
Computing the Cardinal Direction Development
between Moving Points

in Spatio-temporal Databases

Tao Chen, Hechen Liu & Markus Schneider⋆

Department of Computer and Information Science and Engineering
University of Florida

Gainesville, FL 32611, USA
{tachen,heliu, mschneid}@cise.ufl.edu

Abstract. In the same way as moving objects can change their loca-
tion over time, the spatial relationships between them can change over
time. An important class of spatial relationships are cardinal directions
like north and southeast. In spatial databases and GIS, they characterize
the relative directional position between static objects in space and are
frequently used as selection and join criteria in spatial queries. Trans-
ferred to a spatiotemporal context, the simultaneous location change of
different moving objects can imply a temporal evolution of their direc-
tional relationships, called development. In this paper, we provide an
algorithmic solution for determining such a temporal development of
cardinal directions between two moving points. Based on the slice rep-
resentation of moving points, our solution consists of three phases, the
time-synchronized interval refinement phase for synchronizing the time
intervals of two moving points, the slice unit direction evaluation phase
for computing the cardinal directions between two slice units that are
defined in the same time interval from both moving points, and finally
the direction composition phase for composing the cardinal directions
computed from each slice unit pair. Finally, we show the integration
of spatio-temporal cardinal directions into spatio-temporal queries as
spatio-temporal directional predicates, and present a case study on the
hurricane data.

1 Introduction

Objects that continuously change their positions over time, so-called moving ob-
jects, have recently received a lot of interest. Examples are moving points like
vehicles, mobile devices, and animals, for which the time-dependent position is
relevant. Temporal movements of spatial objects induce modifications of their
spatial relationships over time, called developments. In spatial databases and

⋆ This work was partially supported by the National Science Foundation under grant
number NSF-IIS-0812194 and by the National Aeronautics and Space Administra-
tion (NASA) under the grant number NASA-AIST-08-0081.



2 Tao Chen, Hechen Liu & Markus Schneider

GIS, spatio-temporal queries are particularly interesting when they ask for tem-
poral changes in the spatial relationships between moving objects. An important
class of spatial relationships are cardinal directions like north and southeast that
characterize the relative directional position between spatial objects. Cardinal
directions between two static objects have been extensively studied and have
been frequently used as selection and join criteria in spatial queries. Transferred
to a spatio-temporal context, the simultaneous location change of different mov-
ing objects can imply a change of their directional relationships. For example, a
fishing boat that is southwest of a storm might be north of it some time later.
We call this a cardinal direction development. Such a development between two
moving objects describes a temporally ordered sequence of cardinal directions
where each cardinal direction holds for a certain time interval during their move-
ments. A development reflects the impact of time on the directional relationships
between two moving objects, and usually proceeds continuously over time if the
movements of the two objects are continuous.

It is an open, interesting, and challenging problem to capture the cardinal
direction development between moving objects. Consider a database containing
information about weather conditions. The query whether a hurricane stayed all
the time to the southeast of another hurricane, and the query whether a hurri-
cane has ever moved to the southeast of another hurricane can be particularly
interesting to hurricane researchers to understand dynamic weather movement
patterns. To answer these queries with current approaches and systems, we would
need to check the validity of the spatial directional predicate, e.g. southeast, at
all time instances during the common life time of both hurricanes. However, this
is not possible since the movements of the hurricanes are continuous. The fact
that the traditional, static cardinal directions cannot describe continuous, time
dependent relationships leads to the need for new modeling strategies.

We have proposed a modeling strategy for cardinal direction developments
in our previous work, in which we have defined the development of cardinal di-
rections over time as a sequence of temporally ordered and enduring cardinal
directions. In this paper, we propose our solution from an algorithmic perspec-
tive. We base our solution on the slice representation of moving points, which
represents the temporal development of a point with a sequence of timely or-
dered units called slices. We propose a three-phase solution for determining the
developments of the directional relationships between two moving points. In a
time-synchronized interval refinement phase, two moving points are refined by
synchronizing their time intervals. As a result, each slice unit of the refined slice
representation of the first moving point has a matching slice unit in the refined
slice representation of the second moving point with the time interval. In the
second phase, the slice unit direction evaluation phase, we present a strategy of
computing cardinal directions between two slice units from both moving points.
Finally, in the direction composition phase, the development of the cardinal di-
rection is determined by composing cardinal directions computed from all slices
pairs from both moving points.



Computing the Cardinal Direction Development between Moving Points 3

Section 2 introduces the related work in the literature. In Section 3, we review
our modeling stratergy for cardinal direction developments. We propose a three-
phase approach to computing the developments of cardinal directions between
two moving points in Section 4. Section 5 defines spatio-temporal directional
predicates for integrating cardinal direction developments into spatial-temporal
databases and query languages. We present a case study on the hurricane best
track data collected from National Hurricane Center (NHC) in Section 6, and
show how the cardinal direction developments can help hurricane researchers to
identify interesting weather event patterns. In Section 7, we draw some conclu-
sions and discuss future work.

2 Related Work

A number of spatio-temporal models have been proposed to represent and man-
age moving objects. Early approaches tried to extend the existing spatial data
models with temporal concepts. One approach is to store the location and ge-
ometry of moving objects with discrete snapshots over time. In [1], a spatio-
temporal object o is defined as a time-evolving spatial object whose evolution is
represented by a set of triplets (oid, si, ti), where oid identifies the object o and
si is the location of o at time instant ti. Another approach in [2] applies linear
constraints for modeling spatio-temporal data. It associates the spatial features
like location and geometry of a moving object with consecutive time intervals.
A common drawback of the two approaches mentioned so far is that, ultimately,
they are incapable of modeling continuous changes of spatial objects over time.
New approaches have been proposed to support a more integrated view of space
and time, and to incorporate the treatment of continuous spatial changes. In [3,
4], the concept of spatio-temporal data types is proposed as abstract data types
(ADTs) whose values can be integrated as complex entities into databases. A
temporal version of an object of type α is given by a function from time to α.
Spatio-temporal objects are regarded as special instances of temporal objects
where α is a spatial data type like point or region. A point (representing an air-
plane, for example) that changes its location in the Euclidean plane over time is
called a moving point. In this paper, we follow the specification of spatio-temporal
data types, particularly the moving point data type, and take it as our basis for
modeling cardinal directions.

Qualitative spatial relationships have a long tradition in GIS and spatial
databases. They can be grouped into three categories: topological, directional
and distance. The same classification holds for the relationships between moving
objects. The distinction is that spatial relationships between moving objects can
have a temporal evolution, i.e. they may change over time. So far, the focus has
been mainly on spatio-temporal topological relationships like cross and enter [5,
6], and spatio-temporal distance relationships like moving towards, moving away
from, [7] and opposite direction [6]. Cardinal directions in a spatio-temporal con-
text have been largely neglected in the literature. Static cardinal directions like
north and northeast represent important qualitative spatial relationships that



4 Tao Chen, Hechen Liu & Markus Schneider

describe relative direction positions between static spatial objects. Many models
follow a projection-based approach, where direction relationships are defined us-
ing projection lines orthogonal to the coordinate axes [8, 9]. Some models apply a
cone-based approach that defines direction relations by using angular zones [10,
11]. Others like theMinimum Bounding Rectangle (MBR) model [12] make use of
the minimum bounding rectangles of both operand objects and apply Allen’s 13
interval relations to the rectangle projections on the x- and y-axes respectively.
However, all existing cardinal direction models only consider static directional
relationships, and when transferred to a spatio-temporal context, none of the
models is capable of modeling directional relationships that continuously change
over time. In [13], an attempt has been made to model moving spatio-temporal
relationships (mst-relation), which includes both topological relations and direc-
tional relations. During a time interval Ik, the mst-relation between two moving
objects Ai and Aj is expressed as Ai (α, β, Ik) Aj , where α is any topological
relation among Equal, Inside, Contain, Cover, Covered By, Overlap, Touch and
Disjoint and β is one of the 12 directional relations, South, North, West, East,
Northwest, Northeast, Southwest, Southeast, Left, Right, Below and Above. Both
Ai α Aj and Ai β Aj are true during the interval Ik. This model provides a way
of describing the topological and directional relationships between two moving
objects. However, it is not clear how the relationships are determined. There are
currently no well established strategies for modeling cardinal directions between
two moving objects, and it is the main goal of this paper to bridge this gap.

We have presented a modeling strategy for cardinal direction developments
in [14], in which the cardinal direction development between two moving points
is formally defined. In this paper, we focus on the design of algorithms for com-
puting such a cardinal directional development.

3 A Review of the Modeling Strategy for Cardinal
Direction Developments between Moving Points

The approach that is usually taken for defining cardinal directions between two
static points in the Euclidean plane is to divide the plane into partitions using the
two points. One popular partition method is the projection-based method that
uses lines orthogonal to the x- and y-coordinate axes to make partitions [12,
8]. The point that is used to create the partitions is called the reference point,
and the other point is called the target point. The direction relation between
two points is then determined by the partition that the target object is in, with
respect to the reference object. Let Points denote the set of static point objects,
and let p, q ∈ Points be two static point objects, where p is the target point and
q is the reference point. A total of 9 mutually exclusive cardinal directions are
possible between p and q. Let CD denote the set of 9 cardinal directions, then
CD={northwest (NW ), restrictednorth (N), northeast (NE), restrictedwest
(W ), sameposition(SP ), restrictedeast (E), southwest (SW ), restrictedsouth
(S), southeast (SE)}. Let dir(p, q) denote the function that returns the cardinal
direction between two static points p and q where q is the reference point, then



Computing the Cardinal Direction Development between Moving Points 5

X

Y

X(q)

Y(q) W

NW N NE

SP
E

SW S SE

q

X

Y

X(q)

Y(q)
q

p

A

B

B(t1)

A(t2)

B(t2)

A(t4)

B(t3)

B(t5)

B(t4)

A(t5)

B(t0)

A(t1)

A(t3)

(a) (b) (c)

Fig. 1. Plane partitions using the reference object q (a), and an example in which p
is northwest of q (b); the trajectories of moving points A and B in the time interval
[t0, t5] (c)

we have dir(p, q) ∈ CD. Figure 1a shows the partitions of the plane with respect
to the reference point q, where each partition corresponds to the definition of
one cardinal direction. The example in Figure 1b gives the case when p is to the
northwest of q, i.e. dir(p, q) = NW .

When two points change their locations over time, the direction relation
between them becomes time related, and may or may not change. First, we con-
sider the cardinal directions at time instances. Let time denote the temporal
data type representing time and MPoints denote the spatio-temporal data type
that represents moving points. Figure 1c shows an example of two moving points
A and B. For A,B ∈ MPoints, let A(t) and B(t) denote the snapshots of A and
B at a time instance t ∈ time. If both A and B are defined at time t, then
A(t), B(t) ∈ Points. The cardinal direction between A and B at t is therefore
dir(A(t),B(t))∈ CD. For example, in Figure 1c, at time t1 when A and B locate
at A(t1) and B(t1), the cardinal direction between A and B at time instance t1 is
dir(A(t1), B(t1))=SW . At the time instance t2 when A and B move to A(t2) and
B(t2), the cardinal direction between them becomes dir(A(t2), B(t2))=NE. We
propose our solution to determine what happened in between and to answer the
question whether there exists a time instance t (t1 < t < t2) such that dir(A(t),
B(t))=W in the following sections. This scenario shows that within a common
time interval, we may get different cardinal directions at different time instances.
However, the change of time does not necessarily imply the change of cardinal
directions between two moving points. In Figure 1c, from time t3 to time t4, A
moves from A(t3) to A(t4) and B moves from B(t3) to B(t4). One observation
that we can make is that although the positions of A and B have changed, the
cardinal direction between A and B does not change. In this case, A is always
to the southwest of B between t3 and t4. In other words, the cardinal direction
between two moving points holds for a certain period of time before it changes.
Based on this fact, we propose our modeling strategy. To determine the cardinal
directions between two moving points during their life time, we first find out the
common life time intervals between two moving points, on which both two mov-
ing points are defined. This is necessary because only when both moving points
exist, we can determine the cardinal directions between them. In this case, the
common life time interval between A and B in Figure 1c is [t1, t5], and during the



6 Tao Chen, Hechen Liu & Markus Schneider

time interval [t0, t1], cardinal directions between A and B cannot be determined.
Then, each common life interval is split into a list of smaller sub-intervals such
that during each sub-interval the cardinal direction between two moving points
does not change Further, on adjacent sub-intervals, different cardinal directions
hold. Finally, we compose all cardinal directions determined on the common life
time intervals of two moving points, and define it as the development of cardinal
directions between the two moving points. Let DEV (A,B) denote the function
that computes the cardinal direction developments between two moving points
A and B. Then we define DEV (A,B) as DEV (A,B) = d1 ◃ d2 ◃ ... ◃ dn, where
di ∈ CD or di = ⊥ (1 ≤ i ≤ n and ⊥ means undefined). Further, we restrain the
transition between two adjacent cardinal directions to follow a so-called state
transition diagram. The formal definitions and the detailed explanations can be
found in [14].

4 Computing Developments between Moving Points

The concept we have introduced in the previous section serves as a specifica-
tion for describing the changing cardinal directions between two moving points.
However, issues like how to find common life time intervals and how to split
them are left open. In this section, we overcome the issues from an algorith-
mic perspective. We first introduce the underlying data structure, called slice
representation, for representing moving points. Then we propose a three phase
strategy including the time-synchronized interval refinement phase, the slice unit
direction evaluation phase, and the direction composition phase.

4.1 The Slice Representation for Moving Points

Since we take the specification of the moving point data type in [3, 4] as our ba-
sis, we first review the representation of the moving point data type. According
to the definition, the moving point date type describes the temporal develop-
ment of a complex point object which may be a point cloud. However, we here
only consider the simple moving point that involves exactly one single point. A
slice representation technique is employed to represent a moving point object.
The basic idea is to decompose its temporal development into fragments called
“slices”, where within each slice this development is described by a simple linear
function. A slice of a single moving point is called a upoint, which is a pair of
values (interval, unit-function). The interval value defines the time interval for
which the unit is valid; the unit-function value contains a record (x0, x1, y0, y1)
of coefficients representing the linear function f(t)=(x0 + x1t, y0 + y1t), where
t is a time variable. Such functions describe a linearly moving point. The time
intervals of any two distinct slice units are disjoint; hence units can be totally
ordered by time. More formally, let A be a single moving point representation,
interval = time × time, real4 = real × real × real × real, and upoint = in-
terval × real4. Then A can be represented as an array of slice units ordered by
time, that is, A = ⟨(I1, c1), (I2, c2), ..., (In, cn)⟩ where for 1 ≤ i ≤ n holds that



Computing the Cardinal Direction Development between Moving Points 7

t

X

Y

A B

t1

t2

t3

t4

t5

t6

t7

A(t2)

A(t4)

A(t6)

B(t1)

B(t3)

B(t5)

B(t7)

I1
a

I2
a

I2
b

I1
b

I3
b

t

X

Y

A B

t2t2

t3

t4

t5

t6

A(t2)

A(t4)

A(t6)

B(t1)

B(t3)

B(t5)

B(t7)

I1A(t3)

A(t5)

B(t6)

B(t2)

B(t4) I2

I3

I4

(a) (b)

Fig. 2. An example of the slice representations of two single moving points A and B (a),
and the time-synchronized slice representation of two moving points A and B (b)

Ii ∈ interval and ci ∈ real4 contains the coefficients of a linear unit function fi.
Further, we require that Ii < Ij holds for 1 ≤ i < j ≤ n.

Figure 2 shows the slice representations of two single moving points A and B.
In this example, ti (1 ≤ i ≤ 7) is a time instance and for 1 ≤ i < j ≤ 7, ti < tj .
The moving point A is decomposed into two slices with intervals IA1 = [t2, t4]
and IA2 = [t4, t6]. Let the function fA

1 with its coefficients cA1 and the function fA
2

with its coefficients cA2 describe the movement of A in the intervals IA1 and IA2
respectively. Then A is represented as A =

⟨
(IA1 , cA1 ), (I

A
2 , cA2 )

⟩
. The snapshots

fA
1 (t2) and fA

1 (t4) of the moving point A at the times t2 and t4 are the start
and end points of the first slice, and fA

2 (t4) and fA
2 (t6) are the start and end

points of the second slice. Similarly, the moving point B can be represented as
B =

⟨
(IB1 , cB1 ), (I

B
2 , cB2 ), (I

B
3 , cB3 )

⟩
where cB1 , c

B
2 , and cB3 contain the coefficients

of the three linear functions fB
1 , fB

2 , and fB
3 that describe the linear movement

of B in its three slice units. If the function fA
i or fB

i that in a slice unit maps a
time instant t to a point value in A or B is not important, we allow the notations
A(t) and B(t) respectively to retrieve the location of a moving point A or B at
the time instant t.

Further, we introduce a few basic operations for retrieving information from
the slice representation, which will be used by our algorithm later for computing
cardinal directions between moving points.

The first set of operations is provided for manipulating moving points. The
get first slice operation retrieves the first slice unit in a slice sequence of a moving
point, and sets the current position to 1. The get next slice operation returns
the next slice unit of the current position in the sequence and increments the
current position. The predicate end of sequence yields true if the current position
exceeds the end of the slice sequence. The operation create new creates an empty
MPoint object with an empty slice sequence. Finally, the operation add slice
adds a slice unit to the end of the slice sequence of a moving point.

The second set of operations is provided for accessing elements in a slice unit.
The operation get interval returns the time interval of a slice unit. The operation
get unit function returns a record that represents the linear function of a slice



8 Tao Chen, Hechen Liu & Markus Schneider

unit. The create slice operation creates a slice unit based on the provided time
interval and the linear function.

Based on the slice representation and the basic operations, we are now ready
to describe our strategy for computing the cardinal directions between two mov-
ing points.

4.2 The Time-synchronized Interval Refinement Phase

Since a slice is the smallest unit in the slice representation of moving points, we
first consider the problem of computing cardinal directions between two moving
point slices. According to our definitions in [14] the cardinal directions only
make sense when the same time intervals are considered for both moving points.
However, matching, i.e., equal, slice intervals can usually not be found in both
moving points. For example, in Figure 2, the slice interval IA1 = [t2, t4] of A does
not match any of the slice intervals of B. Although the slice interval IB1 = [t1, t3]
of B overlaps with IA1 , it also covers a sub-interval [t1, t2] that is not part of
IA1 , which makes the two slices defined in IA1 and IB1 incomparable. Thus, in
order to compute the cardinal directions between two moving point slices, a
time-synchronized interval refinement for both moving points is necessary.

We introduce a linear algorithm interval sync for synchronizing the intervals
of both moving points. The input of the algorithm consists of two slice sequences
mp1 and mp2 that represent the two original moving points, and two empty
lists nmp1 and nmp2 that are used to store the two new interval refined moving
points. The algorithm performs a parallel scan of the two original slice sequences,
and computes the intersections between the time intervals from two moving
points. Once an interval intersection is captured, two new slices associated with
the interval intersection are created for both moving points and are added to the
new slice sequences of the two moving points. Let I = [t1, t2] and I ′ = [t′1, t

′
2]

denote two time intervals, and let lower than denote the predicate that checks
the relationship between two intervals. Then we have lower than(I, I ′) = true if
and only if t2 < t′2. Further, let intersection denote the function that computes
the intersection of two time intervals, which returns ∅ if no intersection exists.
We present the corresponding algorithm interval sync in Figure 3.

As a result of the algorithm, we obtain two new slice sequences for the two
moving points in which both operand objects are synchronized in the sense that
for each unit in the first moving point there exists a matching unit in the second
moving point with the same unit interval and vice versa. For example, after the
time-synchronized interval refinement, the two slice representations of the mov-
ing points A and B in Figure 2 become A =

⟨
(I1, c

A
1 ), (I2, c

A
1 ), (I3, c

A
2 ), (I4, c

A
2 )

⟩
and B =

⟨
(I1, c

B
1 ), (I2, c

B
2 ), (I3, c

B
2 ), (I4, c

B
3 )

⟩
, where the cAi with i ∈ {1, 2}

contain the coefficients of the linear unit functions fA
i , the cBi with i ∈

{1, 2, 3} contain the coefficients of the linear unit functions fB
i , and I1 =

intersection(IA1 , IB1 ) = [t2, t3], I2 = intersection(IA1 , IB2 ) = [t3, t4], I3 =
intersection(IA2 , IB2 ) = [t4, t5], and I4 = intersection(IA2 , IB3 ) = [t5, t6].

Now we analyze the complexity of the algorithm for function interval sync.
Assume that the first moving point mp1 is composed of m slices, and the second



Computing the Cardinal Direction Development between Moving Points 9

method interval sync (mp1, mp2,
nmp1, nmp2)

s1← get first slice(mp1)
s2← get first slice(mp2)
while not end of sequence(mp1)
and not end of sequence(mp2) do

i1← get interval(s1)
i2← get interval(s2)
i← intersection(i1, i2)
if i ̸= ∅ then

f1← get unit function(s1)
f2← get unit function(s2)
ns1← create slice(i, f1)
ns2← create slice(i, f2)
add slice(nmp1, ns1)
add slice(nmp2, ns2)

endif
if lower than(i1, i2) then

s1← get next slice(mp1)
else

s2← get next slice(mp2)
endif

endwhile
end

1 method compute dir dev(sl1, sl2)
2 dev list← empty list
3 s1← get first slice(sl1)
4 s2← get first slice(sl2)
5 slice dir list← compute slice dir(s1,s2)
6 append(dev list, slice dir list)
7 while not end of sequence(sl1)
8 and not end of sequence(sl2) do
9 (b, e)← get interval(s1)

10 s1← get next slice(sl1)
11 s2← get next slice(sl2)
12 (b new, e new)← get interval(s1)
13 if e < b new then
14 append(dev list, ⟨⊥⟩)
15 endif
16 slice dir list← compute slice dir(s1,s2)
17 last dir← get last in list(dev list)
18 new dir← get first in list(slice dir list)
19 if last dir = new dir then
20 remove first(slice dir list)
21 endif
22 append(dev list, slice dir list)
23 endwhile
24 return dev list
25 end

Fig. 3. The algorithm interval sync that computes the time-synchronized interval re-
finement for two moving points, and the algorithm compute dir dev that computes the
cardinal direction development for two moving points.

moving point mp2 is composed of n slices. Since a parallel scan of the slice
sequences from two moving points is performed, the complexity is therefore
O(m+ n) and the result contains at most (m+ n) intervals.

4.3 The Slice Unit Direction Evaluation Phase

From the first phase, the time-synchronized interval refinement phase, we ob-
tain two refined slice sequences of both moving points that contain the same
number of slice units with synchronized time intervals. In the second phase, we
propose a solution for computing the cardinal directions between any pair of
time-synchronized slice units.

We adopt a two-step approach to computing the cardinal directions between
two slice units. The first step is to construct a mapping and apply it to both
slice units so that one of the slice units is mapped to a slice unit that consists
of a point that does not change its location. We prove that the mapping is a
cardinal direction preserving mapping that does not change the cardinal direction
relationships between the two slice units. The second step is to determine the
cardinal directions between the two mapped slice units.



10 Tao Chen, Hechen Liu & Markus Schneider

The difficulty of computing cardinal directions between two slice units comes
from the fact that the positions of the moving points change continuously in
both slice units. A much simpler scenario is that only one slice unit consists
of a moving point, whereas the other slice unit involves no movement. In this
simpler case, the cardinal directions can be easily determined. Thus, the goal is
to find a mapping that maps two slice units sua and sub to two new slice units
su′

a and su′
b that satisfy the following two conditions: (i) su′

a and su′
b have the

same cardinal directions as units sua and sub, that is, the mapping is a cardinal
direction preserving mapping ; (ii) either su′

a or su′
b does not involve movement.

In order to find such a mapping for two slice units, we first introduce a simple
cardinal direction preserving mapping for static points. Let p and q denote two
points with coordinates (xp, yp) and (xq, yq). Let X(r) and Y (r) denote the
functions that return the x-coordinate and y-coordinate of a point r. We establish
a simple translation mapping M(r) = (X(r) − x0, Y (r) − y0), where x0 and y0
are two constant values. We show that the cardinal direction between p and q is
preserved by applying such a mapping.

Lemma 1. Given p = (xp, yp), q = (xq, yq), the mapping M(r)=(X(r) − x0,
Y (r) − y0), where r is a point and x0 and y0 are two constant values, and
p′ = M(p) and q′ = M(q), we have dir(p, q) = dir(p′, q′)

Proof. According to the definition in Section 3, the cardinal direction dir(p, q)
between two points p and q is based on the value of X(p)−X(q) and the value
of Y (p)−Y (q). Since we have X(p′)−X(q′) = X(p)−X(q) and Y (p′)−Y (q′) =
Y (p)− Y (q), we obtain dir(p, q) = dir(p′, q′). 2

In Figure 4(a), two points p and q are mapped to p′ and q′, and the cardinal
direction is preserved after the mapping, i.e., dir(p, q) = dir(p′, q′) = NW .

Now we are ready to define a cardinal direction preserving mapping for two
slice units. Let suA and suB denote two slice units (upoint values) from the time-
synchronized moving points A and B where suA = (I, cA) and suB = (I, cB)
with I ∈ interval and cA, cB ∈ real4. Let fA and fB be the two corresponding
linear unit functions with the coefficients from cA and cB respectively. We estab-
lish the following mapping M for a unit function f ∈ {fA, fB}: M (f ) = f − fB

We show in Lemma 2 that by mapping the unit functions of the slices suA

and suB to two new unit functions, the cardinal directions between the slice
units suA and suB are still preserved.

Lemma 2. Let suA = (I, cA) ∈ upoint and suB = (I, cB) ∈ upoint, and let
fA and fB be the corresponding linear unit functions with the coefficients from
cA = (xA

0 , x
A
1 , y

A
0 , y

A
1 ) and cB = (xB

0 , x
B
1 , y

B
0 , yB1 ) respectively. We consider the

mapping M(f) = f − fB, where f is a linear unit function, and the translated
upoint values suA

t = (I, cAt ) and suB
t = (I, cBt ) where c

A
t and cBt contain the coef-

ficients of M(fA) and M(fB) respectively. Then, the cardinal directions between
the slice units suA

t and suB
t are the same as the cardinal directions between the

slice units suA and suB.

Proof. Let I = [t1, t2], fA(t) = (xA
0 + xA

1 t, y
A
0 + yA1 t), and fB(t) =

(xB
0 + xB

1 t, y
B
0 + yB1 t). Then we have M(fA) = (xA

0 − xB
0 + (xA

1 − xB
1 )t, y

A
0 −



Computing the Cardinal Direction Development between Moving Points 11

X

Y

q
p

O xq

yq

xp

yp

y0yp-

y0yq-

p'

q'

x0xp- x0xq-

(a) (b) (c)

Fig. 4. A simple cardinal direction preserving mapping from p, q to p′,q′ (a); the
cardinal direction preserving mapping from slice unit A, B (b) to A′,B′ (c).

yB0 + (yA1 − yB1 )t) and M(fB) = (0, 0). Assume there exists a time t0
(t1 ≤ t0 ≤ t2) such that dir(fA(t0), f

B(t0)) ̸= dir(M(fA)(t0),M(fB)(t0)).
Let xB = xB

0 + xB
1 t0 and yB = yB0 + yB1 t0 denote two constant values.

Since M(fA)(t0) = (xA
0 − xB

0 + (xA
1 − xB

1 )t0, y
A
0 − yB0 + (yA1 − yB1 )t0) and

M(fB)(t0) = (0, 0), we have M(fA)(t0) = (X(fA(t0)) − xB , Y (fA(t0)) − yB)
and M(fB)(t0) = (X(fB(t0))−xB , Y (fB(t0))− yB). This matches the cardinal
direction preserving mapping function M(r) = (X(r) − x0, Y (r) − y0). Thus,
the assumption dir(fA(t0), f

B(t0)) ̸= dir(M(fA)(t0),M(fB)(t0)) contradicts to
Lemma 1. 2

After applying the cardinal direction preserving mapping M(f) to both unit
functions fA and fB , we now obtain two new unit functions f ′

a and f ′
b as follows:

gA(t) = M(fA)(t) = (xA
0 − xB

0 + (xA
1 − xB

1 )t, y
A
0 − yB0 + (yA1 − yB1 )t)

gB(t) = M(fB)(t) = (0, 0)

The unit function gA describes a linear movement in the unit interval, while
the unit function gB describes a static point that holds its position during the
entire unit interval. In other words, suA is mapped to a new slice unit suA

t which
has a linear movement, and suB is mapped to a new slice unit suB

t that has no
movement during the unit interval. Figure 4 shows an example of mapping the
slice units A and B to slice units A′ and B′. In this example, A = [I, cA] and
B = [I, cB] where I = [1, 2], cA and cB contain the coefficients of the two
unit functions fA and fB respectively, fA(t) = (−5 + 6t, 2 + t) and fB(t) =
(−1 + 3t,−1 + 3t). Thus, A(t1) = fA(1) = (1, 3), A(t2) = fA(2) = (7, 4),
B(t1) = fB(1) = (2, 2), and B(t2) = fB(2) = (5, 5). After applying the mapping,
we obtain gA(t) = (−4 + 3t, 3− 2t) and gB(t) = (0, 0). Thus, A′(t1) = gA(1) =
(−1, 1), A′(t2) = gA(2) = (2,−1), and B′(t1) = B′(t2) = (0, 0).

So far, we have managed to reduce the problem of computing the cardinal
directions between two moving slice units to the problem of computing the car-
dinal directions between one moving slice unit and one static slice unit. The
second step is to compute the cardinal directions between suA

t and suB
t .

Since suB
t is located constantly at (0, 0) during the time interval and since

the trajectory of suA
t is a linear function with respect to time t, we apply the



12 Tao Chen, Hechen Liu & Markus Schneider

projection based approach (Section 3) to determining the cardinal directions.
The idea is to take suB

t as the reference point and to create partitions by using
the x- and y-coordinate axes. Then we project the slice unit suA

t to the xy-plane,
and the cardinal directions are determined by the partitions that its trajectory
intersects. Finally, the cardinal directions are ordered according to the time when
they occurred and are stored into a list. For example, the cardinal directions
between A′ and B′ in Figure 4b are NW, N , NE, E, and SE.

4.4 The Direction Composition Phase

Finally, in the direction composition phase, we iterate through all slice units,
compose all cardinal directions that have been detected in slice units, and form
a complete cardinal direction list in the temporal order. Further, we remove
duplicates between consecutive cardinal directions.

We introduce the linear algorithm compute dir dev in Figure 3 for comput-
ing the final cardinal direction development (line 24) between two synchronized
moving points. The input of the algorithm consists of two lists of slices sl1 and
sl2 (line 1) that stem from the time-synchronized interval refinement phase. Since
the two slice lists are guaranteed to have the same length, the algorithm takes
a slice from each list (lines 3, 4, 10 and 11), determines the cardinal directions
for each pair of slices (lines 5 and 16), which have the same unit interval, and
traverses both lists in parallel (lines 7 and 8). For two consecutive pairs of slices,
we have to check whether the slice intervals are adjacent (lines 9, 12, and 13). If
this is not the case, we add the list with the single element ⊥ to the global list
dev list in order to indicate that the cardinal direction development is undefined
between two consecutive slice intervals (lines 13 to 15).

For each pair of slices, the function compute slice dir determines their cardi-
nal directions according to the strategy discussed in Section 4.3 (lines 5 and 16).
We maintain a list slice dir list to keep these newly computed cardinal directions
from the current slice pair and compare its first cardinal direction with the last
cardinal direction that has been computed from the last slice pair and is stored
in the global list dev list (lines 17 to 19). If both cardinal directions are the
same, the first cardinal direction from the list slice dir list is removed in order
to avoid duplicates (lines 19 to 21). The newly computed cardinal directions in
the list slice dir list are added to the global list dev list (lines 6 and 22).

The algorithm compute dir dev deploys a number of auxiliary list functions.
The function get first in list returns the first element in a list. The function
get last in list returns the last element in a list. The function append adds a list
given as its second argument to the end of another list given as its first argument.
The function remove first removes the first element from a list.

Now we analyze the complexity of the algorithm for function
compute dir dev. Assume that the first moving point mp1 consists of m
slices, and the second moving point mp2 consists of n slices. The inputs
of the function compute dir dev are two lists of slices generated from the
time-synchronized interval refinement phase, thus each list contains at most
m + n slices. The function compute dir dev iterate through all slices in both



Computing the Cardinal Direction Development between Moving Points 13

list and compose the cardinal directions computed. So the time complexity is
O(m+ n).

5 Defining Spatial-temporal Direction Predicates within
Databases

In this section, we discuss how cardinal direction developments can be integrated
into spatio-temporal databases and query languages. This requires the formal
definition of cardinal direction developments as binary predicates since it will
make the query processing easier when using pre-defined predicates as selection
conditions. In the following part, we define some important predicates which
will be sufficient for most queries on cardinal direction developments between
moving objects.

First of all, we give the definition of existential direction predicates. This
type of predicates finds out whether a specific cardinal direction existed during
the evolution of moving objects. For example, a query like “Find all ships that
appeared north of ship Fantasy” belongs to this category. It requires a predicate
named exists north as a selection condition of a join. This predicate can be
defined as follows,

Definition 1. Given two moving points A,B ∈ MPoints, their cardinal direc-
tion development DEV (A,B) = d1 ◃ d2 ◃ . . . ◃ dn with n ∈ N and di ∈ CD or
di = ⊥ for all 1 ≤ i ≤ n. Then we define the existential direction predicate
exists north as

exists north(A,B) = true
def⇔ ∃ 1 ≤ i ≤ n : di = N

Definition 1 indicates that the predicate exists north is true if the direction
north exists in the sequence of the cardinal direction development. It can help
us define the above query. Assume that we have the following relation schema
for ships

ships(id:integer, name:string, route:mpoint)

The query can be expressed using an SQL-like query language as follows:

SELECT s1.name FROM ships s1, ships s2

WHERE s2.name = ‘Fantasy’ AND exists_north(s1.route, s2.route);

The other existential cardinal direction predicates exists south, ex-
ists east, exists west, exists sameposition, exists northeast , exists southeast, ex-
ists northwest, and exists southwest are defined in a similar way.

Another important category of predicates expresses that one moving object
keeps the same direction with respect to another moving object. For example,
assume that there is a group of ships traveling from north to south and each
ship follows the ship in front of the group. Now the leader of the group wants to
know which ships belong to the group. The problem is to find out which ships
are keeping a northern position with respect to the leading ship.



14 Tao Chen, Hechen Liu & Markus Schneider

Definition 2. Given two moving points A,B ∈ MPoints. The predicate
keeps north is defined as

keeps north(A,B) = exists north(A,B) ∧ ¬exists south(A,B)
∧ ¬exists southeast(A,B) ∧ ¬exists east(A,B)
∧ ¬exists sameposition(A,B) ∧ ¬exists northwest(A,B)
∧ ¬exists northeast(A,B) ∧ ¬exists southwest(A,B)
∧ ¬exists west(A,B)

Definition 2 shows that the relationship keeps north between two moving
objects implies that the only existential direction predicate in the cardinal di-
rection development of these moving objects is exists north without any other
existential direction predicates. In other words, we have DEV (A,B) = N .

We consider the above example and assume that the identifier of the leader
ship is 1001. Then the query “Find all ships keeping a position north of the
leader ship 1001” can be expressed as

SELECT s1.id FROM ships s1, ships s2

WHERE s2.id = ‘1001’ AND keeps_north(s1.route, s2.route);

The other predicates that express that one moving object remains in
the same direction with respect to another moving object are keeps south,
keeps east, keeps west, keeps sameposition, keeps northeast, keeps southeast,
keeps northwest, and keeps southwest.

Another useful predicate checks for the transition between two cardinal direc-
tions in a cardinal direction development. The transition can be either a direct
change or an indirect change through a set of intermediate directions. We name
this predicate as from to. For example, the query “Find all ships that have
traveled from the south to the north of the ship Fantasy” can be answered by
using this predicate.

Definition 3. Given two moving points A,B ∈ MPoints, their cardinal direc-
tion development DEV(A,B) = d1 ◃d2 ◃ . . . ◃dn such that di ∈ CD or di = ⊥ for
all 1 ≤ i ≤ n, and two cardinal directions d′, d′′ ∈ CD. We define the predicate
from to as follows:

from to(A,B, d′, d′′) = true
def⇔ d′ ̸= ⊥ ∧ d′′ ̸= ⊥ ∧

∃ 1 ≤ i < j ≤ n : di = d′ ∧ dj = d′′

We formulate the above query as follows:

SELECT s1.id FROM ships s1, ships s2

WHERE s2.name = ‘Fantasy’ AND

from_to(s1.route, s2.route, ‘S’, ‘N’);

Finally, we define the predicate cross north which checks whether a moving
point traverses a large extent of the region in the north of another moving point.



Computing the Cardinal Direction Development between Moving Points 15

Definition 4. Given two moving points A,B ∈ MPoints and their cardinal
direction development DEV(A,B) = d1 ◃ d2 ◃ . . . ◃ dn such that di ∈ CD or
di = ⊥ for all 1 ≤ i ≤ n. We define the predicate crosses north as follows:

crosses north(A,B) = true
def⇔ n ≥ 3 ∧ ∃ 2 ≤ i ≤ n− 1 :

(di−1 = NW ∧ di = N ∧ di+1 = NE) ∨
(di−1 = NE ∧ di = N ∧ di+1 = NW)

The query “Find all the ships that have crossed the north of ship Fantasy”
can be expressed as follows:

SELECT s1.id FROM ships s1, ships s2

WHERE s2.name = ‘Fantasy’ AND crosses_north(s1.route, s2.route);

The other predicates cross south, cross east, and cross west can be defined
in a similar way.

6 Case Study: Cardinal Direction Development in
Hurricane Research

In this section, we apply our strategy to a real world application, and show how
the evaluation of cardinal direction development can help with the hurricane
research.

We have integrated the directional predicates into a moving object database
(MOD) developed for the NASA workforce. The moving object database is a full-
fledged database with additional support for spatial and spatiotemporal data in
its data model and query language. It maintains tropical cyclone and hurricane
data provided by public sources, and the weather data derived from the NASA
mission sensor measurements. It also provides functionality in terms of spa-
tiotemporal operations and predicates that can be deployed by decision makers
and scientists in ad-hoc queries. By enabling the capability of evaluating cardi-
nal direction developments among hurricanes, the scientists can have a better
understanding of dynamic patterns on weather events. We establish our experi-
ments on the historical hurricane data collected from National Hurricane Center
(NHC). The original data is available on the web site of NHC [15]. The sensors
collect six data points per day for a specific hurricane, i.e., at 00:00, 06:00, 12:00
and 18:00 UTC time. The data collected are the hurricane locations in terms
of longitudes and latitudes, time, and other thematic data like wind speed and
category. We load these data points into moving point types, and represent the
trajectory of each hurricane as a moving point in MOD. In this paper, we present
a case study on all hurricanes in year 2005 on the Atlantic Ocean. The following
table is created in the database:

test_moving(id:integer, name:string, track:mpoint)



16 Tao Chen, Hechen Liu & Markus Schneider

Fig. 5. The trajectories of hurricanes PHILIPPE and RITA.

In the schema test moving , name is the attribute that stores hurricane names
and track is a moving point type attribute that stores the trajectory of hurri-
canes. A total of 28 hurricanes that have been active on the Atlantic Ocean in
the year 2005 are loaded in the data table. Due to the space limit, we evaluate
the following two types of directional queries: the cardinal direction development
query and the top-k query.

First, consider the query: “Find the cardinal direction development between
PHILIPPE and RITA.”, we can post the following SQL query:

SELECT m1.name, m2.name, mdir(m1.track, m2.track),

FROM test_moving m1, test_moving m2

WHERE m1.name = ‘PHILIPPE’ AND m2.name = ‘RITA’;

The function mdir is a user defined function registered at the database end
that computes the cardinal direction developments between two moving points.
A string representation is returned as the result. In this case, we obtain the
following result:

NAME NAME MDIR(M1.TRACK,M2.TRACK)

-------- ----- ---------------------------------

PHILIPPE RITA ->undefined[2005091712,2005091800)

->NW[2005091800,2005092212)

->W[2005092212,2005092212]

->SW(2005092212,2005092402)

->W[2005092402,2005092402]

->NW(2005092402,2005092406)

->undefined[2005092406,2005092606)

The result is a list of timely ordered cardinal directions. In the time inter-
val [2005-09-17 12:00:00,2005-09-18 00:00:00), RITA is not evolved yet, thus the
cardinal direction is undefined. When RITA is “born”, it starts from the north-
west of PHILIPPE, moves to the north of PHILIPPE. Then it crosses the west
of PHILIPPE and moves to the southwest of PHILIPPE on date 2005-09-22.



Computing the Cardinal Direction Development between Moving Points 17

In the following two days, it moves back to the northwest of PHILIPPE. The
visualization of the two hurricane is shown in Figure 5. The result shows an
interesting movement pattern between the two hurricanes, which may suggest
the hurricane researchers to investigate the correlations in terms of wind speed,
air pressure, and ocean currents during a certain time interval between the two
hurricanes.

Another type of query that is intersecting to hurricane researchers is the
top-k query. Here, the top-k evaluates the lasting time of cardinal directions
between two hurricanes. Thus, given two hurricanes, we are able to find the
top-k cardinal directions between them. Let us consider the query: “find top
2 cardinal directions between MARIA with other hurricane tracks”. We can
formulate the SQL query as follows:

SELECT m1.name, m2.name, topKDir(m1.track,m2.track,3)

FROM test_moving m1, test_moving m2

WHERE m1.name=‘MARIA’ AND m1.name<>m2.name

AND topKDir(m1.track,m2.track,2) <> ‘ ’

The function topKDir(m1.track,m2.track, 2) returns the top 2 cardinal di-
rections (excluding the undefined direction) between two moving points that last
the longest, and it returns empty string if there does not exist defined cardinal
directions between them. We get the following result:

NAME NAME TOPKDIR(M1.TRACK,M2.TRACK,2)

------ -------- ---------------------------

MARIA LEE NW NE

MARIA NATE SW

MARIA OPHELIA SW

The result shows that the top two cardinal directions lasting the longest
between MARIA and LEE are NW and NE. NATE and OPHELIA are always
to the SW of MARIA. From this result, we can observe that during the life time
of MARIA, two hurricanes spent most of their time moving in the southwest of
MARIA and one hurricane spent most of its time in the northwest of MARIA.
No hurricanes exists in the other directions like SE or NE of MARIA. This
observation may raise the intersects of hurricane researchers to investigate the
causes and the facts that lead to the pattern, or to make conclusions from this
pattern.

7 Conclusions and Future Work

In this paper, we present a three-phase solution for computing the cardinal direc-
tions between two moving points from an algorithmic perspective. We show the
mapping of cardinal direction developments between moving points into spatio-
temporal directional predicates and the integration of these predicates into the
spatio-temporal query language of a moving objects database. We present a case



18 Tao Chen, Hechen Liu & Markus Schneider

study on the hurricane data to show a real world application for the cardinal
direction development. In the future, we will implement a comprehensive set of
predicates for querying cardinal direction development. We will also extend our
concept to more complex moving objects like moving regions and moving lines.

References

1. Theodoridis, Y., Sellis, T.K., Papadopoulos, A., Manolopoulos, Y.: Specifications
for Efficient Indexing in Spatiotemporal Databases. In: 10th Int. Conf. on Scientific
and Statistical Database Management (SSDBM). (1998) 123–132

2. Grumbach, S., Rigaux, P., Segoufin, L.: Spatio-temporal Data Handling with Con-
straints. GeoInformatica (2001) 95–115

3. Erwig, M., Güting, R.H., Schneider, M., Vazirgiannis, M.: Spatio-temporal Data
Types: an Approach To Modeling and Querying Moving Objects in Databases.
GeoInformatica 3(3) (1999) 269–296

4. Forlizzi, L., Guting, R., Nardelli, E., Schneider, M.: A Data Model and Data Struc-
tures for Moving Objects Databases. In: ACM SIGMOD Int. Conf. on Management
of Data. (2000) 319–330

5. Erwig, M., Schneider, M.: Spatio-temporal Predicates. IEEE Trans. on Knowledge
and Data Engineering (TKDE) 14(4) (2002) 881–901

6. Su, J., Xu, H., Ibarra, O.H.: Moving Objects: Logical Relationships and Queries.
In: 7th Int. Symp. on Spatial and Temporal Databases (SSTD). (2001) 3–19

7. de Weghe, N.V., Bogaert, P., Delafontaine, M., Temmerman, L.D., Neutens, T.,
Maeyer, P.D., Witlox, F.: How To Handle Incomplete Knowledge Concerning
Moving Objects. In: Behaviour Monitoring and Interpretation. (2007) 91–101

8. Frank, A.: Qualitative Spatial Reasoning: Cardinal Directions As an Example.
International Journal of Geographical Information Science 10(3) (1996) 269–290

9. Skiadopoulos, S., Koubarakis, M.: Composing Cardinal Direction Relations. Arti-
ficial Intelligence 152 (2004) 143–171

10. Haar, R.: Computational Models of Spatial Relations. Technical Report: TR-478
(MSC-72-03610) (1976)

11. Skiadopoulos, S., Sarkas, N., Sellis, T., Koubarakis, M.: A Family of Directional
Relation Models for Extended Objects. IEEE Trans. on Knowledge and Data
Engineering (TKDE) 19 (2007)

12. Papadias, D., Theodoridis, Y., Sellis, T.: The Retrieval of Direction Relations Using
R-trees. In: Int. Conf. on Database and Expert Systems Applications (DEXA).
(1994) 173–182

13. Li, J.Z., Ozsu, M.T., Tamer, M., Szafron, D., Ddi, S.G.: Modeling of Moving
Objects in a Video Database. In: IEEE International Conference on Multimedia
Computing and Systems. (1997) 336–343

14. Chen, T., Liu, H., Schneider, M.: Evaluation of Cardinal Direction Developments
between Moving Points. In: ACM Symp. on Geographic Information Systems
(ACM GIS). (2010) 430–433

15. : NHC Archive of Hurricane Seasons. http://www.nhc.noaa.gov/pastall.shtml


