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Abstract

We study the problem of computing the minimum vertex covekamiform k-partite hypergraphs
when thek-partition is given. On bipartite graphk & 2), the minimum vertex cover can be computed in
polynomial time. For generdl, the problem was studied by Lovasz[23], who ga\@approximation
based on the standard LP relaxation. Subsequent work byoAh&tolzman and Krivelevicti]1] showed
a tight integrality gap o(% — o(l)) for the LP relaxation. While this problem was known to be Niveh
for k > 3, the first non-trivial NP-hardness of approximation facctbf} — e was shown in a recent work
by Guruswami and Saket[13]. They also showed that assuntiogUnique Games Conjecture yields
a% — ¢ inapproximability for this problem, implying the optimgliof Lovasz’s result.

In this work, we show that this problem is NP-hard to appraaenwithin& — 1 + L. — <. This
hardness factor is off from the optimal by an additive comistd at mostl for £ > 4. Our reduction
relies on theMulti-Layered PCPof [8] and uses a gadget — based on biased Long Codes — adapted
from the LP integrality gap of [1]. The nature of our reduati@quires the analysis of several Long
Codes with different biases, for which we prove structuralperties of the so callectoss-intersecting
collections of set families — variants of which have beenligtti in extremal set theory.

1 Introduction

A k-uniform hypergraptG = (V, E) consists of a set of verticd$ and a collection of hyperedgés such
that each hyperedge contains exaétlyertices. A vertex cover fofz is a subset of vertice C V' such
that every hyperedge contains at least one vertex frovhi.e. e NV # (). Equivalently, a vertex cover is a
hitting set for the collection of hyperedgés The complement of a vertex cover is calledladependent
Set which is a subset of verticéssuch that no hyperedgec E is contained insid€ i.e.e ¢ 7.

The k-HYPVC problem is to compute the minimum vertex cover ik-aniform hypergraph’. It is an
extremely well studied combinatorial optimization prableespecially on graphg: (= 2), and is known
to be NP-hard. Indeed, the minimum vertex cover problem aplgs was one of Karp’s original 21 NP-
complete problems [19]. On the other hand, the simple gredglyithm that picks a maximal collection of
disjoint hyperedges and includes all vertices in the edg#sa vertex cover givesiaapproximation, which

is also obtained by the standard LP relaxation of the probl&he best algorithms known today achieve
only a marginally better approximation factor @f— o(1))k [18,[15].

On the intractability side, there have been several reduttsthe casé = 2, Dinur and Safrd [9] obtained an
NP-hardness of approximation factor of 1.36, improving c{nas hardness by Hastad [14]. For genekal
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a sequence of successive works yielded improved NP-hadaetsrs:Q(k'/19) by Trevisan[27]Q (k' —¢)
by Holmerin [16]; k — 3 — ¢ by Dinur, Guruswami and Khot[7]; and the currently bést 1 — ¢ due to
Dinur, Guruswami, Khot and RegeVi [8]. In/[8], the authorsldbuipon [7] and the work of Dinur and Safra
[9]. Moreover, assuming Khot's Uniqgue Games Conjecture Q){20], Khot and Regev [21] showed an
essentially optimak — ¢ inapproximability. This result was further strengthenedlifferent directions by
Austrin, Khot and Safréd |[5] and by Bansal and KHhdt [6].

Vertex Cover ork-uniformk-partite Hypergraphs

In this paper we study the minimum vertex problem/oepartite k-uniform hypergraphs, when the under-
lying partition is given. We denote this problem fasHyPVC-PARTITE. This is an interesting problem

in itself and its variants have been studied for applicatioglated to databases such as distributed data
mining [10], schema mapping discovery [11] and optimizatid finite automata [17]. On bipartite graphs
(k = 2), by Kdenig's Theorem computing the minimum vertex cogeequivalent to computing the maxi-
mum matching which can be done efficiently. For gengrahe problem was studied by Lovasz who, in his
doctoral thesis [23], proved the following upper bound.

Theorem 1.1 (Lovasz [23]) For everyk-partite k-uniform hypergraph: vc(G)/LP(G) < k/2, where
vC(G) denotes the size of the minimum vertex cover amd~) denotes the value of the standard LP
relaxation. This yields an efficieit/2 approximation fork-HYPVC-PARTITE.

The above upper bound was shown to be tight by Aharoni, Hatzamal Krivelevich [1] who proved the
following theorem.

Theorem 1.2 (Aharoni et al.[1]) For everyk > 3, there exists a family df-partite k-uniform hypergraphs
G such thatvc(G)/LP(G) > k/2 — o(1). Thus, the integrality gap of the standard LP relaxation is

k/2 —o(1).

A proof of the above theorem describing the integrality gapstruction is included in Sectidn] A. The
problem was shown to be APX-hard in [17] and|[11] for= 3 which can be extended easily ko> 3.

A recent work of Guruswami and Sakeét [13] showed the follgvimon-trivial hardness of approximation
factor for generak.

Theorem 1.3 (Guruswami and Saket[[1B8])For anye > 0 andk > 5, k-HYPVC-PARTITE is NP-hard to
approximate within a factor oﬁ — €. Assuming the UGC yields an optimal hardness factog of ¢ for
k > 3.

Our Contribution. We show a nearly optimal NP-hardness result for approximgatiHypPVC-PARTITE.

Theorem 1.4 For anye > 0 and integerk > 4, it is NP-hard to approximate the minimum vertex cover on
k-partite k-uniform hypergraphs within to a factor <§<f— 1+ ﬁ — €.

Our result significantly improves on the NP-hardness faaibdained in[[13] and is off by at most an additive
constant ofl from the optimal for anyt > 4. The next few paragraphs give an overview of the techniques
used in this work.

Techniques. It is helpful to first briefly review the hardness reduction[&jf for k-HYPVC which begins
with the construction of a neMulti-Layered PCR This is a two variable CSP consisting of sevdagers

of variables, and constraints between the variables of pattof layers. The work of [8] shows that it is
NP-hard to find a labeling to the variables which satisfies allsfraction of the constraints betweamy
two layers, even if there is a labeling that satisfies all thiestraints of the instance. The reduction to a



k-uniform hypergraph (as an instance /oHYPVC) involves replacing each variable of the PCP with a
biased Long Code, defined in [9], where the bias depends on

The starting point for our hardness reduction&eid YPVC-PARTITE is — as in[[8] — the Multi-Layered PCP.
While we do not explicitly construct a standalone Long Codsda gadget, our reduction can be thought of
as adapting the integrality gap construction of Ahaetral. [1] into a Long Code based gadget in a manner
that preserves the-uniformity andk-partiteness of the integrality gap.

Such transformations of integrality gaps into Long Codestagadgets have recently been studied in the
works of Raghavendra [25] and Kumar, Manokaran, Tulsiadi\dishnoi [22] which show this for a wide
class of CSPs and their appropriate LP and SDP integralipg.g@ihese Long Code based gadgets can be
combined with a Unique Games instance to yield tight UGC thdmedness results, where the reduction
is analyzed via the Mossellavariance Principle[24]. Indeed, fork-HYPVC-PARTITE the work of Gu-
ruswami and Saket [13] combines the integrality gap bf [Ithwa slight modification) of the approach of
Kumaret al. [22] to obtain an optimal UGC based hardness result.

Our reduction, on the other hand, combines Long Codes withvthlti-Layered PCP instead of Unique
Games and so we cannot adopt a Invariance Principle basbgiandhus, in a flavor similar to that df][8],
our analysis is via extremal combinatorics. However, gatgetinvolves several biased Long Codes with
different biases and each hyperedge includes verticesdifierent Long Codes, unlike the construction in
[8]. For our analysis, we use structural properties ofass-intersectingollection of set families. A collec-
tion of set families iross-intersectingf any intersection of subsets — each chosen from a diffdeamily
—is large. Variants of this notion have previously beenistlith extremal set theory, see for example [2].
We prove an upper bound on the measure of the smallest familydh a collection. This enables a small
vertex cover (in the hypergraph of our reduction) todeeodednto a good labeling to the Multi-Layered
PCP.

The next section defines and analyzes the above mentiongstiatersecting set families. Sect[dn 3 defines
the Multi-Layered PCP of Dinuet al. [8] and states their hardness for it. In Sectidn 4 we desavilre
reduction and prove Theordm 1L..4.

2 Cross-Intersecting Set Families
We use the notatiofn] = {1,...,n} and2[") = {F | F C [n]}. We begin by defining cross-intersecting
set families:

Definition 2.1 A collection ofk familiesFi, ..., Fi, C 2", is calledk-wiset-cross-intersecting if for every
choice of setd; € F;fori=1,...,k,wehaveFy N...N Fy| > t.

We will work with the p-biased measure on the subset$0f which is defined as follows:

Definition 2.2 Given a bias parameted < p < 1, we define the measuye, on the subsets df| as:
pp(F) == plFl. (1 — p)"~IFl The measure of a familff is defined agi,(F) = 3 e 7 11 (F).

Now, we introduce an important technique for analyzing stiosersecting families — the shift operation
(see Def 4.1, pg. 1298 [12]). Given a family, define thgi, j)-shift as follows:

ST(F) = { (FU{i}\{j}) ifjeF i¢ Fand(FU{i}\{j}) ¢ F

F otherwise.

Let the (i, j)-shift of a family F be 5;;(F) = {S7;(F) | F € F}. Given a familyF C 2["], we repeatedly
apply (4, j)-shift for 1 <14 < j < nto F until we obtain a family that is invariant under these shifsch a
family is called deft-shifted familyand we will denote it by5(F).
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The following observations about left-shifted familiefida from the definition.

Observation 2.3 Let F C 2[") be a left-shifted family. Considér € F such thati ¢ Fandj € F where
i < j. Then,(F U {i}\{j}) must be inF.

Observation 2.4 GivenF C 2", there is a bijection between the setsfirand S(F) that preserves the size
of the set. Thus, for any fixedthe measures of and.S(F) are the same under,, i.e. pu,(F) = 1, (S(F)).

The following lemma shows that the cross-intersecting @riypis preserved under left-shifting.

Lemma 2.5 Consider families7, ..., F, C 2" that are k-wiset-cross-intersecting. Then, the families
S(F1),...,S(Fy) are alsok-wiset-cross-intersecting.
Proof: Given the assumption, we will prove thélt; (1), ..., S;;(F) arek-wiset-cross-intersecting. A

simple induction would then imply the statement of the lemma

Consider arbitrary sets; € F;. By our assumption F; N...N Fy| > t. It suffices to prove thdﬁgl (F1)N
N Sg’ﬁ(Fk)] >t If j ¢ Fyn...N Fy, the claim is true since the only element being deleted Ehus,
foralll € [k],j € Fy. Ifforall [ € [k], S?(Fl) = [}, the claim is trivial. Thus, let us assume wlog that
S7H(Fy) # Fi. Thus,i ¢ Fy and hence ¢ Fy N ... N Fy. Now, ifi € S[1(F)n...0 SJF(F), we get
that j is replaced by in the intersection and we are done. Thus, we can assume hdbg ¢ S£2(F2).
This implies that ¢ F> andF> U {i}\{j} € F2. Now considetF; N (Fr U {i}\{j})NF3N...N F}. Since
we are picking one set from eadh), it must have at leastelements, but this intersection does not contain
j and hence itis a subset 6 (Fy) N... N S *(Fy), implying that| S/ (Fy) ... N SF(F) >t =

Next, we prove a key structural lemma about cross-intarggéamilies which states that for at least one of
the families, all of its subsets have a dense prefix.

Lemma 2.6 Letq,...,qx € (0,1) bek numbers such tha}, ¢; > 1 and letFy, ..., F. C 2" be left-
shifted families that aré-wiset-cross-intersecting for some> 1. Then, there exists A€ [k] such that for
all setsF' € F;, there exists a positive integef < n —tsuchthaiF' N[t + ]| > (1 —¢)(t +7F).

Proof: Let us assume to the contrary that for evéry [k], there exists a sef; € F; such that for all
r>0,|F;N[t+r]] < (1—¢)(t+r). The following combinatorial argument shows that the fésiF;
cannot bek-wiset-cross-intersecting.

Let us construct an arrangement of balls and bins where ealtls lsolored with one of: colors. Createn
bins labeled., ..., n. For each and for everyr € [n]\F;, we place a ball with coloi in the bin labeled:.
Note that a bin can have several balls, but they must haviactistolors. Given such an arrangement, we
can recover the sets it represents by defirfifigo be the set of bins that contain a ball with color

Our initial assumption implies thaf* N [t + ]| > g;(t + ). Thus, there are at least; (t + r) | balls with
colori in bins labeledL, ..., t 4+ r. The total number of balls in bins labeléd. . . ,t + r is,

k

[ai(t+7)] = D at+r) = (t+r) = r+1,
i=1 1=1

] =

k
dOIE N[+ 2
1=1

where the last two inequalities follow using, ¢; > 1 andt > 1.
Next, we describe a procedure to manipulate the above amaegt of balls.



forr:=0ton —t
if bint 4 r is empty
then if a bin labeled from to ¢ — 1 contains a balthen move it to bint + r
else ifa bin labeled front to ¢ + » — 1 contains two ballshen move one of them to bin+ r
elseoutput “error”

We need the following lemma.

Lemma 2.7 The above procedure satisfies the following properties:

1. The procedure never outplagsor.

2. At every step, any two balls in the same bin have differelots.

3. At stepr, defineGZm to be the set of labels of the bins that do not contain a ballbddrci. Then, for all
ik, G" e F

4. After stepr, the binst tot + r have at least one ball each.

Proof: 1. If it outputs error at step, there must be at most— 1 balls in binsl to ¢ + . This is false at

r = 0. Moreover, at step’ < r, we could have moved a ball only to a bin labeledtirt + r|. Thus, we get
a contradiction.

2. Note that this is true at= 0 and a ball is only moved to an empty bin, which proves the claim

3. Whenever we move a ball from bitto j, we havei < j. SinceF; are left-shifted, by repeated application
of Observatiof 2]3, we get that at staepr.r) e F;.

4. Since the procedure never outputs error, at stéthe bint 4 r is empty, the procedure places a ball in
it while not emptying any bin labeled betwegnt + r — 1]. This proves the claim. [ |

The above lemma implies that at the end of the procedure (aften — t), there is a ball in each of the bins
labeled from[t, n]. Thus, the set&; = ng_t) satisfyn,;G; C [t — 1] and hencén; G;| <t — 1. Also, we
know thatG; € F;. Thus, the familiesF; cannot bek-wise ¢-cross-intersecting. This completes the proof
of LemmdZ.6. |

The above lemma, along with a Chernoff bound argument, sktiwatsGiven a collection of-wiset-cross-
intersecting families, one of them must have a small measudler an appropriately chosen bias.

Lemma 2.8 For arbitrary ¢,§ > 0, there exists some = O (55 (log 2 + log (1 + 557))) such that the
following holds: Givenk numbers) < ¢; < 1 such thaty_, ¢; > 1 andk families, F, ..., Fj, C 2"l that

are k-wiset-cross-intersecting, there existgiauch thatu;_,,_s(F) < e.

Proof: First we prove the following lemma derived from the Cherrmdtind.

Lemma 2.9 For arbitrary e, > 0 and0 < ¢ < 1, there exists some= O (3 (log L +log (1 + 533)))
such that the following holds:

Any familyF C 2l that satisfies that for everyy € F, there exists an integer- > 0 such that F N [t +
rr]| > (1 —¢)(t+rp) must havey_,_5(F) <.

Proof:  Note thatu,_,—s(F) is equal to the probability that for a random détchosen according to
pi—q—s liesinF. Thus,u;—,—s(F) is bounded by the probability that for a random Bethosen according
to p1—q—s, there exists anp that satisfie$F" N [t + rp]| > (1 — q)(t + rr).



The Chernoff bound states that for a setofindependent bernoulli random variabl&s, with Pr[X; =
]=1-q—r,

Pr

m
32 (g <o

1=1

Thus, we get that for any > 0, Pr[|F N [t 4 r]| > (1 — q)(t + )] < e~2(+7%*  Summing over alt, we
get that,

—2t62
_ )62 e — 2452 1
pog-a(F) < D e < i < (”ﬁ)'
r>0
Thus, fort = Q (3 (log L +log (1+ 5k)) ) t1—q—s(F) will be smaller thare. ]

We now continue with the proof of Lemnia 2.8. Quwill be dictated by Lemm&219 and will be decided
later. Consider the left-shifted families(F;). By Lemma 2.5, we get that these families are dlswise
t-cross-intersecting. Now, we can apply Lemimd 2.6 with themyi;’s to conclude that there must exisj a
such that for all set$” € S(F;), there exists ang such thalFF N [t + rp]| > (1 — g;)(t +rp).

Now, we can use Lemnfa 2.9 to conclude thati# large enought(= 2 (5 (log 2 + log (1 + 53> ))) suf-
fices), thenS(F;) must have measure at mesinder the measure, . s, but this along with Observation
2.4 implies thap; 4, 5(F;) < e. |

3 Multi-Layered PCP

In this section we describe the Multi-Layered PCP constdiat [€] and its useful properties. An instance
o of the Multi-Layered PCP is parametrized by integérs? > 1. The PCP consists dif sets of variables
Xi,...,Xr. The label set (or range) of the variables in theset X; is a setRx, where|Rx,| = RO,
For any two integers <! < !’ < L, the PCP has a set of constraifits; in which each constraint depends
on one variabler € X; and one variable’ € X;,. The constraint (if it exists) betweenc X; andz’ € X

(I < I')is denoted and characterized by a projectign,,» : Ry, — Rx,. A labeling tox andz’ satisfies
the constraintr, ., if the projection (viar,_,,) of the label assigned tocoincides with the label assigned
tox’.

The following useful ‘weak-density’ property of the Multiayered PCP was defined in [8].

Definition 3.1 An instanced of the Multi-Layered PCP witll layers isweakly-densef for any 6 > 0,
givenm > (%1 layersi; <l < --- < I, and given any setS; C X, , fori € [m] such thatS;| > 6|X,|;
there always exist two layefs and/;» such that the constraints between the variables in the $etsnd
Sy is at Ieast% fraction of the constraints between the s&s and X;,,.

The following inapproximability of the Multi-Layered PCPas proven by Dinur et all_[8] based on the PCP
Theorem ([4],[8]) and Raz’s Parallel Repetition Theore6]].

Theorem 3.2 There exists a universal constant> 0 such that for any parameteis > 1 and R, there is
a weakly-densé.-layered PCPP = U®; ;» such that it is NP-hard to distinguish between the following
cases:

e YES Case:There exists an assignment of labels to the variablek thiat satisfies all the constraints.

e NO Case:For everyl <[ <!’ < L, not more thatl /R” fraction of the constraints i®; » can be
satisfied by any assignment.



4 Hardness Reduction forHYPVC-PARTITE

4.1 Construction of the Hypergraph

Fix ak > 3, an arbitrarily small parameter> 0 and letr = [10e~2]. We shall construct & + 1)-uniform
(k+1)-partite hypergraph as an instancg bf- 1)-HYPVC-PARTITE. Our construction will be a reduction
from an instanceb of the Multi-Layered PCP with number of layefs = 32e=2 and parameteR which
shall be chosen later to be large enough. It involves crgafiom each variable of the PCP, several copies of
the Long Code endowed with different biased measures aaiargl below.

Over any domairl’, a Long CodeH is a collection of all subsets &f, i.e. H = 27. A biasp € [0,1]
defines a measure, on 7 such thatu,(v) = pl’l(1 — p)I"\*| for anyv € H. In our construction we
need several different biased measures defined as follawsll = 1,...,r, defineg; := f—i and biases
pj := 1—q; —¢. Eachp; defines a biased measurg, over a Long Code over any domain. Next, we define
the vertices of the hypergraph.

Vertices. We shall denote the set of vertices by Consider a variable: in the layerX; of the PCP.
Fori € [k + 1] andj € [r], let Hj; be a Long Code on the domaifly, endowed with the biag,,,

ie. 1y, (v) = pilUl(1 — py)l A for all v € HE = 2% The set of vertices corresponding dois
Vl]z] :== Ufjll U§:1 H;;. We define the weights on vertices to be proportional to &sdil measure in the
corresponding Long Code. Formally, for amy H,

Hp; (v)
V)= Ty ?

The above conveniently ensures that for amy[L], >, x, wt(V[z]) = 1/L, and} ;1) 2o x, Wt(V[z]) =
1. In addition to the vertices for each variable of the PCPjnistance also contairis+ 1 dummyvertices
dy,...,dr+1 each with a very large weight given byt(d;) := 2 for i € [k + 1]. Clearly, this ensures
that the total weight of all the vertices in the hypergrapB(i + 1) + 1. As we shall see later, the edges
shall be defined in such a way that along with these weightddvensure that the maximum sized inde-
pendent set shall contain all the dummy vertices. Beforenthgfithe edges we define tiie + 1) partition
(Vi,...,Vky1) of V to be:

L r
Vi = (U U UHJ) U {di}, 2)
I=1zeX; j=1

foralli =1,...,k+ 1. We now define the hyperedges of the instance. In the reseadttion, the vertices
shall be thought of as subsets of their respective domains.

Hyperedges. For every pair of variables andy of the PCP such that there is a constraint,,, we
construct edges as follows.
(1.) Consider all permutations: [k+ 1] — [k+ 1] and sequenc€g, . . ., jk, jk+1) such thatjy, ..., ji €
[r] U {0} andji.+1 € [r] such that:Zf:1 L0y @ > 1.
(2.) Add all possible hyperedgessuch that for ali € [£]:

(2.a) If j; # 0 thene N Va(i) =1 Ug(3;) € ,Hg(z) i and,

(2.b) If j; = 0thenen Va(i) = do(i) and,

(2.c)en Vg(k+1) =l Ug(k+1) € Hg(k+1),jk+1'



which satisfy,

Tz—y ﬂ Vo(i) | M Ue(k+1) = 0. 3)
i i€ (k]
Ji#0
Let us denote the hypergraph constructed abovéfy). From the construction it is clear th&(®) is
(k + 1)-partite with partitionV’ = U411V
Note that the edges are defined in such a way that thddset. ., d,.1} is an independent set in the
hypergraph. Moreover, since the weight of each dummy veftéx 2, while total weight of all except the
dummy vertices id, this implies that any maximum independent Betontains all the dummy vertices.
Thus, V' \ Z is a minimum vertex cover that does not contain any dummyiogsrt For convenience, the
analysis of our reduction, presented in the rest of thisi@gcshall focus on the weight afZ N V) \

(i, der}

4.2 Completeness

In the completeness case, the instadces a YES instance i.e. there is a labelidgwhich maps each
variablez in layer X; to an assignment iy, for all [ = 1,..., L, such that all the constraints &f are
satisfied.

Consider the set of vertic&ds® which satisfies the following properties:
Q) d; ez foralli =1,...,k+ 1.
(2 Foralll e [L],z € Xj,i € [k+1],57 €r],

T"NH ={veHt: Alr) € v} 4)

Supposer andy are two variables i with a constraintr,_,, between them. Consider anyc Z* NV [z]
andu € Z* N V]y]. The above construction &* along with the fact that the labeling satisfies the
constraintr,_,, implies thatA(z) € v andA(y) € v andA(y) € my—y(v) Nu. Therefore, Equation [3)
of the construction is not satisfied by the verticeginand saZ* is an independent set in the hypergraph.
By Equation[(#), the fraction of the weight of the Long Cdd% which lies inZ* is p;, for any variabler,

i € [k + 1] andj € [r]. Therefore,

wt(Z* N V 1
= "= 1—=(14+>) - 5
cr §:pg (1+3)-- ®)
by our setting ofp; in Sectior 4.1L. The above yields that
. 1 1 1

for a small enough value &f > 0 and our setting of the parameter

4.3 Soundness

For the soundness analysis we have that a NO instance as given in Theorém|3.2 and we wish to prove
that the size of the maximum independent s&¥{i®) is appropriately small. For a contradiction, we assume
that there is a maximum independentBéh G (&) such that,

k

Wt(Im(V\{dl,,dk+1}))21—m+5 (7)



Define the set of variableX’ to be as follows:

, _ _ wt(Z NV ][z]) k €
= — > - 4 —
X {w a variable in® wi(Via]) = 1 20k +1) + 5 (8)
An averaging argument shows that(U,cx/V[z]) > /2. A further averaging implies that there are
L = g layers of® such that; fraction of the variables in each of these layers belong'to Applying

the Weak Density property ¢b given by Definition 3.l and Theorelm B.2 yields two layéfs and X~
(" < 1"y such thatg—f1 fraction of the constraints between them are between \agab X’. The rest of the
analysis shall focus on these two layers and for conveniercshall denoteX’ N X by X and X’ N X~
by Y, and denote the respective label setdy and Ry .

Consider any variable € X. Foranyi € [k+1],j € [r], calla Long Codé<{; significantif x,,, (ZNH{;) >
5. From Equation[(8) and an averaging argument we obtain that,

1{(4,4) € [k +1] x [r] : Hf, is significant}| > <1 - ﬁ) (r(k+1)) = % + 7. (9)

Using an analogous argument we obtain a similar statememviry variabley € Y and corresponding
Long Codestj. The following structural lemma follows from the above bdun

Lemma 4.1 Consider any variable: € X. Then there exists a sequenge, . . ., jx+1) With j; € [r] U {0}
for i € [k + 1]; such that the Long Code$4} ;. | i € [k + 1] wherej; # 0}, are all significant Moreover,

k
Siiz gt (10)
=1

Proof: Foralli € [k + 1] choosej; as follows: if none of the Long Codés;; for j € [r] aresignificant
then letj; := 0, otherwise letj; := max{;j € [r] : Hj; is significant. It is easy to see that is an upper
bound on the number of significant Long Codes of the fétfin. Therefore,

k+1
Zji > |{(i,5) € [k + 1] x [r] : H}; is significant}| > % +r (From Equation[{9))  (11)
=1

which proves the lemma. [ |

Next we define the decoding procedure to define a label for meygariabler € X.

4.3.1 Labeling for variable x € X

The labelA(x) for each variable: € X is chosen independently via the following three step (ramded)
procedure.

Step 1. Choose a sequer(ge, . . ., jr+1) yielded by Lemma4]1 applied ta

Step 2. Choose an elemeptuniformly at random fromk + 1].

Before describing the third step of the procedure we reghidollowing lemma.

Lemma 4.2 There exist vertices; € Z NH{, foreveryi : i € [k + 1]\ {io},j; # 0, and an integer
t := t(e) satisfying:

N wl<t (12)
irie[k+1)\{io},
Ji#0



Proof: Sincej;, < ritis easy to see,

. rk
| Z"m?:\' Z' g, > 1. (13)
i€[k-+1]\{io} i€ k+1)\{io},
Ji7#0

Moreover, since the sequengg, . . ., jx+1) Was obtained by Lemnia4.1 applieditove know that,, (ZN
Hi;) > 5, Vi i€ [k+ 1]\ {io},si: # 0. Combining this with Equatiorf (13) and Leminal2.8 we obtain
that for some integerr:= ¢(¢) the collection of set familie§#; : i € [k + 1]\ {io},ji # 0} is notk’-wise
t-cross-intersecting, wheié = |{i € [k + 1] \ {io} : ji # 0}|. This proves the lemma. []

The third step of the labeling procedure is as follows:
Step 3. Apply Lemma 412 to obtain the the vertiegss Z N Hj; for everyi : i € [k + 1]\ {io},ji # 0
satisfying Equation(12). DefinB(z) as,

B(z)= (] o (14)
iie[k+1]\{io},
Ji#0

noting that| B(x)| < t. Assign a random label frorB(x) to the variabler and call the assigned labé(x).

4.3.2 Labeling for variabley € Y

After labeling the variables € X via the procedure above, we construct a labelirig) for any variable
y € Y by defining,

A(y) == argmaxcg, [{z € XON(y) | a € mouy(B(2))}], (15)

whereN (y) is the set of all variables that have a constraint witiThe above process selects a labelifor
which lies in maximum number of projections Bf(z) for variablesr € X which have a constraint witf.

The rest of this section is devoted to lower bounding the remub constraints satisfied by the labeling
process, and thus obtain a contradiction to the fact®hiata NO instance.

4.3.3 Lower bounding the number of satisfied constraints

Fix a variabley € Y. LetU(y) := X N N(y), i.e. the variables inX which have a constraint wit.
Further, define the sdt(y) C [k + 1] as follows,

P(y) ={i€[k+1] | 3j € [r] such thap,, (ZNH;) >¢e/2}. (16)

In other words,P(y) is the set of all those indices [& + 1] such that there is significantLong Code cor-
responding to each of them. Applying Equatibh (9)tee obtain that there at Iea%(lk;—?) significantLong

Codes corresponding tg and thereforeP(y)| > % > 1. Next we define subsets 6f(y) depending on
the outcome of Step 2 in the labeling procedure for variablesU (y). Fori € [k + 1] define,

U(i,y) :={x € U(y) | i was chosen in Step 2 of the labeling procedurerfor (a7)
and,
Uy) = J Uty (18)
1€P(y)

10



Note that{U (i, y) }icr+1 IS @ partition ofU (y). Also, since|P(y)| > k1 and the labeling procedure for
each variable: chooses the index in Step 2 uniformly and independentlyrataia we have,

B0 () > ZW

where the expectation is over the random choice of the isdité&tep 2 of the labeling procedure for all
x € U(y). Before continuing we need the following simple lemma (gawas Claim 5.4 i [8]).

(19)

Lemma4.3 Let Aq,..., Ay be a collection ofN sets, each of size at mdst> 1. If there are not more
than D pairwise disjoint sets in the collection, then there is agneént that is contained in at Iea% sets.

Now consider any’ € P(y) such that/(',y) # 0 and a variable: € U(i',y). Sincei’ € P(y) there is a
significantLong Code?ii/,j, for somej’ € [r]. Furthermore, sincé is an independent set there cannot be a
weINHY - such thatr, . (B(z)) Nu = (), otherwise the following set df + 1 vertices,

{vi i€ [k+1\{i"} i #0YU{di | i€ [k+1]\{i'},ji = 0} U {u}

form an edge irZ, wherev;, j; (i € [k + 1]) are as constructed in the labeling procedurexfor

Consider the collection of sets,_,,(B(z)) for all z € U(7,y). Clearly each set is of size less thar_et

D be the maximum number of disjoint sets in this collectioncttdisjoint set independently reduces the
measure of N'Hy, ., by a factor of(1 — (1—pj)*). However, sinceu, ,(ZNH}, ) is atleasg, this implies
that D is at mostog(5)/log(1 — (2/rk)!), sincep;s < 1 — 2. Moreover, since andr depends only os,
the upper bound o® also depends only an

Therefore by Lemm@a4.3, there is an elemem Ry such that € m,_,,(B(z)) for at least; fraction of
x € U(i',y). Noting that this bound is independentjofand that{U (i', y) } ¢ p(y) is @ partition ofU*(y),
we obtain that there is an element& Ry such that € m,_,,(B(x)) for Wth fraction ofz € U*(y).
Therefore, in Step 3 of the labeling procedure when a latial) is chosen uniformly at random from

B(x), in exceptiona = m,_,,((A(z)) for m fraction ofz € U*(y). Combining this with Equation
(I9) gives us that there is a labeling to the variableXimndY which satisfiesm fraction of the
constraints between variablesiandY which is in turn at Ieasg% fraction of the constraints between the
layers X; and X;». SinceD andt¢ depend only o, choosing the parametét of ¢ to be large enough we
obtain a contradiction to our supposition on the lower boondhe size of the independent set. Therefore
in the Soundness case, any for any independeri,set

k

Wt(Im(V\{dl,,dk+1})) < 1-— m"‘f

Combining the above with Equatiol] (6) of the analysis in tleenpleteness case yields a facg%fi—l) -4
(for anyd > 0) hardness for approximating + 1)-HYPVC-PARTITE .
Thus, we obtain a factdgf -1+ ﬁ — ¢ hardness for approximatingHyPVC-PARTITE.
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A LP Integrality Gap for k-HYPVC-PARTITE

This section describes thﬂp— o(1) integrality gap construction of Aharoei al. [1] for the standard LP
relaxation fork-HYPVC-PARTITE. The hypergraph that is constructed is unweighted.

Letr be a (large) positive integer. The vertex gebf the hypergraph is partitioned into subsgts. . ., Vj
where, foralki = 1,...  k,

Vi={xy | g=1,...,7}U{ya | L=1,...,7k+ 1} (20)
Before we define the hyperedges, for convenience we shaliedtéfe LP solution. The LP values of the
vertices are as given by the functibn V'~ [0, 1] as follows: foralli = 1,. ..k,
2j .
h(xzi;) = —, Vi=1,...,
(i) oy J r

h(ya) =0, Vi=1,...,7k+ 1.

The set of hyperedges is naturally defined to be the set ofoaliple hyperedges, choosing exactly one
vertex from eaclV; such that the sum of the LP values of the corresponding esrttcat least. Formally,

E={eCV |Vic[k], [enVi=1and ) h(v) > 1}. (21)

vee

Clearly the graph ig-uniform andk-partite with{V; } ;) being thek-partition of V.

The value of the LP solution is Y
_ 4 _
Zh(v)_kzrk—r—kl. (22)
veV jelr]

Now let V' be a minimum vertex cover in the hypergraph. To lower bourdsthe of the minimum vertex
cover, we first note that the set € V' | h(v) > 0} is a vertex cover of sizek, and thereforeV’| < rk.

Also, for anyi € [k] the vertices(y; };c[rx+1) have the same neighborhood. Therefore, we can assume that
V' has no vertey;;, otherwise it will contain at leastk + 1 such vertices.

For alli € [k] let define indiceg; € [r] U {0} as follows:

) {0 if: Vj € [r], mj; e V',
Ji =

: . (23)
max {j € [r] | z;; € V'} otherwise
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It is easy to see that sind€ is a vertex cover,
Z h('xwz) <1,
i€k]

which implies,

i€[k]

Also, the size oft”’ is lower bounded bEie[,ﬂ (r — j;). Therefore,

. ) rk  rk
|V/| = Z(T_]i) >k — Z]iZTk:—gzg.
i€ k] ic[k]

The above combined with the value of the LP solution yieldsnéegrality gap of
large enoughr.

14
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