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Abstract

We consider the following single-machine scheduling problem, which is often
denoted 1||

∑
fj: we are given n jobs to be scheduled on a single machine, where

each job j has an integral processing time pj, and there is a nondecreasing, non-
negative cost function fj(Cj) that specifies the cost of finishing j at time Cj ; the
objective is to minimize

∑n
j=1 fj(Cj). Bansal & Pruhs recently gave the first

constant approximation algorithm with a performance guarantee of 16. We im-
prove on this result by giving a primal-dual pseudo-polynomial-time algorithm
based on the recently introduced knapsack-cover inequalities. The algorithm
finds a schedule of cost at most four times the constructed dual solution. Al-
though we show that this bound is tight for our algorithm, we leave open the
question of whether the integrality gap of the LP is less than 4. Finally, we show
how the technique can be adapted to yield, for any ǫ > 0, a (4+ǫ)-approximation
algorithm for this problem.

1 Introduction

We consider the following general scheduling problem: we are given a set J of n jobs to
schedule on a single machine, where each job j ∈ J has a positive integral processing
time pj , and there is a nonnegative integer-valued cost function fj(Cj) that specifies
the cost of finishing j at time Cj. The only restriction on the cost function fj(Cj) is
that it is a nondecreasing function of Cj; the objective is to minimize

∑
j∈J fj(Cj).

This problem is denoted as 1||
∑

fj in the notation of scheduling problems formulated
by Graham, Lawler, Lenstra, & Rinnooy Kan [13].

In a recent paper, Bansal & Pruhs [4] gave the first constant approximation algo-
rithm for this problem; more precisely, they presented a 16-approximation algorithm,
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that is, a polynomial-time algorithm guaranteed to be within a factor of 16 of the
optimum. We improve on this result: we give a primal-dual pseudo-polynomial-time
algorithm that finds a solution directly to the scheduling problem of cost at most
four times the optimal cost, and then show how this can be extended to yield, for
any ǫ > 0, a (4 + ǫ)-approximation algorithm for this problem. This problem is
strongly NP -hard, simply by considering the case of the weighted total tardiness,
where fj(Cj) = wj maxj∈J {0, Cj − dj} and dj is a specified due date of job j, j ∈ J .
However, no hardness results are known other than this, and so it is still conceivable
that there exists a polynomial approximation scheme for this problem (though by the
classic result of Garey & Johnson [12], no fully polynomial approximation scheme ex-
ists unless P=NP). No polynomial approximation scheme is known even for the special
case of weighted total tardiness.

Our Techniques Our results are based on the linear programming relaxation of a
time-indexed integer programming formulation in which the 0-1 decision variables xjt

indicate whether a given job j ∈ J , completes at time t ∈ T = {1, . . . , T}, where
T =

∑
j∈J pj ; note that since the cost functions are nondecreasing with time, we

can assume, without loss of generality, that the machine is active only throughout the
interval [0, T ], without any idle periods. With these time-indexed variables, it is trivial
to ensure that each job is scheduled; the only difficulty is to ensure that the machine
is not required to process more than one job at a time. To do this, we observe that, for
each time t ∈ T , the jobs completing at time t or later have total processing time at
least T − t+ 1 (by the assumption that the processing times pj are positive integers);
for conciseness, we denote this demand D(t) = T − t + 1. This gives the following
integer program:

minimize
∑

j∈J

∑

t∈T

fj(t)xjt (IP)

subject to
∑

j∈J

∑

s∈T :s≥t

pjxjs ≥ D(t), for each t ∈ T ; (1)

∑

t∈T

xjt = 1, for each j ∈ J ; (2)

xjt ∈ {0, 1}, for each j ∈ J , t ∈ T .

We first argue that this is a valid formulation of the problem. Clearly, each feasible
schedule corresponds to a feasible solution to (IP) of equal objective function value.
Conversely, consider any feasible solution, and for each job j ∈ J , assign it the due
date dj = t corresponding to xjt = 1. If we schedule the jobs in Earliest Due Date
(EDD) order, then we claim that each job j ∈ J , completes by its due date dj. If we
consider the constraint (1) in (IP) corresponding to t = dj + 1, then since each job is

assigned once, we know that
∑

j∈J

∑dj
t=1 pjxjt ≤ dj; in words, the jobs with due date

at most dj have total processing time at most dj . Since each job completes by its due
date, and the cost functions fj(·) are nondecreasing, we have a schedule of cost no
more than that of the original feasible solution to (IP).

The formulation (IP) has an unbounded integrality gap: the ratio of the optimal
value of (IP) to the optimal value of its linear programming relaxation can be arbitrar-
ily large. We strengthen this formulation by introducing a class of valid inequalities
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called knapsack-cover inequalities. To understand the starting point for our work, con-
sider the special case of this scheduling problem in which all n jobs have a common due
date D, and for each job j ∈ J , the cost function is 0 if the job completes by time D,
and is wj, otherwise. In this case, we select a set of jobs of total size at most D, so as
to minimize the total weight of the complementary set (of late jobs). This is equivalent
to the minimum-cost (covering) knapsack problem, in which we wish to select a subset
of items of total size at least a given threshold, of minimum total cost. Carr, Fleis-
cher, Leung, and Phillips [9] introduced knapsack-cover inequalities for this problem
(as a variant of flow-cover inequalities introduced by Padberg, Van Roy, and Wolsey
[18]) and gave an LP-rounding 2-approximation algorithm based on this formulation.
Additionally, they showed that the LP relaxation with knapsack-cover inequalities has
an integrality gap of at least 2− 2

n
.

The idea behind the knapsack-cover inequalities is quite simple. Fix a subset of
jobs A ⊆ J that contribute towards satisfying the demand D(t) for time t or later;
then there is a residual demand from the remaining jobs of D(t, A) := max{D(t) −∑

j∈A pj, 0}. Thus, each job j ∈ J can make an effective contribution to this residual
demand of pj(t, A) := min{pj , D(t, A)}; that is, given the inclusion of the set A, the
effective contribution of job j towards satisfying the residual demand can be at most
the residual demand itself. Thus, we have the constraint:

∑

j /∈A

T∑

s=t

pj(t, A)xjs ≥ D(t, A) for each t ∈ T , and each A ⊆ J .

The dual LP is quite natural: there are dual variables y(t, A), and a constraint that
indicates, for each job j and each time s ∈ T , that fj(s) is at least a weighted sum of
y(t, A) values, and the objective is to maximize

∑
t,AD(t, A)y(t, A).

Our primal-dual algorithm has two phases: a growing phase and a pruning phase.
Throughout the algorithm, we maintain a set of jobs At for each time t ∈ T . In each
iteration of the growing phase, we choose one dual variable to increase, corresponding
to the demand D(t, At) that is largest, and increase that dual variable as much as
possible. This causes a dual constraint corresponding to some job j to become tight
for some time t′, and so we set xjt′ = 1 and add j to each set As with s ≤ t′. Note
that this may result in jobs being assigned to complete at multiple times t; then
in the pruning phase we do a “reverse delete” that both ensures that each job is
uniquely assigned, and also that the solution is minimal, in the sense that each job
passes the test that if it were deleted, then some demand constraint (1) in (IP) would
be violated. This will be crucial to show that the algorithm is a 4-approximation
algorithm. Furthermore, we show that our analysis is tight by giving an instance for
which the algorithm constructs primal and dual solutions whose objective values differ
by a factor 4. It will be straightforward to show that the algorithm runs in time
polynomial in n and T , which is a pseudo-polynomial bound.

To convert this algorithm into a polynomial-time algorithm, we adopt an interval-
indexed formulation, where we bound the change of cost of any job to be within a
factor of (1+ ǫ) within any interval. This is sufficient to ensure a (weakly) polynomial
number of intervals, while degrading the performance guarantee by a factor of (1+ ǫ),
and this yields the desired result.

It is well known that primal-dual algorithms have an equivalent local-ratio counter-
part [7]. For completeness, we also give the local-ratio version of our algorithm and its
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analysis. One advantage of the local ratio approach is that it naturally suggests a sim-
ple generalization of the algorithm to the case where jobs have release dates yielding
a 4κ-approximation algorithm, where κ is the number of distinct release dates.

Previous Results The scheduling problem 1||
∑

fj is closely related to the unsplit-
table flow problem (UFP) on a path. An instance of this problem consists of a path
P , a demand de for each edge e, and a set of tasks. Each task j is determined by
a cost cj, a subpath Pj of P , and a covering capacity pj . The objective is to find a
subset T of the tasks that has minimum cost and covers the demand of each edge e,
i.e.,

∑
j∈T :e∈Pj

pj ≥ de. The relation of this problem to 1||
∑

fj is twofold. On the one

hand UFP on a path can be seen as a special case of 1||
∑

fj [5]. On the other hand,
Bansal & Pruhs [4] show that any instance of 1||

∑
fj can be reduced to an instances

of UFP on a path while increasing the optimal cost by a factor of 4. Bar-Noy et al. [6]
study UFP on a path and give a 4-approximation algorithm based on a local ratio
technique. In turn, this yields a 16-approximation with the techniques of Bansal &
Pruhs [4]. Very recently, and subsequent to the dissemination of earlier versions of our
work, Höhn et al. [16] further exploited this connection. They give a quasi-PTAS for
UFP on a path, which they use to construct a quasipolynomial (e+ ǫ)-approximation
for 1||

∑
fj by extending the ideas of Bansal & Pruhs [4].

The local ratio algorithm by Bar-Noy et al. [6], when interpreted as a primal-
dual algorithm [7], uses an LP relaxation that includes knapsack-cover inequalities.
Thus, the 4-approximation algorithm of this paper can be considered a generaliza-
tion of the algorithm by Bar-Noy et al. [6]. The primal-dual technique was indepen-
dently considered by Carnes and Shmoys [8] for the minimum knapsack-cover problem.
Knapsack-cover inequalities have subsequently been used to derive approximation al-
gorithms in a variety of other settings, including the work of Bansal & Pruhs [4] for
1|ptmn, rj |

∑
fj, Bansal, Buchbinder, & Naor [1, 2], Gupta, Krishnaswamy, Kumar,

& Segev [14], Bansal, Gupta, & Krishnaswamy [3], and Pritchard [19].
An interesting special case of 1||

∑
fj considers objective functions of the form

fj = wjf for some given non-decreasing function f and job-dependent weights wj > 0.
It can be easily shown that this problem is equivalent to minimize

∑
wjCj on a ma-

chine that changes its speed over time. For this setting, Epstein et al. [11] derive a
4-approximation algorithm that yields a sequence independent of the speed of the
machine (or independent of f , respectively). This bound is best possible for an un-
known speed function. If randomization is allowed they improve the algorithm to
an e-approximation. Moreover, Megow and Verschae [17] give a PTAS for the full
information setting, which is best possible since even this special case is strongly NP-
hard [15].

A natural extension of 1||
∑

fj considers scheduling on a varying speed machine to
minimize

∑
fj(Cj), yielding a seemingly more general problem. However, this problem

can be modeled [15, 17, 11] as an instance of 1||
∑

fj by considering cost functions
f̃j = fj ◦ g for a well chosen function g that depends on the speed function of the
machine.

Organization of the paper Section 2 contains our main results, including the pseu-
dopolynomial 4−approximation algorithm and the proof that its analysis is tight. Sec-
tion 3 shows the techniques to turn this algorithm to a polynomial (4+ǫ)-approximation.
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The local ratio interpretation is given in Section 4, and the case with release dates is
analyzed in Section 5.

2 A pseudo-polynomial algorithm for 1||
∑

fj

We give a primal-dual algorithm that runs in pseudo-polynomial time that has a
performance guarantee of 4. The algorithm is based on the following LP relaxation:

min
∑

j∈J

∑

t∈T

fj(t)xjt (P)

s.t.
∑

j /∈A

∑

s∈T :s≥t

pj(t, A)xjs ≥ D(t, A), for each t ∈ T , A ⊆ J ; (3)

xjt ≥ 0, for each j ∈ J , t ∈ T .

Notice that the assignment constraints (2) are not included in (P). In fact, the following
lemma shows that they are redundant, given the knapsack-cover inequalities. This
leaves a much more tractable formulation on which to base the design of our primal-
dual algorithm.

Lemma 1. Let x be a feasible solution to the linear programming relaxation (P).
Then there is a feasible solution x̄ of no greater cost that also satisfies the assignment
constraints (2).

Proof. First, by considering the constraint (3) with the set A = J −{k} and t = 1, it
is easy to show that for any feasible solution x of (P), we must have

∑
s∈T xks ≥ 1 for

each job k.
We next show that each job is assigned at most once. We may assume without loss

of generality that x is a feasible solution for (P) in which
∑

j∈J

∑
s∈T xjs is minimum.

Suppose, for a contradiction, that
∑

s∈T xjs > 1 for some job j, and let t be the largest
time index where the partial sum

∑
s∈T :s≥t xjs ≥ 1. Consider the truncated solution

x̄ where

x̄ks =





0, if k = j and s < t

1−
∑T

s=t+1 xjs, if k = j and s = t
xks, otherwise

Let us check that the modified solution x̄ is feasible for (P). Fix s ∈ T and A ⊆ J . If
s > t or A ∋ j, then clearly x̄ satisfies the corresponding inequality (3) for s, A since x
does. Consider s ≤ t and A 6∋ j, so that

∑
r∈T :r≥s x̄j,r = 1 and pk(s, A) = pk(s, A\{j})

for each k ∈ J . Then,
∑

k/∈A

∑

r∈T :r≥s

pk(s, A)x̄kr = pj(s, A \ {j})
∑

r∈T :r≥s

x̄k,j +
∑

k/∈A\{j}

∑

r∈T :r≥s

pk(s, A \ {j})x̄kr

≥ pj(s, A \ {j}) +D(s, A \ {j}) ≥ D(s, A),

where the first inequality follows since x is feasible for (P). Thus x̄ satisfies (3). This
gives the desired contradiction because

∑
j∈J

∑
s∈T x̄js <

∑
j∈J

∑
s∈T xjs. Finally,

since x̄ ≤ x component-wise and the objective fj(t) is nonnegative, it follows that x̄
is a solution of no greater cost than x.
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Taking the dual of (P) gives:

max
∑

t∈T

∑

A⊆J

D(t, A)y(t, A) (D)

s.t.
∑

t∈T :t≤s

∑

A:j /∈A

pj(t, A)y(t, A) ≤ fj(s); for each j ∈ J , s ∈ T ; (4)

y(t, A) ≥ 0 for each t ∈ T , A ⊆ J .

We now give the primal-dual algorithm for the scheduling problem 1||
∑

fj . The
algorithm consists of two phases: a growing phase and a pruning phase.

The growing phase constructs a feasible solution x to (P) over a series of iterations.
For each t ∈ T , we let At denote the set of jobs that are set to finish at time t or later
by the algorithm, and thus contribute towards satisfying the demand D(t). In each
iteration, we set a variable xjt to 1 and add j to As for all s ≤ t. We continue until
all demands D(t) are satisfied. Specifically, in the kth iteration, the algorithm select
tk := argmaxtD(t, At), which is the time index that has the largest residual demand
with respect to the current partial solution. If there are ties, we choose the largest
such time index to be tk (this is not essential to the correctness of the algorithm – only
for consistency and efficiency). If D(tk, Atk) = 0, then we must have

∑
j∈At

pj ≥ D(t)
for each t ∈ T ; all demands have been satisfied and the growing phase terminates.
Otherwise, we increase the dual variable y(tk, Atk) until some dual constraint (4) with
right-hand side fj(t) becomes tight. We set xjt = 1 and add j to As for all s ≤ t (if
j is not yet in As). If multiple constraints become tight at the same time, we pick
the one with the largest time index (and if there are still ties, just pick one of these
jobs arbitrarily). However, at the end of the growing phase, we might have jobs with
multiple variables set to 1, thus we proceed to the pruning phase.

The pruning phase is a “reverse delete” procedure that checks each variable xjt

that is set to 1, in decreasing order of the iteration k in which that variable was set
in the growing phase. We attempt to set xjt back to 0 and correspondingly delete
jobs from At, provided this does not violate the feasibility of the solution. Specifically,
for each variable xjt = 1, if j is also in At+1 then we set xjt = 0. It is safe to do
so, since in this case, there must exist t′ > t where xjt′ = 1, and as we argued in
Lemma 1, it is redundant to have xjt also set to 1. Otherwise, if j /∈ At+1, we check
if
∑

j′∈As\{j}
pj′ ≥ D(s) for each time index s where j has been added to As in the

same iteration of the growing phase. In other words, we check the inequality for each
s ∈ {s0, . . . , t}, where s0 < t is the largest time index with xjs0 = 1 (and s0 = 0 if
there is no such value). If all the inequalities are fulfilled, then j is not needed to
satisfy the demand at time s. Hence, we remove j from all such As and set xjt = 0.
We will show that at the end of the pruning phase, each job j has exactly one xjt set
to 1. Hence, we set this time t as the due date of job j.

Finally, the algorithm outputs a schedule by sequencing the jobs in Earliest Due
Date (EDD) order. We give pseudo-code for this in the figure Algorithm 1.

2.1 Analysis

Throughout the algorithm’s execution, we maintain both a solution x along with the
sets At, for each t ∈ T . An easy inductive argument shows that the following invariant
is maintained.

6



Algorithm 1 primal-dual(f, p)

1. // Initialization

2. x, y, k ← 0
3. At = ∅, for all t ∈ T
4. t0 := argmaxtD(t, At)
5. // Growing phase

6. while D(tk, Atk) > 0 do

7. Increase y(tk, Atk) until a dual constraint (4) with right hand
side fj(t) becomes tight // break ties by choosing the

largest t
8. xjt ← 1
9. As ← As ∪ {j} for each s ≤ t
10. k ← k + 1
11. tk := argmaxtD(t, At) // break ties by choosing the

largest t
12. // Pruning phase

13. Consider {(j, t) : xjt = 1} in reverse order in which they are set
to 1

14. if j ∈ At+1 then

15. xjt ← 0
16. else if

∑
j′∈As\{j}

pj′ ≥ D(s) for all s ≤ t where j is added to
As in the same iteration of growing phase then

17. xj,t ← 0
18. As ← As \ {j} for all such s
19. // Output schedule

20. for j ← 1, . . . , n do

21. Set due date dj of job j to time t if xjt = 1
22. Schedule jobs using EDD rule

Lemma 2. Throughout the algorithm, j ∈ As if and only if there exists t ≥ s such
that xjt = 1.

Proof. This lemma is proved by considering each step of the algorithm. Clearly, it is
true initially.

In the growing phase of the algorithm, we add j to As if and only if we have set
some xjt with t ≥ s to 1 in the same iteration; hence the result holds through the end
of the growing phase. Moreover, there is the following monotonicity property: Since j
is added to As for all s ≤ t when xjt is set to 1, if there is another xjt′ set to 1 in a later
iteration k, we must have t′ ≥ t. Otherwise, if tk ≤ t′ < t, when increasing y(tk, Atk)
in Step 7 job j would belong to At ⊆ Atk and the dual constraint could never become
tight. Hence, in the pruning phase, we consider the variables xjt for a particular job
j in decreasing order of t.

Next we show that the result holds throughout the pruning phase. One direction
is easy, since as long as there is some t ≥ s with xjt equals 1, j would remain in As.
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Next, we prove the converse by using backward induction on s; we show that if for all
t ≥ s, xjt = 0, then j /∈ As. Since the result holds at the end of the growing phase, we
only have to argue about the changes made in the pruning phase. For the base case,
if xjT is set to 0 during the pruning phase, by construction of the algorithm, we also
remove j from AT ; hence the result holds. Now for the inductive case. In a particular
iteration of the pruning phase, suppose xjt′ is the only variable corresponding to job
j with time index t′ at least s that is set to 1, but it is now being changed to 0. We
need to show j is removed from As. First notice by the monotonicity property above,
j must be added to As in the same iteration as when xjt′ is set to 1 in the growing
phase. By the assumption that xjt′ is the only variable with time index as least s that
is set to 1 at this point, j /∈ At′+1 by induction hypothesis. Hence we are in the else-if
case in the pruning phase of the algorithm. But by construction of the algorithm, we
remove j from all At for all t ≤ t′ that are added in the same iteration of the growing
phase, which include s. Hence the inductive case holds, and the result follows.

Note that this lemma also implies that the sets At are nested; i.e., for any two time
indices s < t, it follows that As ⊇ At. Using the above lemma, we will show that the
algorithm produces a feasible solution to (P) and (D).

Lemma 3. The algorithm produces a feasible solution x to (P) that is integral and
satisfies the assignment constraints (2), as well as a feasible solution y to (D).

Proof. First note that, by construction, the solution x is integral. The algorithm
starts with the all-zero solution to both (P) and (D), which is feasible for (D) but
infeasible for (P). Showing that dual feasibility is maintained throughout the algorithm
is straightforward. Next we show that at termination, the algorithm obtains a feasible
solution for (P).

At the end of the growing phase, all residual demands D(t, At) are zero, and hence,∑
j∈At

pj ≥ D(t) for each t ∈ T . By construction of the pruning phase, the same still
holds when the algorithm terminates.

Next, we argue that for each job j there is exactly one t with xjt = 1 when the
algorithm terminates. Notice that D(1) (the demand at time 1) is T , which is also the
sum of processing time of all jobs; hence A1 must include every job to satisfy D(1).
By Lemma 2, this implies that each job has at least some time t for which xjt = 1
when the growing phase terminates. On the other hand, from the pruning step (in
particular, the first if statement in the pseudocode), each job j has xjt set to 1 for at
most one time t. However, since no job can be deleted from A1, by Lemma 2, we see
that, for each job j, there is still at least one xjt set to 1 at the end of the pruning
phase. Combining the two, we see that each job j has one value t for which xjt = 1.

By invoking Lemma 2 for the final solution x, we have that
∑T

s=t

∑
j∈J pjxjs ≥

D(t). Furthermore, x also satisfies the constraint
∑

t∈T xjt = 1, as argued above.
Hence, x is feasible for (IP), which implies the feasibility for (P).

Since all cost functions fj are nondecreasing, it is easy to show that given a feasible
integral solution x to (P) that satisfies the assignment constraints (2), the following
schedule costs no more than the objective value for x: set the due date dj = t for job
j, where t is the unique time such that xjt = 1, and sequence in EDD order.
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Lemma 4. Given a feasible integral solution to (P) that satisfies the assignment con-
straint (2), the EDD schedule is a feasible schedule with cost no more than the value
of the given primal solution.

Proof. Since each job j ∈ J has exactly one xjt set to 1, it follows that
∑

j∈J

∑
s∈T pjxjs =

T . Now, taking A = ∅ from constraints (3), we have that
∑

j∈J

∑
s∈T :s≥t pjxjs ≥

D(t) = T − t+ 1. Hence,
∑

j∈J

∑
s∈T :s≤t−1 pjxjs ≤ t− 1.

This ensures that the sum of processing assigned to finish before time t is no greater
than the machine’s capacity for job processing up to this time (which is t−1). Hence,
we obtain a feasible schedule by the EDD rule applied to the instance in which, for
each job j ∈ J , we set its due date dj = t, where t is the unique time such that
xjt = 1. As a corollary, this also shows xjt = 0 for t < pj. Finally, this schedule costs
no more than the optimal value of (P), since each job j ∈ J finishes by dj , and each
function fj(t) is nondecreasing in t.

Next we analyze the cost of the schedule returned by the algorithm. Given the
above lemma, it suffices to show that the cost of the primal solution is no more
than four times the cost of the dual solution; the weak duality theorem of linear
programming then implies that our algorithm has a performance guarantee of 4.

We first introduce some notation used in the analysis. Given the final solution x̄
returned by the algorithm, define J̄t := {j : x̄jt = 1}, and Āt := {j : ∃x̄jt′ = 1, t′ ≥ t}.
In other words, Āt is the set of jobs that contribute towards satisfying the demand
at time t in the final solution; hence, we say that j covers t if j ∈ Āt. Let xk be the
partial solution of (P) at the beginning of the kth iteration of the growing phase. We
define Jk

t and Ak
t analogously with respect to xk. Next we prove the key lemma in our

analysis.

Lemma 5. For every (t, A) such that y(t, A) > 0 we have

∑

s∈T :s≥t

∑

j∈J̄s\A

pj(s, A) < 4D(t, A).

Proof. Recall that the algorithm tries to increase only one dual variable in each iter-
ation of the growing phase. Suppose that y(t, A) is the variable chosen in iteration k,
i.e., t = tk. Then the lemma would follow from

∑

j∈Ā
tk
\Ak

tk

pj(t
k, Ak

tk) ≤ 4 ·D(tk, Ak
tk) for all k. (5)

Let us fix an iteration k. We can interpret the set on the left-hand side as the jobs
that cover the demand of tk that are added to the solution after the start of iteration k
and that survive the pruning phase. For each such job j, let us define τj to be largest
time such that

p (Āτj \ (A
k
τj
∪ {j})) < D(τj, A

k
τj
).

Let us first argue that this quantity is well defined. Let dj be the unique time step
for which x̄j,dj = 1, which, by Lemma 2, is guaranteed to exist. Also, let r be the
largest time such that xk

j,r = 1, which must be r < tk (we define r = 0 if xj,t = 0 for
all t). We claim that τj > r.

9



Consider the iteration of the pruning phase where the algorithm tried (unsuccess-
fully) to set xj,dj to 0 and let x̂ be the primal solution that the algorithm held at that

moment; also, let Â be defined for x̂ in the same way Ā is defined for x̄. The algorithm
did not prune xj,dj because there was a time s > r such that p(Âs \ {j}) < D(s). No-

tice that Ās ⊆ Âs because the pruning phase can only remove elements from As, and
Ak

s ⊆ Âs because xj,dj was set in iteration k or later of the growing phase. Hence,

p(Ās \ (A
k
s ∪ {j})) ≤ p(Âs \ {j})− p(Ak

s) < D(s)− p(Ak
s) ≤ D(s, Ak

s),

which implies that τj ≥ s, which in turn is strictly larger than r as claimed. Therefore,
τj is well defined.

Based on this definition we partition the set Ātk \ A
k
tk in two subsets,

H := {j ∈ Ātk \ A
k
tk : τj ≥ tk} and

L := {j ∈ Ātk \ A
k
tk : τj < tk}.

For each of these, we define

h := argmin{τj : j ∈ H} and

ℓ := argmax{τj : j ∈ L}.

We will bound separately the contribution of H \ {h} and L\ {ℓ} to the left-hand side
of (5). For j ∈ {h, ℓ}, we will use the trivial bound

pj(t
k, Ak

tk) ≤ D(tk, Ak
tk). (6)

We start by bounding the contribution of H \ {h}. Notice that for every job
j ∈ H we must have τj ≤ dj; otherwise, the solution x̄ would not be feasible, which
contradicts Lemma 3. For all j ∈ H we have that j ∈ Āτh since τh ≤ τj ≤ dj; also
j /∈ Ak

τh
since j /∈ Ak

tk
and Ak

tk ⊇ Ak
τh

because τh ≥ tk. It follows that H ⊆ Āτh \ A
k
τh
.

Therefore,
∑

j∈H\{h}

pj(t
k, Ak

tk) ≤ p(H \ {h}) ≤ p (Āτh \ (A
k
τh
∪ {h})) < D(τh, A

k
τh
) ≤ D(tk, Ak

tk
), (7)

where the first inequality follows from pj(t, A) ≤ pj , the second inequality from the
fact that H ⊆ Āτh \A

k
τh
, the third inequality from the definition of τh, and the fourth

because tk is chosen in each iteration of the growing phase to maximize D(tk, Ak
tk
).

Now we bound the contribution of L \ {ℓ}. Suppose that at the beginning of
iteration k we had xj,r = 1 for some r < tk and j ∈ Ātk \A

k
tk . When we argued above

that τj was well defined we showed in fact that r < τj . For all j ∈ L then we have
that j /∈ Ak

τℓ
since τj ≤ τℓ; also j ∈ Āτℓ since j ∈ Ātk and Ātk ⊆ Āτℓ because τℓ ≤ tk.

It follows that L ⊆ Āτℓ \ A
k
τℓ
. Therefore,

∑

j∈L\{ℓ}

pj(t
k, Ak

tk) ≤ p(L \ {ℓ}) ≤ p (Āτℓ \ (A
k
τℓ
∪ {ℓ})) < D(τℓ, A

k
τℓ
) ≤ D(tk, Ak

tk
), (8)

where the first inequality follows from pj(t, A) ≤ pj , the second inequality from the
fact that L ⊆ Āτℓ \ A

k
τℓ
, the third inequality from the definition of τℓ, and the forth

because tk is chosen in each iteration of the growing phase to maximize D(tk, Ak
tk
).
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It is now easy to see that (5) follows from (6), (7), and (8):

∑

j∈Ā
tk
\Ak

tk

pj(t
k, Ak

tk) ≤ p(L \ {ℓ}) + pℓ(t
k, Ak

tk) + p(H \ {h}) + ph(t
k, Ak

tk) ≤ 4 ·D(tk, Ak
tk
).

Now we can show our main theorem.

Theorem 1. The primal-dual algorithm produces a schedule for 1||
∑

fj with cost at
most four times the optimum.

Proof. It suffices to show that the cost of the primal solution after the pruning phase is
no more than four times the dual objective value. The cost of our solution is denoted
by

∑
t∈T

∑
j∈J̄t

fj(t). We have that

∑

t∈T

∑

j∈J̄t

fj(t) =
∑

t∈T

∑

j∈J̄t

∑

s∈T :s≤t

∑

A:j /∈A

pj(s, A)y(s, A)

=
∑

s∈T

∑

A⊆J

y(s, A)


 ∑

t∈T :t≥s

∑

j∈J̄t\A

pj(s, A)




The first line is true because we set xjt = 1 only if the dual constraint is tight,
and the second line is obtained by interchanging the order of summations. Now, from
Lemma 5 we know that

∑
t∈T :t≥s

∑
j∈J̄t\A

pj(s, A) < 4D(s, A). Hence it follows that

∑

s∈T

∑

A⊆J

ysA


 ∑

t∈T :t≥s

∑

j∈J̄t\A

pj(s, A)


 <

∑

s∈T

∑

A⊆J

4D(s, A)y(s, A),

where the right-hand side is four times the dual objective. The result now follows,
since the dual objective is a lower bound of the cost of the optimal schedule.

2.2 Tight example

In this section we show that the previous analysis is tight.

Lemma 6. For any ε > 0 there exists an instance where Algorithm 1 constructs a
pair of primal-dual solutions with a gap of 4− ε.

Proof. Consider an instance with 4 jobs. Let p ≥ 4 be an integer. For j ∈ {1, 2, 3, 4},
we define the processing times as pj = p and the cost functions as

f1(t) = f2(t) =





0 if 1 ≤ t ≤ p− 1,

p if p ≤ t ≤ 3p− 1,

∞ otherwise, and

11



k tk Ak
tk D(tk, A

k
tk) Dual update Primal update

1 1 ∅ 4p y1,∅ = 0 x3,3p−2 = 1
2 1 {3} 3p y1,{3} = 0 x4,3p−2 = 1
3 1 {3, 4} 2p y1,{3,4} = 0 x2,p−1 = 1
4 3p− 1 ∅ p+ 2 y3p−1,∅ = 1 x4,4p = 1
5 p {3, 4} p+ 1 yp,{3,4} = 0 x2,3p−1 = 1
6 1 {2, 3, 4} p yp,{2,3,4} = 0 x1,3p−1 = 1
7 3p {4} 1 y3p,{4} = 0 x3,4p = 1

Figure 1: Trace of the key variables of the algorithm in each iteration k of the growing
phase and the corresponding updates to the dual and primal solutions

f3(t) = f4(t) =

{
0 if 1 ≤ t ≤ 3p− 2,

p otherwise.

Table 1 shows a trace of the algorithm for the instance. Notice that the only non-
zero dual variable the algorithm sets is y3p−1,∅ = 1. Thus the dual value achieved is
y3p−1,∅D(3p−1, ∅) = p+2. It is easy to check that the pruning phase keeps the largest
due date for each job and has cost 4p. In fact, it is not possible to obtain a primal
(integral) solution with cost less than 4p: We must pay p for each job 3 and 4 in order
to cover the demand at time 3p, and we must pay p for each job 1 and 2 since they
cannot finish before time p. Therefore the pair of primal-dual solutions have a gap of
4p/(p+ 2), which converges to 4 as p tends to infinity.

The attentive reader would complain that the cost functions used in the proof
Lemma 6 are somewhat artificial. Indeed, jobs 1 and 2 cost 0 only in [0, p − 1] even
though it is not possible to finish them before p. This is, however, not an issue since
given any instance (f, p) of the problem we can obtain a new instance (f ′, p′) where
f ′
j(t) ≥ f ′

j(p
′
j) for all t where we observe essentially the same primal-dual gap in (f, p)

and (f ′, p′). The transformation is as follows: First, we create a dummy job with
processing time T =

∑
j pj that costs 0 up to time T and infinity after that. Second,

for each of the original jobs j, we keep their old processing times, p′j = pj , but modify
their cost function:

f ′
j(t) =

{
δpj if t ≤ T,

δpj + fj(t− T ) if T < t ≤ 2T.

In other words, to obtain f ′
j we shift fj by T units of time to the right and then add

δpj everywhere, where δ is an arbitrarily small value.
Consider the execution of the algorithm on the modified instance (f ′, p′). In the

first iteration, the algorithm sets y1,∅ to 0 and assigns the dummy job to time T .
In the second iteration, the algorithm chooses to increase the dual variable yT+1,∅.
Imagine increasing this variable in a continuous way and consider the moment when
it reaches δ. At this instant, the slack of the dual constraints for times in [T + 1, 2T ]
in the modified instance are identical to the slack for times in [1, T ] at the beginning
of the execution on the original instance (f, p). From this point in time onwards, the
execution on the modified instance will follow the execution on the original instance
but shifted T units of time to the right. The modified instance gains only an extra δT
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of dual value, which can be made arbitrarily small, so we observe essentially the same
primal-dual gap on (f ′, p′) as we do on (f, p).

3 A (4 + ǫ)-approximation algorithm

We now give a polynomial-time (4 + ǫ)-approximation algorithm for 1||
∑

fj . This is
achieved by simplifying the input via rounding in a fairly standard fashion, and then
running the primal-dual algorithm on the LP relaxation of the simplified input, which
has only a polynomial number of interval-indexed variables. A similar approach was
employed in the work of Bansal & Pruhs [4].

Fix a constant ǫ > 0. We start by constructing n partitions of the time indices
{1, . . . , T}, one partition for each job, according to its cost function. Focus on some
job j. First, the set of time indices I0j = {t : fj(t) = 0} are those of class 0 and classes
k = 1, 2, . . . are the set of indices Ikj = {t : (1 + ǫ)k−1 ≤ fj(t) < (1 + ǫ)k}. (We can
bound the number of classes for job j by 2+log1+ǫ fj(T ).) Let ℓkj denote the minimum

element in Ikj (if the set is non-empty), and let T̂j be the set of all left endpoints ℓkj .

Finally, let T̂ = ∪j∈J T̂j ∪ {1}. Index the elements such that T̂ := {t1, ..., tτ} where
1 = t1 < t2 < ... < tτ . We then compute a master partition of the time horizon T
into the intervals I = {[t1, t2 − 1], [t2, t3 − 1], ..., [tτ−1, tτ − 1], [tτ , T ]}. There are two
key properties of this partition: the cost of any job changes by at most a factor of
1 + ǫ as its completion time varies within an interval, and the number of intervals is
a polynomial in n, logP and logW ; here P denotes the length of the longest job and
W = maxj,t(fj(t)−fj(t−1)), the maximum increase in cost function fj(t) in one time
step over all jobs j and times t.

Lemma 7. The number of intervals in this partition, |T | = O(n lognPW ).

Proof. It suffices to show that the number of intervals in each Tj is O(lognPW ).
Notice that T ≤ nP , thus the maximum cost of any job is bounded by nPW , which
implies Tj = O(lognPW ).

Next we define a modified cost function f ′
j(t) for each time t ∈ T̂ ; in essence, the

modified cost is an upper bound on the cost of job j when completing in the interval
for which t is the left endpoint. More precisely, for ti ∈ T̂ , let f ′

j(ti) := fj(ti+1 − 1).

Notice that, by construction, we have that fj(t) ≤ f ′
j(t) ≤ (1 + ǫ)fj(t) for each t ∈ T̂ .

Consider the following integer programming formulation with variables x′
jt for each job

j and each time t ∈ T̂ ; we set the variable x′
jti

to 1 to indicate that job j completes
at the end of the interval [ti, ti+1 − 1]. The demand D(t) is defined the same way as
before.
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minimize
∑

j∈J

∑

t∈T̂

f ′
j(t)x

′
jt (IP′)

subject to
∑

j∈J

∑

s∈T̂ :s≥t

pjx
′
js ≥ D(t), for each t ∈ T̂ ; (9)

∑

t∈T̂

x′
jt = 1, for each j ∈ J ; (10)

x′
jt ∈ {0, 1}, for each j ∈ J , t ∈ T̂ .

The next two lemmas relate (IP′) to (IP).

Lemma 8. If there is a feasible solution x to (IP) with objective value v, then there
is a feasible solution x′ to (IP′) with objective value at most (1 + ǫ)v.

Proof. Suppose xjt = 1 where t lies in the interval [ti, ti+1 − 1] as defined by the
time indices in T , then we construct a solution to (IP′) by setting x′

jti
= 1. It is

straightforward to check x′ is feasible for (IP′), and by construction f ′
j(ti) = fj(ti+1 −

1) ≤ (1 + ǫ)fj(t).

Lemma 9. For any feasible solution x′ to (IP′) there exists a feasible solution x to
(IP) with the same objective value.

Proof. Suppose x′
jt = 1, where t = ti; then we construct a solution to (IP) by setting

xj,ti+1−1 = 1. Notice that the time ti+1 − 1 is the right endpoint to the interval
[ti, ti+1 − 1]. By construction, fj(ti+1 − 1) = f ′

j(ti); hence, the cost of solution x and
x′ coincide. To check its feasibility, it suffices to see that the constraint corresponding
to D(ti) is satisfied. This uses the fact that within the interval [ti, ti+1 − 1], D(t) is
largest at ti and that the constraint corresponding to D(t) contains all variables xjs

with a time index s such that s ≥ t.

Using the two lemmas above, we see that running the primal-dual algorithm using
the LP relaxation of (IP′) strengthened by the knapsack-cover inequalities gives us a
4 (1+ ǫ)-approximation algorithm for the scheduling problem 1||

∑
fj. Hence we have

the following result:

Theorem 2. For each ǫ > 0, there is a (4 + ǫ)-approximation algorithm for the
scheduling problem 1||

∑
fj.

4 A local-ratio interpretation

In this section we cast our primal-dual 4-approximation as a local-ratio algorithm.
We will work with due date assignment vectors σ = (σ1, . . . , σn) ∈ (T ∪ {0})n,

where σj = t means that job j has a due date of t. We will use the short-hand
notation (σ−j , s) to denote the assignment where j is given a due date s and all other
jobs get their σ due date; that is,

(σ−j, s) = (σ1, . . . , σj−1, s, σj+1, . . . , σn).
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Algorithm 2 local-ratio (σ, g)

1. if σ is feasible then

2. ρ = σ

3. else

4. t∗ = argmaxt∈T D(t,σ) // break ties arbitrarily

5. For each i ∈ J let ĝi(t) =

{
pi(t

∗,σ) if σi < t∗ ≤ t,

0 otherwise

6. Set g̃ = g−α · ĝ where α is the largest value such that
g̃ ≥ 0

7. Let j and s be such that g̃j(s) = 0 and ĝj(s) > 0
8. σ̃ = (σ−j, s)
9. ρ̃ = local-ratio(σ̃, g̃)
10. if (ρ̃−j , σj) is feasible then

11. ρ = (ρ̃−j , σj)
12. else

13. ρ = ρ̃

14. return ρ

We call an assignment σ feasible, if there is a schedule of the jobs that meets all
due dates. We say that job j ∈ J covers time t if σj ≥ t. The cost of σ under the
cost function vector g = (g1, . . . , gn) is defined as g(σ) =

∑
j∈J gj(σj). We denote by

Aσ

t = {j ∈ J : σj ≥ t}, the set of jobs that cover t. We call

D(t,σ) = D(t, Aσ

t ) = max {T − t+ 1− p(Aσ

t ), 0}

the residual demand at time t with respect to assignment σ. And

pj(t,σ) = pj(t, A
σ

t ) = min {pj, D(t,σ)}

the truncated processing time of j with respect to t and σ.
At a very high level, the algorithm, which we call local-ratio, works as follows:

We start by assigning a due date of 0 to all jobs; then we iteratively increase the due
dates until the assignment is feasible; finally, we try to undo each increase in reverse
order as long as it preserves feasibility.

In the analysis, we will argue that the due date assignment that the algorithm
ultimately returns is feasible and that the cost of any schedule that meets these due
dates is a 4-approximation. Together with Lemma 4 this implies the main result in
this section.

Theorem 3. Algorithm local-ratio is a pseudo-polynomial time 4-approximation
algorithm for 1||

∑
fj.

We now describe the algorithm in more detail. Then we prove that is a 4-approximation.
For reference, its pseudo-code is given in Algorithm 2.
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4.1 Formal description of the algorithm

The algorithm is recursive. It takes as input an assignment vector σ and a cost function
vector g, and returns a feasible assignment ρ. Initially, the algorithm is called on the
trivial assignment (0, . . . , 0) and the instance cost function vector (f1, . . . , fn). As the
algorithm progresses, both vectors are modified. We assume, without loss of generality,
that fj(0) = 0 for all j ∈ J .

First, the algorithm checks if the input assignment σ is feasible. If that is the case,
it returns ρ = σ. Otherwise, it decomposes the input vector function g into two cost
function vectors g̃ and ĝ as follows

g = g̃ + α · ĝ,

where α is the largest value such that g̃ ≥ 0 (where by g = g̃ + α · ĝ, we mean
gj(t) = g̃j(t) + α · ĝj(t) for all t ∈ T and j ∈ J , and by g̃ ≥ 0, we mean g̃j(t) ≥ 0 for
all j ∈ J , t ∈ T ), and ĝ will be specified later.

It selects a job j and a time s such that ĝj(s) > 0 and g̃j(s) = 0, and builds a
new assignment σ̃ = (σ−j, s) thus increasing the due date of j to s while keeping the
remaining due dates fixed. It then makes a recursive call local-ratio(g̃, σ̃), which
returns a feasible assignment ρ̃. Finally, it tests the feasibility of reducing the deadline
of job j in ρ̃ back to σj . If the resulting assignment is still feasible, it returns that;
otherwise, it returns ρ̃.

The only part that remains to be specified is how to decompose the cost function
vector. Let t∗ be a time slot with maximum residual unsatisfied demand with respect
to σ:

t∗ ∈ argmaxt∈T D(t,σ).

The algorithm creates, for each job i ∈ J , a model cost function

ĝi(t) =

{
pi(t

∗,σ) if σi < t∗ ≤ t,

0 otherwise.

and chooses α to be the largest value such that

g̃i(t) = gi(t)− αĝi(t) ≥ 0 for all i ∈ J and t ∈ T .

In the primal-dual interpretation of the algorithm, α is the value assigned to the dual
variable y(t∗, Aσ

t∗).
Let (j, s) be a job-time pair that prevented us from increasing α further. In other

words, let (j, s) be such that g̃j(s) = 0 and ĝj(s) > 0. Intuitively, assigning a due date
of s to job j is free in the residual cost function g and helps cover some of the residual
demand at t∗. This is precisely what the algorithm does: The assignment used as
input for the recursive call is σ̃ = (σ−j, s).

4.2 Analysis

For a given vector g of non-negative functions, opt(g) denotes the cost of an optimal
schedule with respect to these cost functions. We say an assignment ρ is β-approximate
with respect to g if

∑
i∈J gi(ρi) ≤ β · opt(g).

The correctness of the algorithm rests on the following lemmas.
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Lemma 10. Let (σ(1), g(1)), (σ(2), g(2)), . . . , (σ(k), g(k)) be the inputs to the succes-
sive recursive calls to local-ratio and let ρ(1),ρ(2), . . . ,ρ(k) be their corresponding
outputs. The following properties hold:

(i) σ
(1) ≤ σ

(2) ≤ · · · ≤ σ
(k),

(ii) ρ
(1) ≤ ρ

(2) ≤ · · · ≤ ρ
(k),

(iii) σ
(i) ≤ ρ

(i) for all i = 1, . . . , k,

(iv) g
(i)
j (σ

(i)
j ) = 0 and g

(i)
j is non-negative for all i = 1, . . . , k and j ∈ J .

Proof. The first property follows from the fact that σ
(i+1) is constructed by taking

σ
(i) and increasing the due date of a single job.
The second property follows from the fact that ρ

(i) is either ρ
(i+1) or it is con-

structed by taking ρ
(i+1) and decreasing the due date of a single job.

The third property follows by an inductive argument. The base case is the base
case of the recursion, where σ

(k) = ρ
(k). For the recursive case, we need to show that

σ
(i) ≤ ρ

(i), by recursive hypothesis we know that σ
(i+1) ≤ ρ

(i+1) and by the first
property σ

(i) ≤ σ
(i+1). The algorithm either sets ρ(i) = ρ

(i+1), or ρ(i) is constructed
by taking ρ

(i+1) and decreasing the due date of some job to its old σ
(i) value. In both

cases the property holds.
The forth property also follows by induction. The base case is the first call we

make to local-ratio, which is σ
(1) = (0, . . . , 0) and g(1) = (f1, . . . , fn), where it

holds by our assumption that fj(0) = 0 for all j. For the inductive case, we note
that g(i+1) is constructed by taking g(i) and subtracting a scaled version of the model
function vector, so that 0 ≤ g(i+1) ≤ g(i), and σ

(i+1) is constructed by taking σ
(i) and

increasing the due date of a single job j(i) such that g
(i+1)

j(i)
(σ

(i+1)

j(i)
) = 0, which ensures

that the property holds.

Lemma 11. Let local-ratio(σ, g) be a recursive call returning ρ then

∑

i∈J :σi<t∗≤ρi

pi(t
∗,σ) ≤ 4 ·D(t∗,σ). (11)

where t∗ is the value used to decompose the input cost function vector g.

Proof. Our goal is to bound the pi(t
∗,σ) value of jobs in

X = {i ∈ J : σi < t∗ ≤ ρi} .

Notice that the algorithm increases the due date of these jobs in this or a later
recursive call. Furthermore, and more important to us, the algorithm decides not
to undo the increase. For each i ∈ X , consider the call lr-cs(σ′, g′) when we first
increased the due date of i beyond σi. Let ρ

′ be the assignment returned by the call.
Notice that ρ′i > σi and that (ρ′

−i, σi) is not feasible—otherwise we would have undone
the due date increase. By Lemma 10, we know that ρ ≤ ρ

′, and so we can conclude
that (ρ−i, σi) is not feasible either. Let ti be a time with positive residual demand in
this unfeasible assignment:

D(ti, (ρ−i, σi)) > 0.
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Note that σi < ti ≤ ρi, otherwise ρ would not be feasible, contradicting Lemma 10.
We partition X into two subsets

L = {i ∈ X : ti ≤ t∗} and R = {i ∈ X : ti > t∗} ,

and we let tL = max {ti : i ∈ L} and iL be a job attaining this value. Similarly, we let
tR = min {ti : i ∈ R} and iR be a job attaining this value.

We will bound the contribution of each of these sets separately. Our goal will be
to prove that

∑

i∈L−iL

pi ≤ D(t∗,σ), and (12)

∑

i∈R−iR

pi ≤ D(t∗,σ). (13)

Let us argue (12) first. Since D
(
tL, (ρ−iL

, σiL)
)
> 0, it follows that

∑

i∈J−iL:ρi≥tL

pi < T − tL + 1

∑

i∈J :σi≥tL

pi +
∑

i∈J−iL:ρi≥tL>σi

pi < T − tL + 1

∑

i∈J−iL:ρi≥tL>σi

pi < D(tL,σ)

Recall that σi < ti ≤ ρi for all i ∈ X and that ti ≤ tL ≤ t∗ for all i ∈ L. It follows
that the sum on the left-hand side of the last inequality contains all jobs in L − iL.
Finally, we note that D(tL,σ) ≤ D(t∗,σ) due to the way local-ratio chooses t∗,
which gives us (12).

Now let us argue (13). Since D
(
tR, (ρ−iR

, σiR)
)
> 0, it follows that

∑

i∈J−iR:ρi≥tR

pi < T − tR + 1

∑

i∈J :σi≥tR

pi +
∑

i∈J−iR:ρi≥tR>σi

pi < T − tR + 1

∑

i∈J−iR:ρi≥tR>σi

pi < D(tR,σ).

Recall that σi < t∗ for all i ∈ X and that t∗ < tR ≤ ti ≤ ρi for all i ∈ R. It follows
that the sum in the left-hand side of the last inequality contains all jobs in R − iR.
Finally, we note that D(tR,σ) ≤ D(t∗,σ) due to the way local-ratio chooses t∗,
which gives us (13).

Finally, we note that pi(t
∗,σ) ≤ D(t∗,σ) for all i ∈ J . Therefore,

∑

i∈X

pi(t
∗,σ) ≤

∑

i∈L−iL

pi + piL(t
∗,σ) +

∑

i∈R−iR

pi + piR(t
∗,σ)

≤ 4 ·D(t∗,σ),

which finishes the proof.
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We are ready to prove the performance guarantee of the algorithm.

Lemma 12. Let lr-sc(σ, g) be a recursive call and ρ be its output. Then ρ is a
feasible 4-approximation w.r.t. g.

Proof. The proof is by induction. The base case corresponds to the base case of
the recursion, where we get as input a feasible assignment σ, and so ρ = σ. From
Lemma 10 we know that gi(σi) = 0 for all i ∈ J , and that the cost functions are
non-negative. Therefore, the cost of ρ is optimal since

∑

i∈J

gi(ρi) = 0.

For the inductive case, the cost function vector g is decomposed into g̃+α · ĝ. Let
(j, s) be the pair used to define σ̃ = (σ−j, s). Let ρ̃ be the assignment returned by the
recursive call. By inductive hypothesis, we know that ρ̃ is feasible and 4-approximate
w.r.t. g̃.

After the recursive call returns, we check the feasibility of (ρ̃−j, σj). If the vector
is feasible, we return the modified assignment; otherwise, we return ρ̃. In either case
ρ is feasible.

We claim that ρ is 4-approximate w.r.t. ĝ. Indeed,

∑

i∈J

ĝi(ρi) =
∑

i∈J :σi<t∗≤ρi

pi(t
∗,σ) ≤ 4 ·D(t∗,σ) ≤ 4 · opt(ĝ),

where the first inequality follows from Lemma 11 and the last inequality follows from
the fact that the cost of any schedule under ĝ is given by the pi(t

∗,σ) value of jobs
i ∈ J with σi < t∗ ≤ ρi, which must have a combined processing time of at least
D(t∗,σ) on any feasible schedule. Hence, opt(ĝ) ≥ D(t∗,σ).

We claim that ρ is 4-approximate w.r.t. g̃. Recall that ρ̃ is 4-approximate w.r.t.
g̃; therefore, if ρ = ρ̃ then ρ is 4-approximate w.r.t. g̃. Otherwise, ρ = (ρ̃−j, σj), in
which case g̃j(ρj) = 0, so ρ is also 4-approximate w.r.t. g̃.

At this point we can invoke the Local Ratio Theorem to get that

∑

j∈J

gj(ρj) =
∑

j∈J

g̃j(ρj) +
∑

j∈J

α · ĝj(ρj),

≤ 4 · opt(g̃) + 4α · opt(ĝ),

= 4 ·
(
opt(g̃) + opt(α · ĝ)

)
,

≤ 4 · opt(g),

which finishes the proof of the lemma.

Note that the number of recursive calls in Algorithm 2 is at most |J | · |T |. Indeed,
in each call the due date of some job is increased. Therefore we can only guarantee a
pseudo-polynomial running time. However, the same ideas developed in Section 3 can
be applied here to obtain a polynomial time algorithm at a loss of a 1+ ǫ factor in the
approximation guarantee.
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5 Release dates

This section discusses how to generalize the ideas from the previous section to instances
with release dates. We assume that there are κ different release dates, which we denote
with the set H . Our main result is a pseudo-polynomial 4κ-approximation algorithm.
The generalization is surprisingly easy: We only need to redefine our residual demand
function to take into account release dates.

For a given due date assignment vector σ and an interval [r, t) we denote by

D(r, t,σ) = max {r + p ({j ∈ J : r ≤ rj ≤ σj < t})− t+ 1, 0}

the residual demand for [r, t). Intuitively, this quantity is the amount of processing
time of jobs released in [r, t) that currently have a due date strictly less than t that
should be assigned a due date of t or greater if we want feasibility.

The truncated processing time of j with respect to r, t, and σ is

pj(r, t,σ) = min {pj, D(r, t,σ)} .

The algorithm for multiple release dates is very similar to local-ratio. The only
difference is in the way we decompose the input cost function vector g. First, we find
values r∗ and t∗ maximizing D(r∗, t∗,σ). Second, we define the model cost function
for job each i ∈ J as follows

ĝi(t) =

{
pi(r

∗, t∗,σ) if r∗ ≤ ri < t∗ and σi < t∗ ≤ t,

0 otherwise.

Algorithm 3 local-ratio-release(σ, g)

1. if σ is feasible then

2. ρ = σ

3. else

4. (t∗, r∗) = argmax(t,r)∈T ×HD(r, t,σ) // break ties

arbitrarily

5. For each i ∈ J let ĝi(t) ={
pi(r

∗, t∗,σ) if r∗ ≤ ri < t∗ and σi < t∗ ≤ t,

0 otherwise.

6. Set g̃ = g−α · ĝ where α is the largest value such that g̃ ≥ 0

7. Let j and s be such that g̃j(s) = 0 and ĝj(s) > 0
8. σ̃ = (σ−j, s)
9. ρ̃ = local-ratio-release(σ̃, g̃)
10. if (ρ̃−j , σj) is feasible then

11. ρ = (ρ̃−j, σj)
12. else

13. ρ = ρ̃

14. return ρ

20



The rest of the algorithm is exactly as before. We call the new algorithm local-

ratio-release. Its pseudocode is given in Algorithm 3. The initial call to the
algorithm is done on the assignment vector (r1, r2, . . . , rn) and the function cost vector
(f1, f2, . . . , fn). Without loss of generality, we assume fj(rj) = 0 for all j ∈ J .

Theorem 4. There is a pseudo-polynomial time 4κ-approximation for scheduling jobs
with release dates on a single machine with generalized cost function.

The proof of this theorem rests on a series of Lemmas that mirror Lemmas 10, 11,
and 12 from Section 4.

Lemma 13. An assignment σ is feasible if there is no residual demand at any interval
[r, t); namely, σ is feasible if D(r, t,σ) = 0 for all r ∈ H and r < t ∈ T . Furthermore,
scheduling the jobs according to early due date first yields a feasible preemptive schedule.

Proof. We start by noting that one can use a simple exchange argument to show that
if there is some schedule that meets the due dates σ, then the earliest due date (EDD)
schedule must be feasible.

First, we show that if there is a job j in the EDD schedule that does not meet its
deadline, then there is an interval [r, t) such that D(r, t,σ) > 0. Let t = σj + 1 and
let r < t be latest release date such that the machine was idle at time r− 1 just after
EDD finished scheduling j. Let X = {i ∈ J : r ≤ ri, σi < t}. Clearly, r + p(X) ≥ t,
otherwise j would have met its due date. Therefore,

0 < r + p(X)− t+ 1

= r + p ({i ∈ J : r ≤ ri ≤ σi < t})− t+ 1

≤ D(r, t,σ).

Second, we show that for any interval [r, t) such that D(r, t,σ) > 0, there exists a
job j in the EDD schedule that does not meet its deadline. LetX = {i ∈ J : r ≤ ri, σi < t}.
Then,

0 < D(r, t,σ) = r + p(X)− t + 1 =⇒ r + p(X) ≥ t.

Let j be the job in X with the largest completion time in the EDD schedule. Notice
that the completion time of j is at least r+p(X) ≥ t. On the other hand, its due date
is σj < t. Therefore, the EDD schedule misses j’s due date.

Lemma 14. Let (σ(1), g(1)), (σ(2), g(2)), . . . , (σ(k), g(k)) be the inputs to the succes-
sive recursive calls to local-ratio-release and let ρ(1),ρ(2), . . . ,ρ(k) be their cor-
responding outputs. The following properties hold:

(i) σ
(1) ≤ σ

(2) ≤ · · · ≤ σ
(k),

(ii) ρ
(1) ≤ ρ

(2) ≤ · · · ≤ ρ
(k),

(iii) σ
(i) ≤ ρ

(i) for all i = 1, . . . , k,

(iv) g
(i)
j (σ

(i)
j ) = 0 and g

(i)
j is non-negative for all i = 1, . . . , k and j ∈ J .
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Proof. The proof of Properties (i)-(iii) is exactly the same as that of Lemma 10.
The forth property follows by induction. The base case is the first call we make to

local-ratio-release, which is σ(1) = (r1, . . . , rn) and g(1) = (f1, . . . , fn), where it
holds by our assumption. For the inductive case, we note that g(i+1) is constructed
by taking g(i) and subtracting a scaled version of the model function vector, so that
0 ≤ g(i+1) ≤ g(i), and σ

(i+1) is constructed by taking σ
(i) and increasing the due

date of a single job j(i). The way this is done guarantees that g
(i+1)

j(i)
(σ

(i+1)

j(i)
) = 0, which

ensures that the property holds.

Lemma 15. Let local-ratio-release(σ, g) be a recursive call returning ρ then

∑

i∈J
r∗≤ri≤σi<t∗≤ρi

pi(r
∗, t∗,σ) ≤ 4κ ·D(r∗, t∗,σ).

where (r∗, t∗) are the values used to decompose the input cost function vector g.

Proof. Our goal is to bound the pi(r
∗, t∗,σ) value of jobs

X = {i ∈ J : r ≤ ri ≤ σi < t∗ ≤ ρi} .

Notice that the algorithm increases the due date of these jobs in this or a later
recursive call. Furthermore, and more important to us, the algorithm decides not to
undo the increase.

For each i ∈ X , consider the call local-ratio-release(σ′, g′) when we first
increased the due date of i beyond σi. Let ρ

′ be assignment returned by the call. Notice
that ρ′i > σi and that (ρ′

−i, σi) is not feasible—otherwise we would have undone the
due date increase. By Lemma 10, we know that ρ ≤ ρ

′, so we conclude that (ρ−i, σi)
is not feasible either. We define r(i) ≤ rj and σi < t(i) ≤ ρi such that the interval
[r(i), t(i)) has a positive residual demand in this unfeasible assignment:

D(r(i), t(i), (ρ−i, σi)) > 0.

Note that such an interval must exist, otherwise ρ would not be feasible.
We partition X in 2κ subsets. For each release date r ∈ H we define

L(r) = {i ∈ X : t(i) ≤ t∗, r(i) = r} and R(r) = {i ∈ X : t(i) > t∗, r(i) = r} ,

Let trL = max {t(i) : i ∈ L(r)} and irL be a job attaining this value. Similarly, consider
trR = min {t(i) : i ∈ R(r)} and irR be a job attaining this value.

We will bound the contribution of each of these sets separately. Our goal will be
to prove that for each release date r we have

∑

i∈L(r)−ir
L

pi ≤ D(r∗, t∗,σ), and (14)

∑

i∈R(r)−ir
R

pi ≤ D(r∗, t∗,σ). (15)
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Let us argue (14) first. Assume L(r) 6= ∅, so trL is well defined; otherwise, the claim

is trivial. Since D
(
r, trL, (ρ−ir

L
, σir

L
)
)
> 0, it follows that

∑

i∈J−ir
L

r≤ri<tr
L
≤ρi

pi < r +
∑

i∈J
r≤ri<tr

L

pi − trL + 1

∑

i∈J

r≤ri<tr
L
≤σi

pi +
∑

i∈J−ir
L

r≤ri≤σi<tr
L
≤ρi

pi < r +
∑

i∈J

r≤ri<tr
L

pi − trL + 1

∑

i∈J−ir
L

r≤ri≤σi<tr
L
≤ρi

pi < D(r, trL,σ).

Recall that σi < t(i) for all i ∈ X . Furthermore, t(i) ≤ trL, and thus σi < trL,
for all i ∈ L(r). Also, t(i) ≤ ρi for all i ∈ X . Therefore, the sum on the left-
hand side of the last inequality contains all jobs in L(r) − irL. Finally, we note that
D(r, tL,σ) ≤ D(r∗, t∗,σ) due to the way local-ratio-release chooses r∗ and t∗,
which gives us (14).

Let us argue (15). Assume R(r) 6= ∅, so trR is well defined; otherwise, the claim is

trivial. Since D
(
r, trR, (ρ−ir

R
, σir

R
)
)
> 0, it follows that

∑

i∈J−ir
R

r≤ri<tr
R

≤ρi

pi < r +
∑

i∈J

r≤ri<tr
R

pi − trR + 1

∑

i∈J
r≤ri<tr

R
≤σi

pi +
∑

i∈J−ir
R

r≤ri≤σi<tr
R

≤ρi

pi < r +
∑

i∈J
r≤ri<tr

R

pi − trR + 1

∑

i∈J−ir
R

r≤ri≤σi<tr
R

≤ρi

pi < D(r, trR,σ)

Recall that t(i) ≤ ρi for all i ∈ X . Furthermore, trR ≤ t(i), and thus trR ≤ ρi, for all
i ∈ R(r). Also, ti > σi for all i ∈ X . Therefore, the sum on the left-hand side of the last
inequality contains all jobs in R(r)−irR. Finally, we note thatD(r, trR,σ) ≤ D(r∗, t∗,σ)
due to the way lr-cs chooses r∗ and t∗, which gives us (15).

Finally, we note that pi(r
∗, t∗,σ) ≤ D(r∗, t∗,σ) for all i ∈ J . Therefore,

∑

i∈J :ρi≥t∗

pi(r
∗, t∗,σ) =

∑

i∈X

pi(r
∗, t∗,σ)

=
∑

r


 ∑

i∈L(r)

pi(r
∗, t∗,σ) +

∑

i∈R(r)

pi(r
∗, t∗,σ)




≤
∑

r

(
2 ·D(r∗, t∗,σ) + 2 ·D(r∗, t∗,σ)

)

= 4κ ·D(r∗, t∗,σ).
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Lemma 16. Let lr-sc-rd(σ, g) be a recursive call and ρ be its output. Then ρ is a
feasible 4κ-approximation w.r.t. g.

Proof. The proof is by induction. The base case corresponds to the base case of the
recurrence where we get as input a feasible assignment σ, and so ρ = σ. From
Lemma 10, we know that gi(σi) = 0 for all i ∈ J , and that the cost functions are
non-negative. Therefore, the cost of ρ is optimal since

∑

i∈J

gi(ρi) = 0.

For the inductive case, the cost function vector g is decomposed into g̃ + α · ĝ.
Let (j, s) be the pair used to define σ̃ = (σ−j, s). Let ρ̃ be the assignment returned
by the recursive call. By the induction hypothesis, we know that ρ̃ is feasible and
4κ-approximate w.r.t. g̃.

After the recursive call returns, we check the feasibility of (ρ̃−j, σj). If the vector
is feasible, then we return the modified assignment; otherwise, we return ρ̃. In either
case, ρ is feasible.

We claim that ρ is 4κ-approximate w.r.t. ĝ. Indeed,

∑

i∈J

ĝi(ρi) =
∑

i∈J

r∗≤ri<t∗≤ρi

pi(r
∗, t∗,σ) ≤ 4κ ·D(r∗, t∗,σ) ≤ 4κ · opt(ĝ),

where the first inequality follows from Lemma 11 and the last inequality follows from
the fact that the cost of any schedule under ĝ is given by the pi(r

∗, t∗,σ) value of
jobs i ∈ J with r∗ ≤ ri < t∗ and σi < t∗ that cover t∗, which must have a combined
processing time of at least D(r∗, t∗,σ). Hence, opt(ĝ) ≥ D(r∗, t∗,σ).

We claim that ρ is 4κ-approximate w.r.t. g̃. Recall that ρ̃ is 4κ-approximate w.r.t.
g̃; therefore, if ρ = ρ̃ then ρ is 4κ-approximate w.r.t. g̃. Otherwise, ρ = (ρ̃−j , σj), in
which case g̃j(ρj) = 0, so ρ is also 4-approximate w.r.t. g̃.

At this point we can invoke the Local Ratio Theorem to get that

∑

j∈J

gj(ρj) =
∑

j∈J

g̃j(ρj) +
∑

j∈J

α · ĝj(ρj),

≤ 4κ · opt(g̃) + 4κ · α · opt(ĝ),

= 4κ ·
(
opt(g̃) + opt(α · ĝ)

)
,

≤ 4κ · opt(g),

which completes the proof of the lemma.

Finally, we note that invoking Lemma 16 on σ = (r1, . . . , rn) and g = (f1, . . . , fn)
gives us Theorem 4.

6 Conclusions and Open Problems

In this article we have proposed a primal-dual 4-approximation algorithm for 1||
∑

fj
based on an LP strengthen with knapsack-cover inequalities. Since the original ap-
pearance of this result in a preliminary paper [10], an algorithm with an improved
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approximation ratio of e + ǫ was given [16], although its running time is only quasi-
polynomial. It is natural to ask whether an improved, polynomial-time algorithm is
possible. A positive result would be interesting even in the special case of UFP on a
path. Similarly, the exact integrality gap of the LP is known to be only in the inter-
val [2, 4], even for UFP on a path. The example in Section 2, which shows that the
analysis of our algorithm is tight, suggests that the reason we cannot obtain a per-
formance guarantee better than 4 stems from the primal-dual technique, rather than
from the integrality gap of the LP, and hence another LP-based technique might yield
a better guarantee. Other natural open questions include finding a constant-factor
approximation algorithm in presence of release dates, or ruling out the existence of a
PTAS.
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