Skip to main content

From Sensorimotor Graphs to Rules: An Agent Learns from a Stream of Experience

  • Conference paper
Artificial General Intelligence (AGI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6830))

Included in the following conference series:

Abstract

In this paper we argue that a philosophically and psychologically grounded autonomous agent is able to learn recursive rules from basic sensorimotor input. A sensorimotor graph of the agent’s environment is generated that stores and optimises beneficial motor activations in evaluated sensor space by employing temporal Hebbian learning. This results in a categorized stream of experience that feeds in a Minerva memory model which is enriched by a time line approach and integrated in the cognitive architecture Psi—including motivation and emotion. These memory traces feed seamlessly into the inductive rule acquisition device Igor2 and the resulting recursive rules are made accessible in the same memory store. A combination of cognitive theories from the 1980ies and state-of-the-art computer science thus is a plausible approach to the still prevailing symbol grounding problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.R.: How can the human mind occur in the physical universe? Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  2. Avila Garcez, A.S., Zaverucha, G.: The Connectionist Inductive Learning and Logic Programming System. Applied Intelligence 11, 59–77 (1999)

    Article  Google Scholar 

  3. Bach, J.: Principles of Synthetic Intelligence: PSI: An Architecture of Motivated Cognition. Oxford University Press, Oxford (2009)

    Book  Google Scholar 

  4. Butz, M.: Self-organizing sensorimotor graphs plus internal motivations yield animal-like behavior. Adaptive Behavior 18, 315 (2010)

    Article  Google Scholar 

  5. Dougherty, M.R.P., Gettys, C.F., Ogden, E.E.: MINERVA-DM: A Memory Processes Model for Judgments of Likelihood. Psych. Review 106(1), 180–209 (1999)

    Article  Google Scholar 

  6. Doerner, D.: Bauplan für eine Seele. Rowohlt, Reinbek (1999)

    Google Scholar 

  7. Harnad, S.: The Symbol Grounding Problem. Physica D 42, 335–346 (1990)

    Article  Google Scholar 

  8. Heidegger, M.: Sein und Zeit. Niemeyer, Tübingen, 16th edn. (1986)

    Google Scholar 

  9. Hintzman, D.L.: MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments & Computers 16(2), 96–101 (1984)

    Google Scholar 

  10. Kitzelmann, E.: A Combined Analytical and Search-Based Approach to the Inductive Synthesis of Functional Programs. PhD thesis, University of Bamberg (2010)

    Google Scholar 

  11. Klahr, D., Wallace, J.: An Information Processing Analysis of Some Piagetian Experimental Tasks. Cognitive Psychology 1, 358–387 (1970)

    Article  Google Scholar 

  12. Laird, J.E.: Extending the Soar cognitive architecture. In: Proceedings of the Artificial General Intelligence Conference, Memphis, TN (2008)

    Google Scholar 

  13. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Cognitive Sytems Research 10(2), 141–160 (2009)

    Article  Google Scholar 

  14. Matyas, J.: Random Optimization. Automaton and Remote Control 26(2), 246–253 (1965)

    MathSciNet  Google Scholar 

  15. Mayo, M.: Symbol grounding and its implications for artificial intelligence. In: Proceedings of the 26th Australasian Computer Science Conference, vol. 16, pp. 55–60. Australian Computer Society, Inc. (2003)

    Google Scholar 

  16. Mitchell, T.M.: Machine learning. McGraw-Hill, Boston (1997)

    MATH  Google Scholar 

  17. Nadel, L.: Distributed Representations. In: C. R. Encyclopedia of Cognitive Science. Nature publishing group, Macmillan (2003)

    Google Scholar 

  18. Newberg, A., d’Aquili, E., Rause, V.: Why God Won’t Go Away: Brain Science and the Biology of Belief. Ballantine Books, NY (2002)

    Google Scholar 

  19. Porr, B., Wörgötter, F.: Temporal Hebbian learning in Rate-Coded Neural Networks: A theoretical approach towards classical conditioning. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 1115–1120. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Rodger, S.H.: JFLAP. An interactive formal languages and automata package. Jones and Bartlett’s, Sudbury (2006)

    Google Scholar 

  21. Schmid, U., Hofmann, M., Kitzelmann, E.: Analytical inductive programming as a cognitive rule acquisition devise. In: Proceedings of the Second Conference on Artificial General Intelligence, pp. 162–167. Atlantis Press, Amsterdam (2009)

    Google Scholar 

  22. Steels, L.: The Symbol Grounding Problem Has Been Solved. So What’s Next? In: de Vega, M. (ed.) Symbols and Embodiment: Debates on Meaning and Cognition, ch. 12. Oxford University Press, Oxford (2008)

    Google Scholar 

  23. Sun, R.: The CLARION cognitive architecture: Extending cognitive modeling to social simulation. In: Sun, R. (ed.) Cognition and Multi-Agent Interaction. Cambridge University Press, New York (2006)

    Google Scholar 

  24. Sun, R.: The motivational and metacognitive control in CLARION. In: Gray, W.D. (ed.) Integ. Models of Cog. Systems. Oxford University Press, New York (2007)

    Google Scholar 

  25. Vanpaemel, W., Storms, G.: In search of abstraction: The varying abstraction model of categorization. Psychonomic Bulletin & Review 15(4), 732 (2008)

    Article  Google Scholar 

  26. Wallace, J., Klahr, D., Bluff, K.: A Self-Modifying Production System Model of Cognitive Development. In: Klahr, D., Langley, P., Neches, R.T. (eds.) Prod. System Models of Learning and Development, pp. 359–435. MIT Press, Cambridhge (1987)

    Google Scholar 

  27. Watson, D.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. The Computer Journal 24(2), 167 (1981)

    Article  MathSciNet  Google Scholar 

  28. Winograd, T., Flores, F.: Understanding Computers and Cognition. A New Foundation for Design. Ablex Corporation, Norwood (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raab, M., Wernsdorfer, M., Kitzelmann, E., Schmid, U. (2011). From Sensorimotor Graphs to Rules: An Agent Learns from a Stream of Experience. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds) Artificial General Intelligence. AGI 2011. Lecture Notes in Computer Science(), vol 6830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22887-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22887-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22886-5

  • Online ISBN: 978-3-642-22887-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics