23 tracks). The paths of object 
centroids are shown, fading from blue to red from start to finish. 

The feedback mechanism was tested using simple tracking performance metrics 
comparing the tracker output to hand-labeled ground truth. The ground truth for each 
sequence consists of bounding boxes drawn around each object approximately every 
30 frames, with labeling to associate a particular object’s bounding boxes over time. 
Since the task requires tracking, evaluation is based on track-level rather than BGS 
level. 

The performance analysis processing matches each ground truth track to the 
tracker’s outputs by comparing the distance between the object centroids at each 
frame (linearly interpolating between the sparse ground truth points), with hysteresis. 
When at any time t, an object lies close to a ground truth track (within r, here 20, 
pixels) then the tracks are considered to match for the entire period around t where the 
tracks lie within 2r pixels. Trivial matches (where the match interval between an 
output track and ground truth track is a subset of the match for another output track, 
for instance when two tracks cross) are removed. 

The track matching was verified to correctly match intervals of output tracks to 
ground truth tracks. The performance tool produces a variety of statistics, including 
the number of false positives (output tracks not corresponding to any ground truth 
track) and false negatives (ground truth tracks that have no corresponding output 
track); the “underrepresentation”—the proportion of ground truth track frames with 
no correspondence in an output track (e.g. because the object was not detected); and 
the fragmentation — the average number of output tracks matched to each ground 
truth track (because of gaps in detection, or identity confusion during occlusions). 

Quantitative analysis results of performance on six sequences of video, from PETS 
2001 and two proprietary datasets for particular scenarios, are shown in Table 1. The 
comparison between experimental results and ground truth averaged across all the six 
sequences shows that there is a 39% reduction in false negatives (ground truth tracks 



that are not matched in the tracker output) with a 2.7% increase in the number of false 
positives (tracker output tracks that do not match any ground truth). 

Table 1. Tracking performance results on 4 sequences from the PETS2001 dataset and 
two other datasets. “Under” is the percentage of ground truth frames missing and 
“Frag” is the average number of tracks matched to a ground truth track. 

Sequences 
Without feedback With feedback 
Under% Frag Under% Frag 

PETS D1 C1 21.2 1.56 8.1 1.22 
PETS D1 C2 27.8 1.36 12.3 1.36 
PETS D2 C1 20.3 1.93 17.6 2.27 
PETS D2 C2 8.1 1.50 4.6 1.50 
Intersection 33.7 1.04 24.3 1.00 
Retail Store 13.1 2.38 14.5 1.90 

Errors come from a variety of sources: (1) objects that are too small to be detected, 
particularly in the store and PETS sequences D1C2 and D2C1 which have distant 
objects labeled; (2) in the intersection sequence several cars are in the scene at the 
beginning and ghosting effects mean that their tracks are not matched. (3) Failure to 
resolve occlusions correctly leads to multiple matches for some ground truth tracks. 

Qualitative results are shown in Figure 4. This shows how the interaction between 
BGS and tracking prevents adaptation and fragmentation of the slowly moving and 
stopped vehicles, and prevents “ghosts” when they move away. 

 
Fig. 4. Selected frames from a PETS2001 video sequence and corresponding foreground 
regions, demonstrating BGS adaptation without feedback from tracking (middle column) 
and with the feedback mechanisms (right column). Note the fragmentation (fr.2500) and 
ghosting (fr.2600) on the middle column. The central stopped car is lost on the middle, but 
maintained on the right. 

5 Conclusions  

The two feedback mechanisms for handling slow moving and stopped objects work 
together to improve the results (in terms of underrepresentation, fragmentation and 



false negatives, with a small increase in false positives) on the tested sequences. The 
inhibition of background updates for tracked objects successfully prevents slow 
moving and stopped objects from being absorbed into the background. This inhibition 
interferes with existing healing mechanisms and requires the addition of the “active 
healing” controlled by the tracker. With the two mechanisms enabled together, the 
system shows significant improvement in tracking performance, particularly in the 
proportion of ground truth tracks that are detected and in reduced fragmentation 
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