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1 Introduction

Within the machine learning research, many techniques have been proposed in
order to understand and analyse the success of ensemble classi�cation methods
over single-classi�er classi�cations. One of the main approaches considers tight-
ening the generalization error bounds by using the margin concept [ ]. Though
being theoretically interesting, bounds found are not usually tight enough to be
used in practical design issues. [ ]. Bias and variance analysis is another method
used to show why ensembles work well. In this paper, we try to analyse the suc-
cess of bagging [ ] and Error Correcting Output Coding (ECOC) [ ] as ensemble
classi�cation techniques, by using Neural Networks (NNs) as the base classi�ers
within the bias and variance framework of James [ ]. As the characteristics of
the ensemble depend on the speci�cations of the base classi�ers it is composed
of, having a detailed look at the parameters of the base classi�ers within the
bias-variance analysis is of importance. Similiar work of Valentini and Dietterich
on Support Vector Machines (SVMs) can be found in [ ].

ECOC is an ensemble technique [3], where multiple base classi�ers are trained
according to a preset binary code matrix. Consider an ECOC matrix C, where
a particular element Cij ε (+1,−1) indicates the desired label for class i, to be
used in training the base classi�er j. The base classi�ers are the dichotomizers
which carry out the two-class classi�cation tasks for each column of the matrix,
according to the input labelling. Each row, called a codeword, indicates the de-
sired output for the whole set of base classi�ers for the class it is indicating.
During decoding, a given test sample is classi�ed by computing the similarity
between the output (hard or soft decisions) of each base classi�er and the code-
word for each class by using a distance metric, such as the Hamming (L1 Norm)
or the Euclidean (L2 norm) distance. The class with the minimum distance is
then chosen as the estimated class label. The method can handle incorrect base
classi�cation results up to a certain degree. Speci�cally, if the minimum Ham-
ming distance (HD) between any pair of codewords is d, then up to b(d− 1)/2c
single bit errors can be corrected.



As for bias and variance analysis, after the initial work of Geman [ ] on
the regression setting using squared-error loss, others like Breiman [ ], Kohavi
and Wolpert [ ], Dietterich and Kong [ ], Friedman [ ], Wolpert [ ], Heskes [ ],
Tibshirani [ ], Domingos and James [ ] have tried to extend the analysis for the
classi�cation setting. One of the problems with the above de�nitions of bias and
variance is that most of them are given for speci�c loss functions such as the
zero-one loss, and it is hard to generalize them for all the other loss functions.
Usually, new de�nitions are driven for each loss function. Even if the de�nitions
are proposed to be general, they may fail to satisfy the additive decomposition of
the prediction error de�ned in [?]. The de�nition of James [?] has got advantages
over the others as it proposes to construct a scheme which is generalizable to
any symmetric loss function. Furthermore, it constructs two more concepts called
�systematic e�ect� and �variance e�ect� which help assure the additive prediction
error decomposition for general loss functions and realize the e�ects of bias and
variance on the prediction error.

Some characteristics of the other de�nitions which make James' more prefer-
able for us are as follows: -Dietterich allows a negative variance and it is possi-
ble for the Bayes classi�er to have positive bias. -Experimentally, the trends of
Breiman's bias and variance graphs closely follow James' systematic e�ect and
variance e�ect ones respectively. However, for each test input pattern, Breiman
separates base classi�ers into two sets, as biased and unbiased; and considers
each test pattern only to have either bias or variance accordingly. -Kohavi and
Wolpert also assign a nonzero bias to the Bayes classi�er and the Bayes error
is absorbed within the bias term. Although it helps avoid the need to calculate
the Bayes error in real datasets through making insu�cient assumptions, it is
not preferable as the bias term comes out to be too high. -The de�nitions of
Tibshirani, Heskes and Breiman are hard to be generalized and extended for the
loss functions other than the ones they were de�ned in. -Friedman proposes that
bias and variance do not always need to be additive.

After all these di�erences, it should also be noted that the characteristics
of bias and variance terms Domingos has de�ned are actually close to James',
although the decomposition can be considered as being multiplicative [ ].

In the literature, attempts have also been made to explore the bias-variance
characteristics of ECOC and bagging ensembles. Examples can be found in
[james] [kongdie] [breiman][terry][ydoes]. In this paper a detailed analysis on
ECOC and bagging ensembles using NNs as the base classi�ers through chang-
ing the parameters, namely nodes and epochs, has been given.

2 Bias and Variance Analysis of James
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3 Experiments

3.1 Experimental Setup

Experiments have been carried out on 5 arti�cial and 4 UCI MLR [5] datasets. 3
of the arti�cial datasets have been created according to Breiman's description in
[]. Detailed information about the sets can be found in table []. The optimization
method used in NNs is the Levenberg-Marquart (LM) technique; the level of
training (epochs) varies between 2 and 15; and the number of nodes between 2
and 16.

The ECOC matrices are created by randomly assigning binary values to each
matrix cell. Hamming Distane is used as the metric in the decoding stage and the
number of columns each ECOC has is set to 50. 50 is also the number of classi�ers
used in bagged ensembles and the total number of base classi�ers that the bias-
variance analysis has been carried out on. That is, for each of the three settings of
single classi�er, bagging and ECOC classi�cations, 50 base classi�ers are created.
Each base classi�er is either a single classi�er, or an ensemble consisting of 50
bagged classi�ers or ECOC matrices of 50 columns.

Experiments have been performed 10 times for the arti�cial datasets by using
di�erent training & test data, and ECOC matrices in each run; and the results
are averaged. The number of training patterns per base classi�er is equal to
300; and the number of test patterns to be used in every run is 18000. For the
UCI datasets having separate test sets, the analysis has been done just once for
the single classi�er and bagging settings, and 10 times with di�erent matrices
for the ECOC setting. Here, bootstrapping is applied while creating the base
classi�ers, as it is expected to be a close enough approximation to random &
independent data generation from a known underlying distribution [ ]. As for
the UCI datasets without separate test sets, the ssCV cross-validation method
of Webb and Conilione [ ], which allows the usage of the whole dataset both in
training and test stages, has been implemented. In ssCV, the shortcomings of
the hold-out approach like the usage of small training and test sets; and the lack
of inter-training variability control between the successive training sets has been
overcome [ ]. In our experiments, we set the inter-training variability constant δ
to 1/2.

The Bayes error is analytically calculated for the arti�cial datasets, as the un-
derlying likelihood probability distributions are known. As for the real datasets,
the motivation is to �nd the best optimal classi�er parameters giving the lowest
error rate possible, through cross-fold validation (CV); and then to use these
parameters to construct a classi�er which is expected to be close enough to the
Bayes classi�er. This classi�er is then used to calculate the output probabilities
per pattern in the dataset. For this, we �rst �nd an optimal set of parameters for
RBF SVMs by applying 10 fold CV; and then, obtain the underlying probabil-
ities by utilizing the leave-one-out approach. Using the leave-one-out approach
instead of training and testing the whole dataset with the found CV parameters
helps us avoid over�tting. It is assumed that the underlying distribution stays
almost constant per each fold of the leave-one-out procedure.



Table 1. Summary of the 5 UCI MLR datasets

Type # Training Samples # Test Samples # Attributes # Classes Bayes Error

TwoNorm [ ] Arti�cial 300* 18000* 20 2

ThreeNorm [ ] Arti�cial 300 * 18000* 20 2

RingNorm [ ] Arti�cial 300 * 18000* 20 2

Arti�calMultiClass1 Arti�cial 300* 18000* 2 5

Arti�calMultiClass2 Arti�cial 300 * 18000* 3 9

Glass Identi�cation UCI 214 - 10 6

Dermatology UCI 358 - 33 6

Segmentation UCI 210 2100 19 7

Yeast UCI 1484 - 8 10

*: The training and test samples for the arti�cial datasets change per each base classi�er
and per each run respectively.

3.2 Results

When the graphs driven from the experiments are explored, some clear trends
are observed. The observations are stated below together with some graphs that
are representatives of results.

� Prediction errors obtained by using bagging and ECOC ensembles are always
lower than the ones of the single classi�er; and the reduction in the error is
almost always coming out as a result of reductions both in variance e�ect
and in systematic e�ect. Among these two, the reductions in the variance
e�ect have greater magnitude. This observation means that the contributions
of bias and variance to the prediction error are smaller when ensembles are
used. In [ ] and [ ], bagging and ECOC are also stated to have low variance
in the additive error decomposition.

� When the single classi�er case is taken into account; we see that variance
e�ect, which is the contribution of variance to the prediction error, does not
necessarily follow the trend of variance. It happens especially when the num-
ber of nodes and epochs is small, that is when the network is relatively weak.
In this scenario, the variance goes lower and the variance e�ect goes higher.
This is actually an expected observation as one would expect having high
variance to help hitting the right target class, when the network is relatively
less decisive. Ensemble methods do not show this property usually. This is
due to the fact that they already make use of variance in an amount which
is enough to account for the above mentioned situation for weak networks,
as they themselves are composed of many base classi�ers.

� In the above mentioned scenario of variance e�ect showing opposite trend
to variance, the bias-variance trade-o� can be observed. At the points where
the variance e�ect increases, bias e�ect decreases in an amount enough to
reveal an overall decrease in the prediction error. However, these points are
not necessarily the optimal points when the prediction error is considered.

� In sense of the prediction error, the convergence points of single classi�ers to
the optimal are usually at higher epochs than those of bagged ensembles, per



Fig. 1.

node. The points where ECOC ensembles are converging are mostly at even
lower points than the ones of bagging. Meanwhile, the prediction errors also
come out in the same descending order: single classi�er, bagging and ecoc.
The only exceptions to these happen during the 2 class problems, where bag-
ging and ECOC are showing quite similar trends, bagging sometimes doing
better. This is because, under this circumstance ECOC with HD decoding
can be considered as bagging: Although bootstrapping has not been used,
random initial weights given by LM algorithm are expected to give a similar
e�ect [ ? ].

� It is also almost always the case that the prediction error of ECOC converges
to a minima in 2 nodes, using n epochs whereas the prediction error of a
single classi�er converges to its optima, which has got a value higher than or
equal to the one of ECOC, using 4, 8 or 16 nodes and greater than or equal
to n epochs. Therefore, instead of a single classi�er trained with high number
of epochs and nodes, an ECOC trained with parameters of quite low values
gives out better results. The trend is similar when bagging is considered. It
is usually in between the single classi�er and ECOC, based on both accuracy
and convergence.

� Put information about the speed of bagging vs ECOC.
� Tell about over�tting in discussion, didnt happen in out experiments but
might happen with higher nodes or with svms?

4 Discussion
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