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Abstract. We present a method for segmenting an arbitrary number of
moving objects in image sequences using the geometry of 6 points in 2D
to infer motion consistency. The method has been evaluated on the Hop-
kins 155 database and surpasses current state-of-the-art methods such as
SSC, both in terms of overall performance on two and three motions but
also in terms of maximum errors. The method works by finding initial
clusters in the spatial domain, and then classifying each remaining point
as belonging to the cluster that minimizes a motion consistency score.
In contrast to most other motion segmentation methods that are based
on an affine camera model, the proposed method is fully projective.

1 Introduction

Motion segmentation can be defined as the task of separating a sequence of
images into different regions, each corresponding to a distinct rigid motion. There
are several strategies for solving the motion segmentation problem, some of which
are based on first producing a dense motion field, using optical flow techniques,
and then analyzing this field. Examples of this approach are [1] where the optic
flow is given as a parametric model and the parameters are determined for each
distinct object, or the normalised graph cuts by [2].

Other approaches are instead applied to a sparse set of points, typically in-
terest points that are tracked over time, and their trajectories analysed in the
image. A common simplifying assumption is that only small depth variations
occur and an affine camera model may be used. The problem can then be solved
using the factorization method by [3]. This approach has attracted a large inter-
est in recent literature, with the two current state-of-the-art methods, relative
to standard datasets such as Hopkins 155 [4], being Sparse Subspace Clustering
(SSC) [5] and Spectral Clustering of linear subspaces (SC) [6].

Other common methods in the literature are based on Spectral Curvature
Clustering (SCC) [7], penalised MAP estimation of mixtures of subspaces using
linear programming (LP) [8], Normalised Subspace Inclusion (NSI) [9], Non-
negative Matrix Factorisation (NNMF) [10], Multi-Stage unsupervised Learn-
ing (MSL) [11], Local Subspace Affinity (LSA), Connected Component Search
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(CCS) [12], unsupervised manifold clustering using LLE (LLMC) [13], Agglomer-
ative Lossy Compression (ALC) [14], Generalised Principal Component Analysis
(GPCA) [15], or on RANdom SAmple Consensus (RANSAC) [4].

In this paper we describe a motion segmentation method for sparse point tra-
jectories, which is based on the previous work on six point consistency (SPC) [16],
but with the additional novelties and improvements: (i) an alternative method
for estimating the vector s (Sec. 2.2), (ii) a new matching score (Sec. 2.3), and
(iii) a modified classification algorithm (Sec. 3).

2 Mathematical background

Our proposed method uses the consistent motion in the image plane generated by
6 points located on a rigid 3D object. The mathematical foundation of this theory
was formulated by Quan [17] and later extended by other authors [18,19,20]. A
similar idea was presented in [21], and later used for motion segmentation in [16].
[21] shows that the consistency test can be formulated as a constraint directly
on the image coordinates of the 6 points and that, similarly to epipolar lines
emerging from the epipolar constraint, this 6-point constraint generates 6 lines
that each must intersect its corresponding point.

More formally, we consider a set of six 3D points, with homogeneous coor-
dinates xk, projected onto an image according to the pinhole camera model:

yk ∼ C T xk, k = 1, . . . , 6, (1)

where yk are the corresponding homogeneous image coordinates, C is the 3×4
camera matrix, and ∼ denotes equality up to a scalar multiplication. T is a
4× 4 time dependent transformation matrix that rotates and translates the set
of 3D points from some reference configuration to the specific observation that
produces yk. This implies that also yk is time dependent. The problem addressed
here is how we can determine if an observed set of image points yk really is given
by (1) for a particular set of 3D points xk but with C and T unknown.

In general, the homogeneous coordinates of the 3D points can be transformed
by a suitable 3D homography Hx to canonical homogeneous 3D coordinates
x′=Hx x, and similarly, for a particular observation of the image points we
can transform them to canonical homogeneous 2D coordinates y′k=Hy yk. The
canonical coordinates are given by:

(x′1 x′2 x′3 x′4 x′5 x′6)∼∼


1 0 0 0 1 X
0 1 0 0 1 Y
0 0 1 0 1 Z
0 0 0 1 1 T

 , (y′1 y′2 y′3 y′4 y′5 y′6)∼∼

1 0 0 1 u5 u6

0 1 0 1 v5 v6

0 0 1 1 w5 w6

 .

Here ∼∼ denotes equality up to an individual scalar multiplication on each col-
umn. Hx and Hy depend on the 3D points x1,...,x5 and on the image points
y1,...,y4, respectively, and after these transformation are made the relation be-
tween 3D points and image points is given by y′k∼Hy C T H−1

x x′k. One of the
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main results in [17] is that from these transformed coordinates we can compute
a set of five relative invariants of the image points, denoted ik, and of the 3D
points, denoted Ĩk, according to:

z =


i1
i2
i3
i4
i5

 =


w6(u5 − v5)
v6(w5 − u5)
u5(v6 − w6)
u6(v5 − w5)
v5(w6 − u6)

 , s =


Ĩ1
Ĩ2
Ĩ3
Ĩ4
Ĩ5

 =


XY − ZT
XZ − ZT
XT − ZT
Y Z − ZT
Y T − ZT

 (2)

such that they satisfy the constraint z · s = i1 Ĩ1 + i2 Ĩ2 + i3 Ĩ3 + i4 Ĩ4 + i5 Ĩ5 = 0.
To realize what this means, we notice that this constraint includes scalars

derived from the reference 3D coordinates xk (before they are transformed) and
observed image points yk (after the transformation T is made), but neither C
nor T are explicitly included. Therefore, the constraint is satisfied regardless
of how we transform the 3D points (or move the camera), as long as they are
all transformed by the same T. As long as the observed image coordinates are
consistent with (1), the corresponding relative image invariants z must satisfy the
constraint for a fixed s computed from the 3D reference points. The canonical
transformations Hx and Hy can conveniently be included into the unknowns
C and T. In short, the above constraint is necessary but not sufficient for the
matching between the observed image points and the 3D reference points.

2.1 The 6-point matching constraint

The matching constraint is expressed in terms of the relative invariants z and s
that have been derived by transforming image and 3D coordinates. In particular,
this means that it cannot be applied directly onto the image coordinates, similar
to the epipolar constraint. The transformation Hy is not a linear transformation
on the homogeneous image coordinates since it also depends on these coordinates
(see the Appendix of [17]). If however, we make an explicit derivation of how z
depends on the 6 image points, it turns out that it has a relatively simply and
also useful form:

z = α


D126D354

D136D245

D146D253

D145D263

D135D246

 ,

α =
D123

D124D234D314
,

Dijk = (yi × yj) · yk = det
(
yi yj yk

)
.

(3)

Since z can be represented as a projective element, the scalar α can be omitted
in the computation of z. An important feature of this formulation is that each
element of z is computed as a multi-linear expression in the 6 image coordinates.
This can be seen from the fact that each point appears exactly once in the
computations of the two determinants in each element of z.

This formulation of z allows us to rewrite the constraint as z · s=l1 · y1= 0
with

l1 = l26D354Ĩ1 + l36D245Ĩ2 + l46D253Ĩ3 + l45D263Ĩ4+ l35D246Ĩ5 (4)
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where lij=yi×yj . l1 depends on the five image points y2,...,y6 and on the ele-
ments of s. A similar exercise can be made for the other five image points and in
general we can write the matching constraint as z ·s=lk ·yk=0 where lk depends
on s and five image points: {yi, i6=k}. With this description of the matching
constraint it makes sense to interpret lk as the dual homogeneous coordinates
of a line in the image plane. To each of the 6 image points, yk, there is a corre-
sponding line, lk, and the constraint is satisfied if any of the 6 lines intersects its
corresponding image point. The existence of the lines allows us to quantify the
matching constraint in terms of the Euclidean distance in the image between a
point and its corresponding line. Assuming that yk and lk have been suitably
normalized, their distance is given simply as

dk = |yk · lk| (5)

2.2 Estimation of s

s can be computed from (2), given that 3D positions are available, but it can also
be estimated from observations of the 6 image points based on the constraint.
For example, from only three observations of the 5-dimensional vector z, s can
be restricted to a 2-dimensional subspace of R5. From this subspace, s can be
determined using the internal constraint [17]. This gives in general three solutions
for s, that satisfy the internal constraint and are unique except for degenerate
cases. This approach was used in [16].

Alternatively, for B ≥ 4 observations of z a simple linear method finds s as
a total least squares solution of minimizing ‖Z s‖ for ‖s‖=1, where Z is a B × 5
matrix consisting of the observed vectors z in its rows. z is then given by the right
singular vector of Z corresponding to the smallest singular value. This approach
has the advantage of producing a single solution for s which, on the other hand,
may not satisfy the internal constraint. However, this can be compensated for
by including a large number of observations, B, in the estimation of s. This is
the estimation strategy we use in this paper and it works well, provided that
there are enough images in each sequence.

2.3 Matching score

In the case of motion segmentation we want to be able to consider a set of 6
points, estimate s, and then see how well this s matches to the their trajectories.
The matching between s and observations of the 6 points over time is measured
as follows. For each observation (at time t) of the 6 points y1(t),...,y6(t) we
use s to compute the 6 corresponding lines, l1(t),...,l6(t), and then compute the
distances dk from (5). Finally, we compute a matching score Ẽ of the 6 point
trajectories:

Ẽ(P1, . . . , P6) = median
t

[
d2

1(t) + . . .+ d2
6(t)

]1/2
, (6)

where Pk denotes image point k, but without reference to a particular image
position in a particular frame. The median operation is used here in order to
effectively reduce the influence of possible outliers.
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Create spatial clusters using k-means
foreach point Pk do

foreach cluster Cj do

Select 6 points {Pk, P
j
2 , ..., P

j
6 }.

Calculate score E(Pk, Cj) from (6).

end
Assign Pi to cluster with min(E(Pk, Cj)).

end
Reject inconsistent clusters.
Initial NBC merging.
Final refinement merging.

Algorithm 1: Motion segmentation pseudocode.

Fig. 1. A K-means initialisation example on the left. On the centre the classifi-
cation result before the merging, and the final merged results on the left.

3 A motion segmentation algorithm

In this section we describe a simple yet effective algorithm that can be used for
the segmentation of multiple moving rigid 3D objects in a scene. The input data
is the number of motion segments and a set of N point trajectories over a set of
images in an image sequence. Our approach includes: a spatial initialisation step
for establishing the initial motion hypotheses (or seed clusters), from which the
segmentation will evolve; a classification stage, whereby each tracked point Pk,
is assigned to the appropriate motion cluster; and a merging step, that combines
clusters based on their similarity, to form the final number of moving objects in
the scene.

Initialisation: The first step is the generation of initial 6-point clusters, each
representing a 3D motion hypothesis. For this we use spatial K-means clustering
in the image domain (see Fig. 1). The initial clustering is carried out in an
arbitrary frame from each sequence (usually the first or the last). We define a
seed cluster Cj={P j1 ,...,P jI } as the I points at minimum distance to each K-
means center. From the subsequent computations it is required that I≥5, and
we use I=6.

Point classification: Following the initialisation step, we assign the remain-
ing points to the appropriate seed cluster. For each of the unclassified points Pk
and for each seed cluster Cj , we estimate s according to Sec. 2.2 and compute

a point-to-cluster score E from (6) as E(Pk, Cj)=Ẽ(Pk, P
j
2 ,...,P j6 ). This gives

M(N -6M) score calculations in total, and produces an M × (N -6M) matrix
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A=[aik] , with column k referring to particular point Pk and element aik as the
index of the cluster that has the i-th smallest score relative to Pk. We employ a
“winner takes all” approach with Pk assigned to the cluster that produces the
lowest score, i.e., to the cluster index a1k. This implies that the clusters will
grow during the classification step, however, it should be noted that the scores
for a particular point are always computed relative to the seed clusters. Note
also that there is no threshold associated with the actual classification stage.
A typical classification result can be seen in Fig. 1. The growth of the clusters
is independent of the order that the points are classified, so the latter may be
considered in parallel, leading to a very efficient and fast implementation.

Cluster merging and rejection This is the final stage of our method, and
results in the generation of motion consistent clusters each associated with a
unique moving object in the scene. This stage consists of a quick cluster rejection
step; an initial merging step using redundant classification information; and a
final merging or refinement step where intermediate clusters are combined using
agglomerative clustering based on some similarity measure.

-Cluster rejection: Any clusters that contain very few points (e.g. ≤7) are
indicative of seed initialisation between motion boundaries, and represent unique
and erroneous motion hypotheses. Therefore, any such clusters are promptly
removed and their points re-classified with the remaining clusters.

-Initial merging: A direct result of the classification in Sec. 3 is the matrix
A, where so far we have only used the top row in order to classify points.
However, A provides also information on cluster similarity, which we can exploit
to infer initial merge pairings. We call this “Next-Best Classification” (NBC)
merging and we now look at the cluster with the second best score for each point,
since it contains enough discriminative power to accurately merge clusters. NBC
merging involves generating the zero-diagonal sparse symmetric M×M matrix
L=[lij ] that contains the merging similarity between the clusters. Its elements
are defined as:

lij =

N−6M∑
k=1

[
1(k, i, j)

E(Pk, Cj)
+

1(k, j, i)

E(Pk, Ci)

]
, (7)

where the summation is made over the N − 6M points not included in the seed
clusters. 1(k, i, j) is an indicator function that takes the value 1 when a1k=i and
a2k=j and 0 otherwise. In other words, this function is =1 iff Pk is assigned to
cluster i and has cluster j as second best option.

The matrix L describes all the consistent pairings inferred by the NBC merg-
ing. However, since usually inconsistent clusters will generate non-zero entries in
L we need to threshold out low response entries due to noise. Using a threshold
τ we obtain the sparser adjacency matrix L∗. From L? we can then construct
an undirected graph G which contains the intermediate clusters as disconnected
sub-graphs. If L∗ is insufficient to provide the final motion clusters, due to for ex-
ample noisy data, then a final refinement step may be required. The result of the
cluster rejection and initial merging steps is a set of M̃≤M clusters C̃1,...,C̃M̃ .

-Refinement merging: The last step involves the merging of the intermediate
clusters, (resulting from the NBC merging), into the final clusters each repre-
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GPCA LSA RANSAC MSL ALC SSC SCC SPC SC LP NNMF NSI LLMC CCS MSPC

Checkerboard: 78 sequences

Mean: 6.09 2.57 6.52 4.46 1.55 1.12 1.77 4.49 0.85 3.21 - 3.75 4.37 16.37 0.41

Median: 1.03 0.27 1.75 0.00 0.29 0.00 0.00 3.69 0.00 0.11 - - 0.00 10.62 0.00

Traffic: 31 sequences

Mean: 1.41 5.43 2.55 2.23 1.59 0.02 0.63 0.22 0.90 0.33 0.1- 1.69 0.84 5.27 0.09

Median: 0.00 1.48 0.21 0.00 1.17 0.00 0.14 0.00 0.00 0.00 0.– - 0.00 0.00 0.00

Articulated: 11 sequences

Mean: 2.88 4.10 7.25 7.23 10.70 0.62 4.02 2.18 1.71 4.06 10.– 8.05 6.16 17.58 0.95

Median: 0.00 1.22 2.64 0.00 0.95 0.00 2.13 0.00 0.00 0.00 2.6- - 1.37 7.07 0.00

All: 120 sequences

Mean: 4.59 3.45 5.56 4.14 2.40 0.82 1.68 3.18 0.94 2.20 - - 3.62 12.16 0.37

Median: 0.38 0.59 1.18 0.00 0.43 0.00 0.07 1.08 0.00 0.00 - - 0.00 0.00 0.00

Table 1. 2 motion results

senting a distinct motion hypothesis. This is achieved by pairwise agglomerative
clustering and a maximum similarity measure between clusters. Assume that we
wish to merge two clusters, say C̃1 and C̃2. We can generate K 6-point mixture
clusters C̃ ′ by randomly selecting 3 points each from C̃1 and C̃2. If C̃1 and C̃2

belong to the same motion-consistent object and there is little noise present, we
expect the scores Ẽ calculated for each selection of C ′ to be grouped near zero,
with little variation and few outliers. Conversely, if C̃1 and C̃2 come from differ-
ent objects, Ẽ should exhibit a larger dispersion and be grouped further away
from zero. Instead of defining the similarity based on location and dispersion of
sample statistics, we fit a parametric model to the sample data (using Maximum
Likelihood Estimation) and compute the statistics from the model parameters.
This allows for a much smaller number of samples and a more accurate estimate
than what can be obtained from sample statistics (e.g. mean and variance).
Given therefore that the scores in (6) should generally group around a median
value with a few extremal outliers and assuming that the distances dk in (5) are
i.i.d., then the score distribution may be well approximated by a Generalised
Extreme Value (GEV) distribution [22]. A robust indication of average location
in a data sample with outliers is the mode, which for the GEV model can be
computed by:

m̃ = µ+ σ
[
(1 + ξ)−ξ − 1

]
/ξ for ξ 6= 0, (8)

where µ, σ and ξ are the location, scale and shape parameters respectively
recovered by the MLE. Using this as a similarity metric we can merge two clusters
when (8) is small or reject them when it is large. The clustering proceeds until
we reach the pre-defined number of motions in the scene. The overall method is
included in pseudocode in Algorithm 1.
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GPCA LSA RANSAC MSL ALC SSC SCC SPC SC LP NNMF NSI LLMC CCS MSPC

Checkerboard: 26 sequences

Mean: 31.95 5.80 25.78 10.38 5.20 2.97 6.23 10.71 2.15 8.34 - 2.92 10.70 28.63 1.43

Median: 32.93 1.77 26.01 4.61 0.67 0.27 1.70 9.61 0.47 5.35 - - 9.21 33.21 1.25

Traffic: 7 sequences

Mean: 19.83 25.07 12.83 1.80 7.75 0.58 1.11 0.73 1.35 2.34 0.1- 1.67 2.91 3.02 0.71

Median: 19.55 23.79 11.45 0.00 0.49 0.00 1.40 0.73 0.19 0.19 0.– - 0.00 0.18 0.36

Articulated: 2 sequences

Mean: 16.85 7.25 21.38 2.71 21.08 1.42 5.41 6.91 4.26 8.51 15.– 6.38 5.60 44.89 2.13

Median: 28.66 7.25 21.38 2.71 21.08 0.00 5.41 6.91 4.26 8.51 15.– - 5.60 44.89 2.13

All: 35 sequences

Mean: 28.66 9.73 22.94 8.23 6.69 2.45 5.16 8.49 2.11 7.66 - - 8.85 26.18 1.32

Median: 28.26 2.33 22.03 1.76 0.67 0.20 1.58 8.36 0.37 5.60 - - 3.19 31.74 1.17

Table 2. 3 motion results

4 Experimental results

We have carried out experiments on real image sequences from the Hopkins 155
database [4]. It includes motion sequences of 2 and 3 objects, of various degrees
of classification difficulty and is corrupted by tracking noise, but without any
missing entries or outliers. Typicall parameter settings for these experiments
were: M=10-40 K-means clusters at the first or last frame of the sequence, reject
clusters of ≤7 points, and K=50-100 mixture samples for the final merge (where
necessary). Our results for 2 and 3 motions and the whole database are presented
and compared with other state-of-the-art and baseline methods in Tables 1–3.

Our approach (Multiple Six Point Consistency - MSPC) outperforms every
other method in the literature overall, in 2 and 3 motions and for all sequences
combined. We achieve an overall classification error of 0.37% for two motions, less
than 1/2 than the best reported result (SSC); an overall error of 1.32% for three
motions, about 2/3 of the best reported result (SC); and an overall error of 0.59%
for the whole database, less than 1/2 than the best reported result (SC). We also
come first for the checkerboard sequences constituting the majority of the data,
with almost 1/2 the classification errors reported by the SC method. For the
articulated and traffic sequences (which are problematic for most methods) we
perform well, coming a very close second to the best performing SSC or NNMF.

From the cumulative distributions in Fig. 2 we see that our method outper-
forms all others (where available) with only the SSC being slightly better (be-
tween 0.5-1% error) for 20-30% of the sequences. However, SSC soon degrades
quite rapidly for the remaining 5-20% of the data with an error differential be-
tween 15-35% relative to MSPC. Furthermore, our method degrades gracefully
from 2 to 3 motions as we do not have misclassification errors greater than 5%
for any of the sequences, unlike SSC which produces a few errors between 10-20%
and 40-50%. This is better illustrated in the histograms in Fig. 3.
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GPCA LSA RANSAC MSL ALC SSC SCC SPC SC LP NNMF NSI LLMC CCS MSPC

Checkerboard: 104 sequences

Mean: 12.55 3.37 11.33 5.94 2.47 1.58 2.88 6.05 1.17 4.49 - 3.54 5.95 19.43 0.66

Median: - - - - 0.31 - - 5.27 0.00 - - - - - 0.25

Traffic: 38 sequences

Mean: 4.80 9.04 4.44 2.15 2.77 0.12 0.71 0.31 0.98 0.70 0.1- 1.68 1.22 4.85 0.20

Median: - - - - 1.10 - - 0.00 0.00 - - - - - 0.00

Articulated: 13 sequences

Mean: 5.02 4.58 9.42 6.53 13.71 0.74 4.23 2.91 2.10 4.74 10.76 7.79 6.07 21.78 1.13

Median: - - - - 3.46 - - 0.00 0.00 - - - - - 0.00

All: 155 sequences

Mean: 10.34 4.94 9.76 5.03 3.56 1.24 2.46 4.38 1.20 3.43 - - 4.8 15.32 0.59

Median: 2.54 0.90 3.21 0.00 0.50 0.00 - 1.95 0.00 - - - - - 0.00

Table 3. All motion results (italics are approximated from Tables 1 and 2)

Fig. 2. Cumulative distributions of the errors per sequence for two and three
motions.

5 Conclusion

We have presented a method for segmenting moving objects using the geometry
of 6 points to infer motion consistency. Our evaluations on the Hopkins 155
database have shown superior results than current state-of-the-art methods, both
in terms of overall performance and in terms of maximum errors. The method
finds initial cluster seeds in the spatial domain, and then classifies points as
belonging to the cluster that minimizes a motion consistency score. The score is
based on a geometric matching error measured in the image, implicitly describing
how consistent the motion trajectories of 6 points are relative to a rigid 3D
motion. Finally, the resulting clusters are merged by agglomerative clustering
using a similarity criterion.
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Fig. 3. Histograms of the errors per sequence for two and three motions.
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