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Abstract

A central question in algorithmic mechanism design is to understand the additional difficulty in-
troduced by truthfulness requirements in the design of approximation algorithms for social welfare
maximization. In this paper, by studying the problem of single-parameter combinatorial auctions, we
obtain the first black-box reduction that converts any approximation algorithm to a truthful mecha-
nism with essentially the same approximation factor in a prior-free setting. In fact, our reduction works
for the more general class of symmetric single-parameter problems. Here, a problem is symmetric if its
allocation space is closed under permutations.

As extensions, we also take an initial step towards exploring the power of black-box reductions
for general single-parameter and multi-parameter problems by showing several positive and negative
results. We believe that the algorithmic and game theoretic insights gained from our approach will
help better understand the tradeoff between approximability and the incentive compatibility.
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1 Introduction

In an algorithmic mechanism design problem, we face an optimization problem where the necessary inputs
are private valuations held by self-interested agents. The high-level goal of truthful mechanisms is to reveal
these valuations via the bids of the agents and to optimize the objective simultaneously. In this paper,
we will focus on the objective of social welfare maximization.

It is well known that the VCG mechanism ([27, 7, 14]) which maximizes the social welfare exactly
is truthful. As usual in computer science, computational tractability is a necessary requirement. How-
ever, VCG is not computationally efficient in general. And unfortunately, the simple combination of
approximation algorithms and VCG usually fails to preserve truthfulness. This raises the important open
question (see [22]) of whether the design of truthful mechanisms is fundamentally harder than the design
of approximation algorithms for social welfare maximization.

Recently, several positive results indicated that one can always convert an approximation algorithm to
a truthful mechanism with the same approximation factor in the Bayesian setting where the distributions
of the agents are public knowledge (see [16, 3, 15]). However, not much is known in the prior-free setting
where no distribution is known.

In this paper, by studying the problem of single-parameter combinatorial auctions, we show the first
black-box reduction that converts any approximation algorithm to a universal truthful mechanism with
the same approximation factor in the prior-free setting.

In the single-parameter combinatorial auction problem, we are given a set J of m items and a public
valuation function f : 2J → R. Assume that f is given via an oracle which takes a set S as input and
returns f(S). In addition, we have n agents each of whom has a private multiplier v∗i such that the item
set S provides v∗i f(S) amount of utility to agent i. The goal is to design a truthful mechanism which
maximizes

∑
i vif(Si), where S1 ⋅ ⋅ ⋅Sn is a partition of J .

This problem has its motivation in the TV ad auctions where the items are time slots and each agent is
an advertiser whose private multiplier is her value-per-viewer. In [13], the authors provided a logarithmic
approximate truthful mechanism for this problem under the assumption that f is submodular. However,
the optimal approximation algorithm for the underlying social welfare maximization has a ratio of 1−1/e
given by Vondrak ([28]). By our result, applying Vondrak’s algorithm as a black-box, we immediately
obtain a truthful mechanism with the optimal constant approximation ratio.

Main result. In fact, our black-box reduction not only works for this particular problem but for a broad
class of symmetric single parameter problems. Formally, a mechanism design problem (with n agents)
is single-parameter if each feasible allocation is represented as an n-dimensional real vector x, and each
agent i has a private value vi such that her valuation of allocation x is given by vixi. We further define
that a problem is symmetric if the set of feasible allocations is closed under permutations: if x is feasible,
so is � ∘ x for any permutation �. Here � ∘ x is defined as the vector (x�(1), ..., x�(n)).

Theorem 1.1. For a symmetric single-parameter mechanism design problem Π, suppose we are given
an �-approximate (� > 1) algorithm A as a black-box, then for any constant � > 0, we can obtain a
polynomial time truthful mechanism with approximation factor �(1 + �).

Many interesting mechanism design problems such as position auctions in sponsored search are in the
class of symmetric single-parameter problems. In particular, it contains the problem of single-parameter
combinatorial auctions that we are interested in.

Corollary 1.2. For the single-parameter submodular combinatorial auction problem, there is an optimal
1-1/e approximate truthful mechanism.

Our construction is based on the technique of maximum-in-range. Here, a maximum-in-range mech-
anism outputs the allocation maximizing the social welfare over a fixed range of allocations. Using the
algorithm A as a black-box, we construct a range ℛ such that social welfare maximization over ℛ is
efficient. And we will prove that the approximation factor obtained is essentially �.
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In our reduction, we make no assumption on the black-box algorithm A. In addition, while the black-
box algorithm may be randomized, our reduction does not introduce any further randomization. If the
algorithm is deterministic, then our mechanism is deterministically truthful.

Extensions. A natural extension of our result is to consider the general (possibly asymmetric) single-
parameter mechanism design problems. By a novel relation between mechanism design and constraint
satisfaction problems, we derive a significant lower bound of the approximability of maximum-in-range
mechanisms for general single-parameter problems, which to some extent suggests the difficulty in design-
ing factor-preserving black-box reductions.

However, the problem considered in our lower bound construction is not downward-closed. Here,
a single-parameter problem is downward-closed if the following holds: let x be a feasible allocation,
then any allocation x′ obtained by decreasing one of the components of x to 0 is feasible as well. Many
problems that satisfy the free disposal property, such as combinatorial auctions, are downward-closed. For
the class of downward-closed single-parameter problems, we provide a black-box reduction that converts
any �-approximate rounding algorithm to a truthful in expectation mechanism with essentially the same
approximation factor. Our idea is to apply the technique in [19] to the single-parameter case.

Finally, we generalize our technique to the multi-parameter setting. We study the constant-dimension
and symmetric mechanism design problem. We generalize our construction in the symmetric single-
parameter case to this problem and obtain a black-box reduction that converts any algorithm into a
truthful and quasi-poly-time mechanism with essentially the same approximation guarantee. Alterna-
tively, we can obtain a black-box reduction that converts any algorithm into a truthful and polynomial
time mechanism with logarithmic degradation in the approximation factor.

Related work. There has been a significant amount of work related to black-box reductions in mecha-
nism design. In the single-parameter setting, the first black-box reduction was given by Briest et al. [4].
The authors studied the single-parameter binary optimization problem and they showed that any algo-
rithm which is an FPTAS can be converted to a truthful mechanism that is also an FPTAS. Secondly,
Babaioff et al. [1] studied the single-value combinatorial auction problem and they constructed a black-box
reduction that converts an algorithm to a truthful mechanism with the approximation factor degraded
by a logarithmic factor. Finally, the recent work by Goel et al. [13] provided a black-box reduction with
a super constant degrade in approximation factor for partially public combinatorial auction.

For multi-parameter problems, there is no factor-preserving black-box reduction in general (e.g. [23]).
This motivates the study of truthfulness in expectation, which is a weaker notion of incentive compat-
ibility. Here, a randomized mechanism is truthful in expectation, if truth telling maximizes an agent’s
expected payoff. The initial effort in black-box reduction for multi-parameter problems is due to Lavi
and Swamy [19], they showed a method to convert a certain type of algorithms called integrality-gap-
verifiers to truthful in expectation mechanisms with the same approximation factors. Recently, Dughmi
and Roughgarden [9] studied the class of packing problems. Via an elegant black-box reduction and
smooth analysis, they showed that if a packing problem admits an FPTAS, then it admits a truthful in
expectation mechanism that is an FPTAS as well. Balcan et al.[2] considered black-box reductions from
the revenue maximization aspect. By the technique of sample complexity in machine learning, they gave
revenue-preserving reductions from truthful mechanism design to the algorithmic pricing problems. At
last, Dughmi et al. [10] introduce a method to convert convex rounding scheme into truthful in expec-
tation mechanism and achieve an optimal (1 − 1

e )-approximation for the combinatorial auction problem
when the valuations are a special type of submodular functions.

The previous discussion is about prior-free mechanism design. Another important area in algorithmic
game theory is the Bayesian mechanism design where each agent’s valuation is drawn from some publicly
known prior distribution. Hartline and Lucier [16] studied this problem in the single-parameter setting.
They constructed a clever black-box reduction that converts any non-monotone algorithm into a monotone
one without compromising its social welfare. Following this work, Bei and Huang [3] and Hartline et al. [15]
independently showed such black-box reductions in the multi-parameter setting as well.
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Organization. In Section 3, we provide the detailed description and proof of our black-box reduction
for the class of symmetric single-parameter problems. As a corollary, we obtain a black-box reduction for
the single-parameter combinatorial auctions. In Section 4.1, we first show the limitation of maximum-in-
range mechanism for general single-parameter problems, then in Section 4.2 we study the downward-closed
single-parameter problems. Finally, Section 5 provides our result for the constant dimension symmetric
mechanism design problem.

2 Preliminaries

In this section, we will outline the basic concepts in mechanism design relevant to our paper.

Truthfulness. Let X be the set of all feasible allocations, and vi(x) be the private valuation of agent i if
allocation x ∈ X is picked. A typical goal of a mechanism is to reveal agents’ private valuation functions
via their bids and optimize the obtained social welfare simultaneously. Formally, suppose we are given
n agents and let v = (v1, ..., vn) be the valuation functions reported by the agents. Based on this, a
(deterministic) mechanism M will specify an allocation x(v) ∈ X and a payment p(v). We say M is
deterministically truthful(or truthful), if the following conditions hold: for any i,v−i and any vi, v

′
i, we

have vi(x(vi,v−i))− pi(vi,v−i) ≥ vi(x(v′i,v−i))− pi(v′i,v−i).
When a mechanism is randomized, there are two notions of truthfulness: (1) Universal truthfulness:

A universally truthful mechanism is a probability distribution over deterministically truthful mechanisms;
(2)Truthfulness in expectation: A mechanism is truthful in expectation if an agent maximizes her expected
utility by being truthful. Here, an agent’s utility is defined as her valuation minus payment. It is easy to
see that every deterministically truthful mechanism is universally truthful and every universally truthful
mechanism is truthful in expectation.

Single-parameter mechanism design. In a single-parameter mechanism design problem, each allo-
cation is represented as an n-dimensional real vector x (where n is the number of agents), and each
agent i has a private value vi such that her valuation of allocation x is given by vixi. It is known [21]
that for a single-parameter problem, a mechanism is truthful if and only if (1) the allocation rule is
monotone: suppose vi ≤ v′i, then xi(vi,v−i) ≤ xi(v

′
i,v−i); (2) each agent i’s payment is determined by

pi(v) = vixi(vi,v−i)−
∫ vi

0 xi(t,v−i)dt.

Maximum-in-range mechanisms. The maximum-in-range technique is a general approach in the field
of mechanism design. It works as follows: The mechanism fixes a rangeℛ of allocations without any knowl-
edge of the agents’ valuations. Given any v, let x∗ =argmaxx∈ℛ

∑
j vj(x) and x∗−i =argmaxx∈ℛ

∑
j ∕=i vj(x)

respectively. Now define payment pi of agent i to be
∑

j ∕=i vj(x
∗
−i) −

∑
j ∕=i vj(x

∗). It is now not difficult
to see that with this payment function, it is in best interest of every agent to report their true valuations,
irrespective of what others report. The major challenge in designing maximum-in-range mechanism is to
balance between the size of the range and the approximation factor obtained. A larger range can obtain
better approximation but yield greater computational complexity.

3 Symmetric Single-Parameter Mechanism Design

Recall that a single-parameter mechanism design problem is symmetric if the allocation space X is closed
under permutations: if x ∈ X , then � ∘ x = (x�(1), ..., x�(n)) ∈ X for any permutation �. In this section,
we will prove Theorem 1.1: For a symmetric single-parameter problem Π, given any constant � > 0 and
any �-approximate algorithm A as a black-box, we design a polynomial time truthful mechanism with
approximation factor (1 + �)�.

Our construction is based on the maximum-in-range technique. Given an algorithm A, we define
a range ℛ by applying A as a black-box on a carefully chosen collection of typical bid vectors. Our
mechanism is then maximum-in-range over ℛ. We will show: (1) To maximize social welfare over ℛ for a
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1: Normalization. Let T0 = {v : 1 = v1 ≥ ... ≥ vn};
2: Discretizing. Let Q = {�k : 0 ≤ k ≤ ⌈log1/�(n

M )⌉} where M ≥ log2
8
� is a constant. For

any real value z, define ⌊z⌋� = �⌈log1/� z⌉ ∈ Q. Then we define a function D : T0 7→ T0 as
follows: for each v ∈ T0 and for each i, define

D(v)i =

{
⌊vi⌋� vi ≥ u = 1

nM

0 otherwise

Let T1 = D(T0);
3: Equalization. Let nk = ⌊�k⌋ where � > 1 is a fixed constant and 0 ≤ k ≤ ⌊log� n⌋.

Define a function E : T1 → T1 as follows: for each v ∈ T1 and 1 ≤ i ≤ n, E(v)i is set to be
vnk when nk ≤ i < nk+1. At last, let T = E(T1).

given bid vector, we only need to examine polynomially many allocations in ℛ, hence our mechanism is
efficient; (2) Every bid vector can be mapped to a typical bid with approximately the same social welfare,
hence our mechanism performs almost as well as the algorithm A. This proves the approximation factor.

Now we describe our range construction in detail for a given symmetric single-parameter problem Π,
black-box algorithm A and constant � > 0.

3.1 Construction of the range

Let V = Rn
+ be the collection of all possible bid vectors. Next we will provide a three-step procedure

that chooses a subset T ⊆ V as our collection of typical bids.
The first step is normalization: By properly reordering the agents and scaling their bids, we only

consider the set T0 of bids where v ∈ T0 if and only if 1 = v1 ≥ ... ≥ vn; The second step is discretization.
In this step, our goal is to obtain a finite set of bid vectors that approximately represent the whole
valuation space V . To do this, given any vector v ∈ T0, we first apply the operation of tail cutting : We
choose a small value u (e.g. 1/nM for some constant M) and round all the entries smaller than u to 0;
then, we discretize the interval [u, 1] by considering Q = {�k : k ≥ 0} ∩ [u, 1] where � < 1 is a fixed
constant. We will round down each of the remaining entries of v after the tail cutting to the closest value
in Q. If we do the above for each v ∈ T0, we obtain a finite set of vectors T1; The final step is equalization.
We fix a constant � > 1 and partition [n] into log� n groups. For each vector in T1, we equalize its entries
within each group by setting them to be the value of the largest entry in the group. We then obtain the
set of vectors T , and each vector in T is called a typical bid.

Now we provide the detailed description. In the following, we fix constants � > 1 and � < 1 such that
�
� = 1 + �/2.

For a bid vector v, let xA(v) be the allocation obtained by applying algorithm A on v. Since the
allocation space is closed under permutations, we may assume xA(v)1 ≥ xA(v)2 ≥ ... ≥ xA(v)n. At last,
let ℛ0 = {xA(v) : v ∈ T} and we finally define our range as ℛ = {� ∘ x : x ∈ ℛ0, � ∈ Πn} where Πn

consists of all permutations over n elements.

3.2 Analysis

Now we analyze the performance of our mechanism. Since the mechanism is maximum-in-range, it is
truthful. We will show that it has polynomial running time and an approximation factor of �(1 + �).

Running time. We show that the social welfare maximization over ℛ is solvable within polynomial
time, hence our maximum-in-range mechanism is efficient.

First of all, we show that the ∣ℛ0∣ is polynomial in n. We only need to prove the following lemma:

Lemma 3.1. ∣ℛ0∣ ≤ ∣T ∣ ≤ n1/ log2 �+M/ log2(1/�).
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Proof. The first inequality follows from the definition of ℛ0. Now we prove the second one. Observe that
for each vector v in T1, E(v) is uniquely determined by the values {vnk : 0 ≤ k ≤ ⌊log� n⌋} ⊆ Q

∪
{0}.

Moreover, we have that vnk−1
≥ vnk for all k. Therefore, let H be the class of non-increasing functions

from {0, 1, ..., ⌊log� n⌋} to Q
∪
{0}, thus ∣T ∣ ≤ ∣H∣. Since ∣Q∣ = ⌈log1/�(n

M )⌉, It is not difficult to see,

∣H∣ ≤
(⌊log� n⌋+ ⌈log1/�(n

M )⌉
⌈log1/�(n

M )⌉

)
≤ 2⌊log� n⌋+⌈log1/�(nM )⌉ ≤ n1/ log2 �+M/ log2(1/�). □

Now we are ready to prove the running time guarantee. Let optℛ(v) be the allocation maximizes the
social welfare over ℛ for the given bid vector v. Let � be the permutation such that v�(1) ≥ ... ≥ v�(n).
Obviously, for each x ∈ ℛ0, we have v ⋅ (�−1 ∘ x) ≥ v ⋅ (� ∘ x) for all permutation �. Therefore,
optℛ(v) ∈ {�−1 ∘ x : x ∈ ℛ0}. By Lemma 3.1, ∣{�−1 ∘ x : x ∈ ℛ0}∣ = ∣ℛ0∣ ≤ n1/ log2 �+M/ log2 �, this
implies that optℛ(v) can be found in polynomial time.

Approximation factor. We show that the approximation factor of our mechanism is �(1 + �). Given
any bid vector v, by reordering and scaling properly, we may assume v ∈ T0, then we consider the typical
bid E(D(v)). We show that for any sorted allocation x, the social welfare v ⋅x is (1+ �)-approximated by
E(D(v)) ⋅ x, hence an �-approximate solution for social welfare maximization with respect to E(D(v))
is an �(1 + �)-approximate solution for v. This proves the desired approximation guarantee.

Now we provide the detail. We first show that by considering D(v) instead of v ∈ T0, the social
welfare is rounded down by at most a factor of �(1− �/4).

Lemma 3.2. For any v ∈ T0 and any allocation x s.t. x1 ≥ ... ≥ xn, we have D(v) ⋅ x ≤ v ⋅ x ≤
1

�(1−�/4)D(v) ⋅ x.

Proof. The first inequality holds by definition. Now we prove the second one. We first show that the
social welfare affected by “tail cutting” is bounded by a fraction of �/4.

Claim 3.3.
∑

i:vi≥1/nM vixi ≥ (1− �/4)
∑n

i=1 vixi.

Proof. For the ease of notation, we let A =
∑n

i=1 vixi and B =
∑

i:vi≥1/nM vixi. Thus A = B +∑
i:vi<1/nM vixi ≤ B + 1

nM

∑
i:vi<1/nM xi. Since x1 ≥ ... ≥ xn and 1 = v1 ≥ ... ≥ vn, we have

1
n

∑n
i=1 xi ≤

∑n
i=1

∑n
j=1 vj
n xi ≤

∑n
i=1 vixi = A. The last inequality holds because of rearrangement inequal-

ity. Therefore, we have A ≤ B+ 1
nM−1

(
1
n

∑
i:vi<1/nM xi

)
≤ B+ 1

nM−1

(
1
n

∑n
i=1 xi

)
≤ B+ 1

nM−1A ≤ B+ �
4A.

Hence we have B ≥ (1− �/4)A.

Let v′ = D(v), it is easy to see: v′ ⋅ x =
∑

i:vi≥1/nM v′ixi ≥ �
∑

i:vi≥1/nM vixi ≥ �(1− �
4)v ⋅ x.

Secondly, we show that the social welfare increases by at most a factor of � by considering E(v)
instead of v for any v ∈ T1.

Lemma 3.4. For any v ∈ T1 and any allocation x s.t. x1 ≥ ⋅ ⋅ ⋅ ≥ xn, we have v ⋅ x ≤ E(v) ⋅ x ≤ �v ⋅ x.

Proof. The first inequality is implied by the definition of E. We will prove the second one. Let v′ = E(v)
and L = ⌈log1/� n⌉. Since v,v′ ∈ T1, we have that vi, v

′
i ∈ Q for each i. Thus, if we let li = log� vi and

l′i = log� v
′
i respectively for each i, then li’s and l′i’s are non-decreasing sequences. By our construction,

it is easy to see: (1) for all 1 ≤ i ≤ n, l′i ≤ li; (2) for all l ∈ [0, L], ∣{i : l′i ≤ l}∣ ≤ � ∣{i : li ≤ l}∣. Since
x1 ≥ ... ≥ xn, we have the following:

Claim 3.5. For any l ∈ [0, L] and 1 ≤ i ≤ n,
∑

i:l′i≤l
xi ≤ �

∑
i:li≤l xi.

Observe that if we define Wl = �l for 0 ≤ l ≤ L and WL+1 = 0, then
∑n

i=1 xivi =
∑n

i=1 xiWli =∑n
i=1 xi

∑L
l=li

(Wl −Wl+1) =
∑L

l=0(Wl −Wl+1)
∑

i:li≤l xi.

Similarly, we have
∑n

i=1 xiv
′
i =

∑L
l=0(Wl−Wl+1)

∑
i:l′i≤l

xi. By Claim 3.5, we have v′ ⋅x ≤ �v ⋅x.
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By Lemma 3.2 and Lemma 3.4, we have the following:

Corollary 3.6. For any v ∈ T0 and any allocation x such that x1 ≥ ⋅ ⋅ ⋅ ≥ xn, we have: �(1− �/4)v ⋅x ≤
E(D(v)) ⋅ x ≤ �v ⋅ x.

Now we prove the approximation guarantee of our mechanism. Given any bid vector v, without loss
of generality, we may assume v ∈ T0. Let z∗ be the optimal solution of social welfare maximization for
v and x∗ be the solution output by our mechanism. In addition, let y∗ be the optimal solution for the
typical bid E(D(v)). Then, by Corollary 3.6, we have v ⋅ x∗ ≥ 1

�E(D(v)) ⋅ x∗. Since our algorithm is
maximum-in-range, allocation x∗ is at least as good as the allocation by algorithm A with respect to
typical bid vector E(D(v)). Hence, we have E(D(v)) ⋅ x∗ ≥ 1

�E(D(v)) ⋅ y∗. Further, by optimality of y∗

and Corollary 3.6, we have E(D(v)) ⋅ y∗ ≥ E(D(v)) ⋅ z∗ ≥ �
(
1− �

4

)
v ⋅ z∗.

In all, we have v ⋅ x∗ ≥ �
��

(
1− �

4

)
v ⋅ z∗. Since we choose � and � such that �/� = 1 + �/2, we have

v ⋅ z∗ ≤ �(1 + �/2)v ⋅ x∗/(1− �/4) ≤ �(1 + �)v ⋅ x∗. This completes our analysis.

4 General Single-Parameter Mechanism Design

In the previous section, we study the black-box reductions in the symmetric single-parameter setting.
However, many interesting mechanism design problems do not satisfy the symmetric property, hence to
study black-box reductions in a general single-parameter setting is an important extension of our result.

In Section 4.1, we derive a significant approximability gap between maximum-in-range mechanisms
and approximation algorithms in the most general single-parameter setting. To some extent, this suggests
the difficulty in designing factor-preserving black-box reductions. However, we show in Section 4.2 that for
the important subclass of downward-closed problems, we will still be able to establish a factor-preserving
black-box reduction that converts a certain type of algorithms to truthful in expectation mechanisms.

4.1 General case: limitation of MIR mechanisms

In this section, we establish a novel relation between single-parameter mechanism design (SPMD) and
maximum constraint satisfaction problems (MaxCSP). This relation shows that the computational ability
of MIR mechanisms is much more restricted than the ability of general approximation algorithms – in the
sense that, approximation ratio of a MIR mechanism for some SPMD problem can be arbitrarily worse
than that of the best approximation algorithm for the “corresponding” MaxCSP problem.

Specifically, for every MaxCSP problem Γ that is NP-Hard, we set up a corresponding SPMD problem
Γ′, mapping (which can be done in polynomial time) each instance ℐ ∈ Γ to a profile of agent valuation
vℐ , while optΓ(ℐ) = optΓ′(vℐ). For every (efficient) MIR mechanism, we show that unless NP ⊆ P/poly,
the approximation guarantee of the mechanism (on Γ′) can be no better than that of a random assignment
for the corresponding MaxCSP problem Γ, and therefore is arbitrarily worse than the guarantee of the
best approximation algorithms, for some carefully chosen Γ.

For the sake of exposition, we choose Γ to be Max k-AllEqual (which can be any MaxCSP problem,
although the gap between performance of MIR mechanisms and that of approximation algorithms might
be different). The Max k-AllEqual problem is defined as follows.

Definition 1 (Max k-AllEqual). Given a set C of clauses of the form l1 ≡ l2 ≡ ⋅ ⋅ ⋅ ≡ lk (k constant),
where each literal li is either a Boolean variable xj or its negation x̄j. The goal is to find an assignment
to the variables xi so as to maximize the number of satisfied clauses.

The Max k-AllEqual problem is NP-Hard. In fact, it is NP-Hard to approximate Max k-

AllEqual problem within a factor of 2c
√
k/2k for some constant c > 0, according to [24, 17, 11]. On

the algorithmic side, there is an Ω(k/2k)-approximation algorithm for Max k-AllEqual shown in [6].
The algorithm based on SDP-relaxation and randomized rounding, but it can be efficiently derandomized
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by embedding the SDP solution to a low dimensional space, via derandomized Johnson-Lindenstrauss
transformation [18, 8, 20].

CSP-based hard instance for MIR mechanisms. We describe the corresponding SPMD problem for
Max k-AllEqual as follows. For a Max k-AllEqual problem with n variables, we set up M = (2n)k

agents in MMax k-AllEqual, each corresponding to a clause c : l1 ≡ l2 ≡ ⋅ ⋅ ⋅ ≡ lk. Recall that in a SPMD
problem, each agent’s valuation is a single real number that specifies its utility for being served. We
conclude the description of our hard instance by defining the winner set, i.e. the set of feasible subset of
agents being served. For any Boolean assignment x : [n] → {true, false}, let C(x) ⊆ [M ] be the set of
clauses that are satisfied by x. We define the set of feasible allocation functions Y ⊆ {y : [M ]→ {0, 1}}
to be Y = {1C(x)∣x : [n]→ {true, false}}.

Given a Max k-AllEqual instance ℐ with set C of clauses, define the valuation function for the

agents, vℐ = v : [M ]→ {0, 1}, to be the indicator function of C, i.e. v(c) = 1C(c) =

{
1 c ∈ C
0 otherwise

.

Note that here we assume that every clause appears at most once in C. But the hard instance can be
easily generalized to weighted case, by letting v(c) be the weight of clause c.

Analysis. It’s easy to check the following fact.

Fact 4.1. opt(ℐ) = maxx:[n]→{true,false}
{
v ⋅ 1C(x)

}
= maxy∈Y {v ⋅ y} = opt(vℐ).

Now, we prove that there is a significant gap between the approximation guarantee of any MIR
mechanism and that of the approximation algorithms. The following theorem shows that MIR mechanism
performs Ω(k) times worse than the approximation algorithm for the corresponding algorithmic task, for
any constant k > 0.

Theorem 4.2. Assuming NP ∕⊆ P/poly, there is no polynomial time MIR mechanism with approximation
ratio better than 2(1 + �)/2k, for any constant � > 0.

The proof of Theorem 4.2 consists of two steps. Assuming there is an MIR mechanism with range
ℛ achieving 2(1 + �)/2k approximation guarantee, we firstly show that ℛ needs to be exponentially
large. Then we use Sauer-Shelar Lemma to argue that when ℛ is sufficiently large, it must cover all
possible assignments for a constant fraction of the n variables in Max k-AllEqual, and we can use this
mechanism exactly solve Max k-AllEqual problem on this fraction of variables, which is NP-Hard.

The above technique was first introduced in [5] to show the inapproximability result in combinatorial
auctions. However, their construction relies on the complicated private structures of agents’ valuations,
hence does not apply in our problem. Our approach can be viewed as a novel generalization of their
technique in single-parameter mechanism design.

Now we proceed to the first step by proving the following lemma.

Lemma 4.3. ∣ℛ∣ > exp

(
�2n

4k2k

)
.

Proof. Consider a random Max k-AllEqual instance ℐ generated as follows. Partition the n vari-
ables into [n/k] groups, each of which contains exactly k variable. For every group with variables
xi1 , xi2 , ⋅ ⋅ ⋅ , xik , generate a clause l1 ≡ l2 ≡ ⋅ ⋅ ⋅ ≡ lk where lj is chosen from xij and x̄ij uniformly
and independently from other choices. Note that ℐ has [n/k] clauses, and is always satisfiable, i.e.
opt(ℐ) = [n/k].

For every allocation y ∈ ℛ,E [vℐ ⋅ y] = 2[n/k]
2k

, since each clause is satisfied with probability 2/2k. Since

the clauses are generated independently, by Chernoff bound, for � < 1, we have Pr
[
vℐ ⋅ y > (1 + �) ⋅ 2[n/k]

2k

]
<

exp
(
− �2

3 ⋅
2[n/k]

2k

)
< exp

(
− �2n

4k2k

)
. By the approximation guarantee of the mechanism and a union bound,

we know that ∣ℛ∣ > exp(�2n/(4k2k)).
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In the second step, we make use of the following lemma.

Lemma 4.4 (Sauer-Shelah Lemma [25, 26]). For any family S of subsets of a universe U, there is a

subset E ⊆ U of size Θ
(

log ∣S∣
log ∣U ∣

)
, such that for each subset E′ ⊆ E, there is a T ∈ S satisfying E′ = T ∩E.

Let U = [n] be the universe, thus any subset T of U can be (one-to-one) corresponded to a Boolean
assignment x : [n] → {true, false} with x−1(true) = T . Let S be the set of Boolean assignments whose
C(⋅) image is in ℛ (recall C(x) is the set of all clauses satisfied by x), i.e. let S = {x−1(true)∣∀x : [n] →
{true, false} : 1C(x) ∈ ℛ}. Since ℛ ⊆ Y and by definition of Y (which is the set of feasible allocation

functions), for every y ∈ R, there is at least one x such that 1C(x) = y. Therefore ∣S∣ ≥ ∣ℛ∣ > exp
(
�2n

4k2k

)
(by Lemma 4.3). Now we apply Lemma 4.4. We get a subset E ⊆ U = [n] of size Ωk(�

2n/ log n), such
that for each E′ ⊆ E, there is a T ∈ S satisfying E′ = T ∩ E. Then we prove the following lemma.

Lemma 4.5. For every Max k-AllEqual problem instance ℐ ′ with ∣E∣ = Ωk(�
2n/ log n) variables, there

is a polynomial time algorithm, outputting a valuation function v for M = (2n)k agents, such that social
welfare achieved by the MIR mechanism with range ℛ is exactly opt(ℐ ′).

Proof. Let C ′ be the set of clauses given in ℐ ′, rename the variables in ℐ ′ so that their indices appear in
E. Then let v = 1C′ . We see that the social welfare achieved by MIR mechanism with range ℛ is

max
y∈ℛ
{v ⋅ y} = max

x:[n]→{true,false}:1C(x)∈R

{
v ⋅ 1C(x)

}
(definition of Y , and ℛ ⊆ Y )

= max
x:[n]→{true,false}:x−1(true)∈S

{
v ⋅ 1C(x)

}
(definition of S)

= max
x:E→{true,false}:∃T∈S,x−1(true)=T∩E

{
v ⋅ 1C(x)

}
(v(c) = 0 if c contains variables outside E)

= max
x:E→{true,false}

{
v ⋅ 1C(x)

}
(property of E)

= opt(ℐ ′).

Together with the hardness of Max k-AllEqual, Lemma 4.5 implies Theorem 4.2.

4.2 Downward-closed case: black-box reduction

In the previous approximability lower bound construction, we observe that the Max k-AllEqual prob-
lem studied does not satisfy the downward-closed property. Formally, a single-parameter problem is
downward-closed if the following holds: let x be a feasible allocation, then any allocation x′ obtained by
decreasing one of the components of x to 0 is feasible as well. Problems that satisfy the free disposal
property fall into this class. For example, the partially public combinatorial auction problem [13] is a
downward-closed single-parameter mechanism design problem.

4.2.1 Relaxation-rounding algorithm

We will consider the single-parameter social welfare maximization problem with n agents as a discrete
maximization problem with linear objective: max{v ⋅ x : x ∈ C}, where C is a finite and downward-
closed subsets of [0, 1]n. Let opt(v) denote the optimal value of this problem with respect to valuations
v. Since solving this problem optimally is usually computationally intractable, approximate algorithms
are desirable. An important technique for designing approximate algorithms is the following relaxation-
rounding approach (e.g. the LP-based algorithms for social welfare maximization [4, 12]).

A relaxation-rounding algorithm A = (C∗,Around) consists of two parts.
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∙ C∗ ⊇ C is a relaxed set of feasible allocations so that we can solve the relaxed constrained max-
imization problem max{v ⋅ x : x ∈ C∗} optimally in polynomial time (e.g. LP relaxation, SDP
relaxation etc.). We will let opt∗(v) denote the optimal of this relaxed problem. A simple fact is
that opt∗(v) ≥ opt(v).

∙ Around is a poly-time rounding algorithm that converts any feasible allocation x∗ ∈ C∗ of the relaxed
problem into a feasible allocation x ∈ C of the original problem.

The relaxation-rounding algorithm A = (C∗,Around) will first solve the relaxed constrained maximization
problem optimally, then use the rounding algorithm to convert the optimal relaxed allocation into a
feasible allocation of the original problem.

The rounding algorithm Around is an �-rounding if for any agent valuations v ∈ ℝn+ and any relaxed
allocation x∗ ∈ C∗, we have that �Around(x∗) ⋅ v ≥ x∗ ⋅ v. It is easy to see that if the rounding
algorithm is an �-rounding then the relaxation-rounding algorithm is �-approximate. Unfortunately,
such �-approximate allocation algorithm does not always admit truthful mechanism.

4.2.2 MIR mechanism based on exact rounding

It turns out that if we can further impose the stronger �-exact-rounding property on the rounding algo-
rithm, then we can construct an MIR mechanism on the range ℛ = C∗/� = {x∗/� : x∗ ∈ C∗}. More
concisely, a rounding algorithm is an �-exact-rounding if for any relaxed allocation x∗ ∈ C∗, we have
�E

[
Around(x∗)i

]
= x∗i , that is, the expected allocation for each agent is rounded down by exactly an �

factor. In this case, the allocation given by the algorithm is the social welfare maximizing allocation in
range ℛ. And hence this allocation rule admits an MIR mechanism on this range.

At the first glance, the �-exact-rounding property seems unreasonably strong: It requires the rounding
algorithm to round down each coordinate by exactly the same factor �. Surprisingly, this property is
without loss of generality in the downward-closed case.

Lavi and Swamy [19] studied the case when C is a packing integral polytope and proved that any
�-rounding algorithm can be converted into an �-exact-rounding algorithm and hence a �-approximate
MIR mechanism.

We notice that the constraint of C being a packing integral polytope can be relaxed to arbitrary finite
and downward closed-domain1. More concisely, the following strengthened theorem holds.

Theorem 4.6 (Implicit in [19]). Suppose C is a downward-closed and finite set of feasible allocations,
(C∗,Around) is a relaxation-rounding algorithm with an �-rounding. Then, we con convert Around into a
poly-time �-exact-rounding algorithm for the same relaxed constrained set C∗.

We prove this theorem in Appendix A for completeness.
As a simple corollary, we get that there is a computationally efficient black-box reduction from mech-

anism design to relaxation-rounding based algorithm design in the downward-closed case.

Corollary 4.7. Suppose C is a downward-closed constrained set, then we can convert any relaxation-
rounding algorithm into an MIR mechanism with the same approximation ratio for social welfare.

4.2.3 Further discussion on Lavi and Swamy’s approach

We will conclude this section with a further discussion on the approach of exact rounding. Lavi and
Swamy demonstrated in their original paper [19] the application of this approach and yielded truthful
mechanisms with very good approximation ratio for a number of problems, including the combinatorial
auction problems with general valuations, single-minded valuations, additive valuations. However, the
technique does not extends to, for example, sub-modular valuations.

1The authors would like to thank Deeparnab Chakrabarty and an anonymous reviewer for suggesting that Lavi and
Swamy’s approach might work in this setting. In an earlier draft of this paper, we prove a slightly weaker result via a
different approach.
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The main obstacle is that the technique of exact rounding requires the rounding algorithm to work
on arbitrary valuations. More concisely, if we want to restrict our attention to valuations that satisfies
certain properties, we need to be able to encode these properties with C, the set of feasible allocations. For
instance, there are natural polytopes for combinatorial auctions with general valuations, single-minded
valuations, and additive valuations. To our knowledge, however, there is no such polytope that encodes
the sub-modularity of valuation functions.

In contrast, in the single-dimension setting, the agent valuations have very simple structures by defi-
nition: Each agent’s value is just a single real number. All the messy structures are hidden in C, the set
of feasible allocation. Therefore, we can naturally adopt Lavi and Swamy’s approach into this setting for
every C that is finite and downward-closed.

5 Symmetric Multi-Parameter Mechanism Design

We discuss the single-parameter mechanism design problems in the previous sections. As a natural
generalization, we consider the multi-parameter problems in this section. We will demonstrate how to
extend the discretization technique to the symmetric multi-parameter domain.

As before, a problem is symmetric if S = (S1, ..., Sn) is a feasible allocation implies that � ∘ S =
(S�(1), ..., S�(n)) is also a feasible allocation for any permutation �. Moreover, a mechanism design problem
is Δ-dimension if the valuation of each agent i can be naturally represented by a Δ-dimension vector
ui = (ui1, . . . , uiΔ) ∈ ℝΔ

+ . We let v(S,u) denote an agent’s value of an allocation S when its valuation
function is given by a Δ-dimension vector u. We will assume that the problem satisfies the following
properties:

∙ Monotonicity. For any 1 ≤ i ≤ n, S, ui and u′i such that uij ≥ u′ij for any 1 ≤ j ≤ Δ, we have
v(Si,ui) ≥ v(Si,u

′
i).

∙ Sub-linear influence. For any 1 ≤ k ≤ Δ, � > 1, u and u′ such that for any 1 ≤ i ≤ n, uij = u′ij
for any j ∕= k, and uik ≤ �u′ik, we have opt(u) ≤ �opt(u′).
∙ Negligible tail. For any � > 0, let u�i be the tail-truncated values: u�ij = uij if uij ≥ �maxs,t ust

and u�ij = 0 otherwise. For any constant � > 0, there is a polynomially small � > 0, so that for any

allocation S and any values ui’s, we have (1 + �)
∑n

i=1 v(Si,u
�
i ) ≥

∑n
i=1 v(Si,ui).

These assumptions are without loss of generality in many mechanism design problems. For example,
consider the following:

∙ Multi-item auction. In multi-item auctions, we consider n agents and m different types of items,
each of which has a finite supply. Each agent i has a private m-dimension vector of values ui =
(ui1, . . . , uim). Agent i’s value of a bundle S with xj items of type j, 1 ≤ j ≤ m, is v(S,ui) =∑m

j=1 xjuij . This is a m-dimensional problem that satisfies our assumptions.

∙ Combinatorial auction. In combinatorial auctions, we consider n agents and m different items.
Each agent i has a private 2m-dimension vector ui so that for each subset of items S ∈ 2[m], agent i’s
value of bundle S is v(S,ui) = uiS . This is a 2m-dimensional problem that satisfies our assumptions.

In the following discussion, we will focus on mechanism design problems with small dimension. Via
techniques similar to those in Section 3, we can show that there exist factor-preserving reductions for the
constant dimension and symmetric mechanism design problems as well, except that the running time is
now quasi-polynomial in the input size.

Theorem 5.1. For any Δ-dimension symmetric mechanism design problem Π where Δ is a constant,
suppose A is an �-approximate algorithm, then for any constant � > 0, we can get an truthful and
(1 + �)�-approximate mechanism that runs in quasi-polynomial time given A as a black-box.
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Alternatively, we can alleviate the running time by having greater degrade in the approximation
factor. More concretely, given any approximation algorithm as a black-box, we can obtain a polynomial
time mechanism with poly-logarithmic degrade in the approximation factor.

Theorem 5.2. For any Δ-dimension symmetric mechanism design problem Π where Δ is a constant,
suppose A is an �-approximate algorithm, then for any constant � > 0, we can get a truthful and � polylog-
approximate mechanism that runs in polynomial time given A as a black-box.

The detail constructions of the above theorems are deferred to Appendix B.
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A Proof of Theorem 4.6

Proof of Theorem 4.6. Let C = {xl : 1 ≤ l ≤ K} where K is a finite number. We first show that given
any x∗ ∈ C∗, we can find a convex combination of vectors in C that dominates x∗

� componentwise. To
be precise, consider the following (LP1) and its dual (LP2):

min
∑
l∈[K]

�l (LP1)

s.t.
∑
l∈[K]

�lx
l
i ≥

x∗i
�

∀i ∈ [n],

∑
l∈[K]

�l ≥ 1,

�l ≥ 0 ∀l ∈ [K].

max
1

�

∑
i∈[n]

x∗i vi + z (LP2)

s.t.
∑
i∈[n]

xlivi + z ≤ 1 ∀l ∈ [K],

vi ≥ 0 ∀i ∈ [n].

Similar to [19], we can prove the following:

Claim A.1. If v, z is feasible, then we have 1
�

∑
i∈[n] x

∗
i vi + z ≤ 1. Furthermore, if this inequality is

reversed, one can use Around to find a violated constraint in (LP2) in polynomial time.

As a result, we conclude that there exists an optimal solution (�l)l∈[K] of (LP1) with polynomial
support �1, ..., �p > 0 where p = poly(n) and

∑
1≤l≤p �l = 1.

For each i ∈ [n], we define

qi =

x∗i
�∑

1≤l≤p �lx
l
i

≤ 1.

and we define a vector xl as follows: xli = qix
l
i. Since C is downward-closed and xl ∈ C for all 1 ≤ l ≤ p,

we have xl ∈ C for all 1 ≤ l ≤ p.
Now we construct a rounding algorithm Aexact as follows: We first choose a vector xl with probability

�l for 1 ≤ l ≤ p; Then we obtain a random vector xl by

xli =

{
xli with probability qi
0 with probability 1− qi

It is easy to see thatAexact is a polynomial time �-exact-rounding algorithm. This completes the proof.

B Ommited Construction in Section 5

In this section, we will provide the detail construction of the claimed reductions in Section 5. In Sec-
tion B.1, we show a factor-preserving black-box reduction that converts any approximation algorithm to
a truthful mechanism with quasi-polynomial running time. Alternatively, in Section B.2, we alleviate the
running time by degrading the approximation ratio and we provide a polynomial time reduction with
poly-logarithmic degrade in approximation factors.
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B.1 Quasi-polynomial time reduction

In this section, we prove the following theorem:

Theorem B.1 (Theorem 5.1 restated). For any Δ-dimension symmetric mechanism design problem Π
where Δ is a constant, suppose A is an �-approximate algorithm, then for any constant � > 0, we can
get an truthful and (1 + �)�-approximate mechanism that runs in quasi-polynomial time given A as a
black-box.

Let us outline the quasi-polynomial time reduction for Δ-dimension mechanism design problems. We
will consider MIR mechanisms.

Suppose 1 > � > 0 is polynomially small and satisfies that (1 + �/2Δ)
∑n

i=1 v(Si,u
�
i ) ≥

∑n
i=1 v(Si,ui)

for any allocation S and any valuation profile ui. Such � always exists by the assumption of negligible tail.
For any � = (�1, . . . , �Δ) ∈ {0,−1, . . . , (2Δ/�) ln �}Δ, let u� denote the valuation (e��1/2Δ, . . . , e��Δ/2Δ).
We will let U = {u� : � ∈ {0,−1, . . . , (2Δ/�) ln �}Δ} denote the set of such valuations. We will assume
that there is a canonical total order (⪯, U) for U2. We will consider an MIR mechanism with range
ℛ = {� ∘ A(u1, . . . ,un) : u1 ⪯ ⋅ ⋅ ⋅ ⪯ un ∈ U , � ∈ Πn} , where Πn is the set of permutations over [n].

Computational efficiency. Given an allocation S = (S1, . . . , Sn) and a profile (u1, . . . ,un), we can
compute the permutation � ∈ Πn that maximizes

∑n
i=1 v(S�(i),ui) by solving a bipartite max-weight

matching problem. The total number of different valuation profiles u1 ⪯ ⋅ ⋅ ⋅ ⪯ un ∈ U is at most∣∣[n]U
∣∣ = nO((2Δ∣ ln �∣/�)Δ) = 2O(logn∣ ln �∣Δ) since there is a compact description of such profile by counting

the number of valuations of each type. Recall that � is polynomially small, the MIR mechanism runs in
quasi-polynomial time for any fixed constant Δ and �. By further discretizing the number of valuation
of each type, we can obtain an MIR mechanism that runs in 2O(log logn∣ ln �∣Δ) time. Since this is only a
minor improvement and the analysis is almost identical to that in Section 3, we omit the tedious details
here.

Approximation ratio. For any valuation profile u, we can without loss of generality assume that it is
normalized such that maxst ust = 1. We will show how to map such a valuation profile u to a discretized
profile u∗ ∈ U , such that any �-approximate allocation S∗ for u∗ is a (1 + �)�-approximate allocation for
u. By our choice of range, this will prove the desired approximation guarantee.

We will map one dimension at a time. For 0 ≤ k ≤ n, we let

Uk = {(u1, . . . ,un) : ∀1 ≤ i ≤ n, 1 ≤ j ≤ k , uij ∈ {1, e−�/2Δ, e−�/Δ, . . . , �} ∪ [0, �]} .

In other word, for any profile of valuations uk ∈ Uk, each entry of uk in the first k dimensions either
equals a discretized value or is negligibly small.

For any profile of valuation uk ∈ Uk, we will map uk to a profile uk+1 ∈ Uk+1 defined as follows: For all
1 ≤ i ≤ n, let uk+1

ij = ukij for any j ∕= k+ 1, and let uk+1
i(k+1) = max {e−ℓ(�/2Δ) : e−ℓ(�/2Δ) ≤ uki(k+1) , ℓ ∈ Z}.

Let xk denote the optimal allocation for profile uk. Note that we only scale down each entry in
dimension k+ 1 by at most e−�/2Δ. By the assumptions of monotonicity and sub-linear influence, for any
�-approximate allocation S for uk+1, we have that

n∑
i=1

v(Si,u
k
i ) ≥

n∑
i=1

v(Si,u
k+1
i ) ≥ opt(uk+1)

�
≥ u

k+1 ⋅ xk

�
≥ u

k ⋅ xk

� e�/2Δ
=

opt(uk)

� e�/2Δ
.

So any �-approximate allocation S for uk+1 is an e�/2Δ�-approximate algorithm for uk. Note that
u ∈ U = U0. By repeatedly applying the above procedure Δ times, we get a profile uΔ ∈ UΔ so that any
�-approximate allocation for uΔ is an e�/2�-approximate allocation for u.

2For example, we may sort the elements in U by the following canonical labeling: ℓ(u�) = �1 + �2[1 + (2Δ/�) ln �] + ⋅ ⋅ ⋅+
�Δ[1 + (2Δ/�) ln �]Δ−1.
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Let us consider the tail-truncated version u∗ of uΔ: For any 1 ≤ i ≤ n and 1 ≤ j ≤ Δ, u∗ij = uΔ
ij if

uΔ
ij ≥ � and u∗ij = 0 otherwise. Suppose SΔ is the optimal allocation for uΔ. Consider any �-approximate

allocation S for u∗, by the assumption of negligible tail, we have

n∑
i=1

v(Si,u
Δ
i ) ≥

n∑
i=1

v(Si,u
∗) ≥ opt(u∗)

�
≥
∑n

i=1 v(SΔ
i ,u

∗)

�
≥
∑n

i=1 v(SΔ
i ,u

Δ)

(1 + �/2Δ)�
.

So S is a (1 + �/2Δ)�-approximate allocation for uΔ. Hence, it is a (1 + �)�-approximate allocation
for u since e�/2(1 + �/2Δ) < (1 + �). Note that u∗ ∈ U . We prove the claimed approximation guarantee.

B.2 Polynomial time reduction with poly-logarithmic degrade

Finally, let us turn to the poly-time reduction with poly-logarithmic degrade in the approximation ratio.
We will show the following theorem.

Theorem B.2 (Theorem 5.2 restated). For any Δ-dimension symmetric mechanism design problem Π
where Δ is a constant, suppose A is an �-approximate algorithm, then for any constant � > 0, we can get
a truthful and � polylog-approximate mechanism that runs in polynomial time given A as a black-box.

Suppose 1 > � > 0 is polynomially small and satisfies that 2
∑n

i=1 v(Si,u
�
i ) ≥

∑n
i=1 v(Si,ui) for any

allocation S and any profile of valuations u. Consider an MIR mechanism with range

ℛ =

{
� ∘ A(

k︷ ︸︸ ︷
u, . . . ,u,0, . . . ,0) : u ∈ {1, e−1, e−2, . . . , �}Δ , 1 ≤ k ≤ n , � ∈ Πn

}
.

Computational efficiency. Similar to the previous case, once we pick u and k, we can efficiently find
� ∈ Πn that maximizes

∑k
i=1 v(A(u, . . . ,u,0, . . . ,0)�(i),ui). The number of different choices of u and k

is only O(n ∣ln �∣Δ). So this MIR mechanism runs in polynomial time.

Approximation ratio. Similar to the previous case, for any profile of valuations u, suppose we assume
without loss of generality that maxst ust = 1, we will find a discretized profile u∗ so that there is a
u′ ∈ {1, e−1, e−2, . . . , �}Δ, for any 1 ≤ i ≤ n, either u∗i = u′ or u∗i = 0. We will show that any �-
approximate allocation for u∗ is an O(� ∣ln �∣Δ)-approximate allocation for u. Hence, by our choice of
range, we prove the claimed approximation guarantee.

Let us explain how to find such a discretized profile u∗. We will first obtain a scaled profile û by
scaling down each entry of u to the closest inverse of powers of e. By our assumptions of monotonicity and
sub-linear influence, we have that any �-approximate allocation for û is an eΔ�-approximate allocation
for u.

Next, we consider the tail-truncated version ũ of û by dropping the insignificant entries that are
smaller than �. By our choice of �, we have that any �-approximate allocation for ũ is a 2�-approximate
allocation for û and hence is a 2eΔ�-approximate allocation for u.

Finally, for any w ∈ {1, 1/e, . . . , �}Δ, we let uw denote the profile obtained by dropping all entries
in ũ that do not equal w, that is, uwi = w if ũi = w and uw = 0 otherwise. It is easy to verify
that opt(ũ) ≥

∑
w opt(uw). Hence, at least one of the opt(uw)’s contributes at least an Ω(1/ ∣ln �∣Δ)

fraction of opt(ũ). So by monotonicity, we get that any �-approximate allocation S for this uw is an
O(� ∣ln �∣Δ)-approximate allocation for ũ:

n∑
i=1

v(Si, ũi) ≥
n∑
i=1

v(Si,u
w
i ) ≥ opt(uw)

�
≥ Ω

(
opt(ũ)

� ∣ln �∣Δ

)

Hence, S is a O(� ∣ln �∣Δ)-approximate allocation for u. Note that uw is a valid discretized profile.
This completes our proof.
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