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Abstract

We study the problem of computing the minimum vertex cover onk-uniformk-partite hypergraphs
when thek-partition is given. On bipartite graphs (k = 2), the minimum vertex cover can be computed in
polynomial time. For generalk, the problem was studied by Lovász [23], who gave ak

2
-approximation

based on the standard LP relaxation. Subsequent work by Aharoni, Holzman and Krivelevich [1] showed
a tight integrality gap of

(

k

2
− o(1)

)

for the LP relaxation. While this problem was known to be NP-hard
for k ≥ 3, the first non-trivial NP-hardness of approximation factorof k

4
− ε was shown in a recent work

by Guruswami and Saket [13]. They also showed that assuming Khot’s Unique Games Conjecture yields
a k

2
− ε inapproximability for this problem, implying the optimality of Lovász’s result.
In this work, we show that this problem is NP-hard to approximate within k

2
− 1 + 1

2k
− ε. This

hardness factor is off from the optimal by an additive constant of at most1 for k ≥ 4. Our reduction
relies on theMulti-Layered PCPof [8] and uses a gadget – based on biased Long Codes – adapted
from the LP integrality gap of [1]. The nature of our reduction requires the analysis of several Long
Codes with different biases, for which we prove structural properties of the so calledcross-intersecting
collections of set families – variants of which have been studied in extremal set theory.

1 Introduction

A k-uniform hypergraphG = (V,E) consists of a set of verticesV and a collection of hyperedgesE such
that each hyperedge contains exactlyk vertices. A vertex cover forG is a subset of verticesV ⊆ V such
that every hyperedgee contains at least one vertex fromV i.e. e ∩ V 6= ∅. Equivalently, a vertex cover is a
hitting set for the collection of hyperedgesE. The complement of a vertex cover is called anIndependent
Set, which is a subset of verticesI such that no hyperedgee ∈ E is contained insideI i.e. e * I.

The k-HYPVC problem is to compute the minimum vertex cover in ak-uniform hypergraphG. It is an
extremely well studied combinatorial optimization problem, especially on graphs (k = 2), and is known
to be NP-hard. Indeed, the minimum vertex cover problem on graphs was one of Karp’s original 21 NP-
complete problems [19]. On the other hand, the simple greedyalgorithm that picks a maximal collection of
disjoint hyperedges and includes all vertices in the edges in the vertex cover gives ak-approximation, which
is also obtained by the standard LP relaxation of the problem. The best algorithms known today achieve
only a marginally better approximation factor of(1− o(1))k [18, 15].

On the intractability side, there have been several results. For the casek = 2, Dinur and Safra [9] obtained an
NP-hardness of approximation factor of 1.36, improving on a7

6 − ε hardness by Håstad [14]. For generalk
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a sequence of successive works yielded improved NP-hardness factors:Ω(k1/19) by Trevisan [27];Ω(k1−ε)
by Holmerin [16];k − 3 − ε by Dinur, Guruswami and Khot [7]; and the currently bestk − 1 − ǫ due to
Dinur, Guruswami, Khot and Regev [8]. In [8], the authors build upon [7] and the work of Dinur and Safra
[9]. Moreover, assuming Khot’s Unique Games Conjecture (UGC) [20], Khot and Regev [21] showed an
essentially optimalk − ε inapproximability. This result was further strengthened in different directions by
Austrin, Khot and Safra [5] and by Bansal and Khot [6].

Vertex Cover onk-uniformk-partite Hypergraphs
In this paper we study the minimum vertex problem onk-partitek-uniform hypergraphs, when the under-
lying partition is given. We denote this problem ask-HYPVC-PARTITE. This is an interesting problem
in itself and its variants have been studied for applications related to databases such as distributed data
mining [10], schema mapping discovery [11] and optimization of finite automata [17]. On bipartite graphs
(k = 2), by Köenig’s Theorem computing the minimum vertex cover is equivalent to computing the maxi-
mum matching which can be done efficiently. For generalk, the problem was studied by Lovász who, in his
doctoral thesis [23], proved the following upper bound.

Theorem 1.1 (Lov́asz [23]) For everyk-partite k-uniform hypergraphG: VC(G)/LP(G) ≤ k/2, where
VC(G) denotes the size of the minimum vertex cover andLP(G) denotes the value of the standard LP
relaxation. This yields an efficientk/2 approximation fork-HYPVC-PARTITE.

The above upper bound was shown to be tight by Aharoni, Holzman and Krivelevich [1] who proved the
following theorem.

Theorem 1.2 (Aharoni et al.[1]) For everyk ≥ 3, there exists a family ofk-partitek-uniform hypergraphs
G such thatVC(G)/LP(G) ≥ k/2 − o(1). Thus, the integrality gap of the standard LP relaxation is
k/2− o(1).

A proof of the above theorem describing the integrality gap construction is included in Section A. The
problem was shown to be APX-hard in [17] and [11] fork = 3 which can be extended easily tok ≥ 3.
A recent work of Guruswami and Saket [13] showed the following non-trivial hardness of approximation
factor for generalk.

Theorem 1.3 (Guruswami and Saket [13])For anyǫ > 0 andk ≥ 5, k-HYPVC-PARTITE is NP-hard to
approximate within a factor ofk4 − ǫ. Assuming the UGC yields an optimal hardness factor ofk

2 − ǫ for
k ≥ 3.

Our Contribution. We show a nearly optimal NP-hardness result for approximating k-HYPVC-PARTITE.

Theorem 1.4 For anyǫ > 0 and integerk ≥ 4, it is NP-hard to approximate the minimum vertex cover on
k-partite k-uniform hypergraphs within to a factor ofk2 − 1 + 1

2k − ǫ.

Our result significantly improves on the NP-hardness factorobtained in [13] and is off by at most an additive
constant of1 from the optimal for anyk ≥ 4. The next few paragraphs give an overview of the techniques
used in this work.

Techniques. It is helpful to first briefly review the hardness reduction of[8] for k-HYPVC which begins
with the construction of a newMulti-Layered PCP. This is a two variable CSP consisting of severallayers
of variables, and constraints between the variables of eachpair of layers. The work of [8] shows that it is
NP-hard to find a labeling to the variables which satisfies a small fraction of the constraints betweenany
two layers, even if there is a labeling that satisfies all the constraints of the instance. The reduction to a
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k-uniform hypergraph (as an instance ofk-HYPVC) involves replacing each variable of the PCP with a
biased Long Code, defined in [9], where the bias depends onk.

The starting point for our hardness reduction fork-HYPVC-PARTITE is – as in [8] – the Multi-Layered PCP.
While we do not explicitly construct a standalone Long Code based gadget, our reduction can be thought of
as adapting the integrality gap construction of Aharoniet al. [1] into a Long Code based gadget in a manner
that preserves thek-uniformity andk-partiteness of the integrality gap.

Such transformations of integrality gaps into Long Code based gadgets have recently been studied in the
works of Raghavendra [25] and Kumar, Manokaran, Tulsiani and Vishnoi [22] which show this for a wide
class of CSPs and their appropriate LP and SDP integrality gaps. These Long Code based gadgets can be
combined with a Unique Games instance to yield tight UGC based hardness results, where the reduction
is analyzed via the Mossel’sInvariance Principle[24]. Indeed, fork-HYPVC-PARTITE the work of Gu-
ruswami and Saket [13] combines the integrality gap of [1] with (a slight modification) of the approach of
Kumaret al. [22] to obtain an optimal UGC based hardness result.

Our reduction, on the other hand, combines Long Codes with the Multi-Layered PCP instead of Unique
Games and so we cannot adopt a Invariance Principle based analysis. Thus, in a flavor similar to that of [8],
our analysis is via extremal combinatorics. However, ourgadgetinvolves several biased Long Codes with
different biases and each hyperedge includes vertices fromdifferent Long Codes, unlike the construction in
[8]. For our analysis, we use structural properties of across-intersectingcollection of set families. A collec-
tion of set families iscross-intersectingif any intersection of subsets – each chosen from a differentfamily
– is large. Variants of this notion have previously been studied in extremal set theory, see for example [2].
We prove an upper bound on the measure of the smallest family in such a collection. This enables a small
vertex cover (in the hypergraph of our reduction) to bedecodedinto a good labeling to the Multi-Layered
PCP.

The next section defines and analyzes the above mentioned cross-intersecting set families. Section 3 defines
the Multi-Layered PCP of Dinuret al. [8] and states their hardness for it. In Section 4 we describeour
reduction and prove Theorem 1.4.

2 Cross-Intersecting Set Families

We use the notation[n] = {1, . . . , n} and2[n] = {F | F ⊆ [n]}. We begin by defining cross-intersecting
set families:

Definition 2.1 A collection ofk familiesF1, . . . ,Fk ⊆ 2[n], is calledk-wiset-cross-intersecting if for every
choice of setsFi ∈ Fi for i = 1, . . . , k, we have|F1 ∩ . . . ∩ Fk| ≥ t.

We will work with thep-biased measure on the subsets of[n], which is defined as follows:

Definition 2.2 Given a bias parameter0 < p < 1, we define the measureµp on the subsets of[n] as:
µp(F ) := p|F | · (1− p)n−|F | . The measure of a familyF is defined asµp(F) =

∑

F∈F µp(F ).

Now, we introduce an important technique for analyzing cross-intersecting families – the shift operation
(see Def 4.1, pg. 1298 [12]). Given a familyF , define the(i, j)-shift as follows:

SF
ij (F ) =

{

(F ∪ {i}\{j}) if j ∈ F, i /∈ F and(F ∪ {i}\{j}) /∈ F
F otherwise.

Let the(i, j)-shift of a familyF beSij(F) = {SF
ij (F ) | F ∈ F}. Given a familyF ⊆ 2[n], we repeatedly

apply(i, j)-shift for 1 ≤ i < j ≤ n toF until we obtain a family that is invariant under these shifts. Such a
family is called aleft-shifted familyand we will denote it byS(F).
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The following observations about left-shifted families follow from the definition.

Observation 2.3 LetF ⊆ 2[n] be a left-shifted family. ConsiderF ∈ F such thati /∈ F andj ∈ F where
i < j. Then,(F ∪ {i}\{j}) must be inF .

Observation 2.4 GivenF ⊆ 2[n], there is a bijection between the sets inF andS(F) that preserves the size
of the set. Thus, for any fixedp, the measures ofF andS(F) are the same underµp i.e.µp(F) = µp(S(F)).

The following lemma shows that the cross-intersecting property is preserved under left-shifting.

Lemma 2.5 Consider familiesF1, . . . ,Fk ⊆ 2[n] that arek-wiset-cross-intersecting. Then, the families
S(F1), . . . , S(Fk) are alsok-wiset-cross-intersecting.

Proof: Given the assumption, we will prove thatSij(F1), . . . , Sij(Fk) arek-wise t-cross-intersecting. A
simple induction would then imply the statement of the lemma.

Consider arbitrary setsFi ∈ Fi. By our assumption,|F1∩ . . .∩Fk| ≥ t. It suffices to prove that|SF1

ij (F1)∩

. . . ∩ SFk

ij (Fk)| ≥ t. If j /∈ F1 ∩ . . . ∩ Fk, the claim is true since the only element being deleted isj. Thus,

for all l ∈ [k], j ∈ Fk. If for all l ∈ [k], SFl

ij (Fl) = Fl, the claim is trivial. Thus, let us assume wlog that

SF1

ij (F1) 6= F1. Thus,i /∈ F1 and hencei /∈ F1 ∩ . . . ∩ Fk. Now, if i ∈ SF1

ij (F1) ∩ . . . ∩ SFk

ij (Fk), we get

that j is replaced byi in the intersection and we are done. Thus, we can assume wlog that i /∈ SF2

ij (F2).
This implies thati /∈ F2 andF2 ∪{i}\{j} ∈ F2. Now considerF1 ∩ (F2 ∪{i}\{j})∩F3 ∩ . . .∩Fk. Since
we are picking one set from eachFi, it must have at leastt elements, but this intersection does not contain
j and hence it is a subset ofSF1

ij (F1) ∩ . . . ∩ SFk

ij (Fk), implying that|SF1

ij (F1) ∩ . . . ∩ SFk

ij (Fk)| ≥ t.

Next, we prove a key structural lemma about cross-intersecting families which states that for at least one of
the families, all of its subsets have a dense prefix.

Lemma 2.6 Let q1, . . . , qk ∈ (0, 1) bek numbers such that
∑

i qi ≥ 1 and letF1, . . . ,Fk ⊆ 2[n] be left-
shifted families that arek-wiset-cross-intersecting for somet ≥ 1. Then, there exists aj ∈ [k] such that for
all setsF ∈ Fj , there exists a positive integerrF ≤ n− t such that|F ∩ [t+ rF ]| > (1− qi)(t+ rF ).

Proof: Let us assume to the contrary that for everyi ∈ [k], there exists a setFi ∈ Fi such that for all
r ≥ 0, |Fi ∩ [t + r]| ≤ (1 − qi)(t + r). The following combinatorial argument shows that the familiesFi

cannot bek-wiset-cross-intersecting.

Let us construct an arrangement of balls and bins where each ball is colored with one ofk colors. Createn
bins labeled1, . . . , n. For eachi and for everyx ∈ [n]\Fi, we place a ball with colori in the bin labeledx.
Note that a bin can have several balls, but they must have distinct colors. Given such an arrangement, we
can recover the sets it represents by definingF c

i to be the set of bins that contain a ball with colori.

Our initial assumption implies that|F c
i ∩ [t+ r]| ≥ qi(t+ r). Thus, there are at least⌈ qi(t+ r) ⌉ balls with

color i in bins labeled1, . . . , t+ r. The total number of balls in bins labeled1, . . . , t+ r is,

k
∑

i=1

|F c
i ∩ [t+ r]| ≥

k
∑

i=1

⌈ qi(t+ r) ⌉ ≥
k

∑

i=1

qi(t+ r) ≥ (t+ r) ≥ r + 1,

where the last two inequalities follow using
∑

i qi ≥ 1 andt ≥ 1.

Next, we describe a procedure to manipulate the above arrangement of balls.
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for r := 0 ton− t
if bin t+ r is empty
then if a bin labeled from1 to t− 1 contains a ballthen move it to bint+ r

else ifa bin labeled fromt to t+ r − 1 contains two ballsthen move one of them to bint+ r
elseoutput “error”

We need the following lemma.

Lemma 2.7 The above procedure satisfies the following properties:
1. The procedure never outputserror.
2. At every step, any two balls in the same bin have different colors.
3. At stepr, defineG(r)

i to be the set of labels of the bins that do not contain a ball of color i. Then, for all

i ∈ [k], G(r)
i ∈ Fi.

4. After stepr, the binst to t+ r have at least one ball each.

Proof: 1. If it outputs error at stepr, there must be at mostr − 1 balls in bins1 to t+ r. This is false at
r = 0. Moreover, at stepr′ < r, we could have moved a ball only to a bin labeled in[t, t+ r]. Thus, we get
a contradiction.
2. Note that this is true atr = 0 and a ball is only moved to an empty bin, which proves the claim.
3. Whenever we move a ball from bini to j, we havei < j. SinceFi are left-shifted, by repeated application
of Observation 2.3, we get that at stepr, G(r)

i ∈ Fi.
4. Since the procedure never outputs error, at stepr, if the bin t+ r is empty, the procedure places a ball in
it while not emptying any bin labeled between[t, t+ r − 1]. This proves the claim.

The above lemma implies that at the end of the procedure (after r = n− t), there is a ball in each of the bins
labeled from[t, n]. Thus, the setsGi = G

(n−t)
i satisfy∩iGi ⊆ [t− 1] and hence| ∩i Gi| ≤ t− 1. Also, we

know thatGi ∈ Fi. Thus, the familiesFi cannot bek-wise t-cross-intersecting. This completes the proof
of Lemma 2.6.

The above lemma, along with a Chernoff bound argument, showsthat: Given a collection ofk-wiset-cross-
intersecting families, one of them must have a small measureunder an appropriately chosen bias.

Lemma 2.8 For arbitrary ǫ, δ > 0, there exists somet = O
(

1
δ2

(

log 1
ǫ + log

(

1 + 1
2δ2

)))

such that the
following holds: Givenk numbers0 < qi < 1 such that

∑

i qi ≥ 1 andk families,F1, . . . ,Fk ⊆ 2[n], that
arek-wiset-cross-intersecting, there exists aj such thatµ1−qi−δ(F) < ǫ.

Proof: First we prove the following lemma derived from the Chernoffbound.

Lemma 2.9 For arbitrary ǫ, δ > 0 and0 < q < 1, there exists somet = O
(

1
δ2

(

log 1
ǫ + log

(

1 + 1
2δ2

)))

such that the following holds:

Any familyF ⊆ 2[n] that satisfies that for everyF ∈ F , there exists an integerrF ≥ 0 such that|F ∩ [t+
rF ]| ≥ (1− q)(t+ rF ) must haveµ1−q−δ(F) < ǫ.

Proof: Note thatµ1−q−δ(F) is equal to the probability that for a random setF chosen according to
µ1−q−δ lies inF . Thus,µ1−q−δ(F) is bounded by the probability that for a random setF chosen according
to µ1−q−δ, there exists anrF that satisfies|F ∩ [t+ rF ]| ≥ (1− q)(t+ rF ).
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The Chernoff bound states that for a set ofm independent bernoulli random variablesXi, with Pr[Xi =
1] = 1− q − τ ,

Pr

[

m
∑

i=1

Xi ≥ (1 − q)m

]

≤ e−2mτ2

Thus, we get that for anyr ≥ 0, Pr[|F ∩ [t+ r]| ≥ (1 − q)(t + r)] ≤ e−2(t+r)δ2 . Summing over allr, we
get that,

µ1−q−δ(F) ≤
∑

r≥0

e−2(t+r)δ2 ≤
e−2tδ2

1− e−2δ2
≤ e−2tδ2

(

1 +
1

2δ2

)

.

Thus, fort = Ω
(

1
δ2

(

log 1
ǫ + log

(

1 + 1
2δ2

)))

, µ1−q−δ(F) will be smaller thanǫ.

We now continue with the proof of Lemma 2.8. Ourt will be dictated by Lemma 2.9 and will be decided
later. Consider the left-shifted familiesS(Fi). By Lemma 2.5, we get that these families are alsok-wise
t-cross-intersecting. Now, we can apply Lemma 2.6 with the givenqi’s to conclude that there must exist aj
such that for all setsF ∈ S(Fj), there exists anrF such that|F ∩ [t+ rF ]| > (1− qj)(t+ rF ).

Now, we can use Lemma 2.9 to conclude that ift is large enough (t = Ω
(

1
δ2

(

log 1
ǫ + log

(

1 + 1
2δ2

)))

suf-
fices), thenS(Fj) must have measure at mostǫ under the measureµ1−qj−δ, but this along with Observation
2.4 implies thatµ1−qj−δ(Fj) < ǫ.

3 Multi-Layered PCP

In this section we describe the Multi-Layered PCP constructed in [8] and its useful properties. An instance
Φ of the Multi-Layered PCP is parametrized by integersL,R > 1. The PCP consists ofL sets of variables
X1, . . . ,XL. The label set (or range) of the variables in thelth setXl is a setRXl

where|RXl
| = RO(L).

For any two integers1 ≤ l < l′ ≤ L, the PCP has a set of constraintsΦl,l′ in which each constraint depends
on one variablex ∈ Xl and one variablex′ ∈ Xl′ . The constraint (if it exists) betweenx ∈ Xl andx′ ∈ Xl′

(l < l′) is denoted and characterized by a projectionπx→x′ : RXl
7→ RXl′

. A labeling tox andx′ satisfies
the constraintπx→x′ if the projection (viaπx→x′) of the label assigned tox coincides with the label assigned
to x′.

The following useful ‘weak-density’ property of the Multi-Layered PCP was defined in [8].

Definition 3.1 An instanceΦ of the Multi-Layered PCP withL layers isweakly-denseif for any δ > 0,
givenm ≥ ⌈2δ ⌉ layersl1 < l2 < · · · < lm and given any setsSi ⊆ Xli , for i ∈ [m] such that|Si| ≥ δ|Xli |;
there always exist two layersli′ and li′′ such that the constraints between the variables in the setsSi′ and
Si′′ is at leastδ

2

4 fraction of the constraints between the setsXli′
andXll′′

.

The following inapproximability of the Multi-Layered PCP was proven by Dinur et al. [8] based on the PCP
Theorem ([4], [3]) and Raz’s Parallel Repetition Theorem ([26]).

Theorem 3.2 There exists a universal constantγ > 0 such that for any parametersL > 1 andR, there is
a weakly-denseL-layered PCPΦ = ∪Φl,l′ such that it is NP-hard to distinguish between the followingtwo
cases:

• YES Case:There exists an assignment of labels to the variables ofΦ that satisfies all the constraints.

• NO Case:For every1 ≤ l < l′ ≤ L, not more that1/Rγ fraction of the constraints inΦl,l′ can be
satisfied by any assignment.
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4 Hardness Reduction forHYPVC-PARTITE

4.1 Construction of the Hypergraph

Fix ak ≥ 3, an arbitrarily small parameterε > 0 and letr = ⌈10ε−2⌉. We shall construct a(k+1)-uniform
(k+1)-partite hypergraph as an instance of(k+1)-HYPVC-PARTITE. Our construction will be a reduction
from an instanceΦ of the Multi-Layered PCP with number of layersL = 32ε−2 and parameterR which
shall be chosen later to be large enough. It involves creating, for each variable of the PCP, several copies of
the Long Code endowed with different biased measures as explained below.

Over any domainT , a Long CodeH is a collection of all subsets ofT , i.e. H = 2T . A biasp ∈ [0, 1]
defines a measureµp on H such thatµp(v) = p|v|(1 − p)|T\v| for any v ∈ H. In our construction we
need several different biased measures defined as follows. For all j = 1, . . . , r, defineqj :=

2j
rk , and biases

pj := 1− qj − ε. Eachpj defines a biased measureµpj over a Long Code over any domain. Next, we define
the vertices of the hypergraph.

Vertices. We shall denote the set of vertices byV . Consider a variablex in the layerXl of the PCP.
For i ∈ [k + 1] and j ∈ [r], let Hx

ij be a Long Code on the domainRXl
endowed with the biasµpj ,

i.e. µpj(v) = pj
|v|(1 − pj)

|RXl
\v| for all v ∈ Hx

ij = 2RXl . The set of vertices corresponding tox is

V [x] :=
⋃k+1

i=1

⋃r
j=1H

x
ij . We define the weights on vertices to be proportional to its biased measure in the

corresponding Long Code. Formally, for anyv ∈ Hx
ij,

wt(v) :=
µpj(v)

L|Xl|r(k + 1)
. (1)

The above conveniently ensures that for anyl ∈ [L],
∑

x∈Xl
wt(V [x]) = 1/L, and

∑

l∈[L]

∑

x∈Xl
wt(V [x]) =

1. In addition to the vertices for each variable of the PCP, theinstance also containsk + 1 dummyvertices
d1, . . . , dk+1 each with a very large weight given bywt(di) := 2 for i ∈ [k + 1]. Clearly, this ensures
that the total weight of all the vertices in the hypergraph is2(k + 1) + 1. As we shall see later, the edges
shall be defined in such a way that along with these weights would ensure that the maximum sized inde-
pendent set shall contain all the dummy vertices. Before defining the edges we define the(k + 1) partition
(V1, . . . , Vk+1) of V to be:

Vi =





L
⋃

l=1

⋃

x∈Xl

r
⋃

j=1

Hx
ij



 ∪ {di}, (2)

for all i = 1, . . . , k+1. We now define the hyperedges of the instance. In the rest of the section, the vertices
shall be thought of as subsets of their respective domains.

Hyperedges. For every pair of variablesx and y of the PCP such that there is a constraintπx→y, we
construct edges as follows.

(1.) Consider all permutationsσ : [k+1] 7→ [k+1] and sequences(j1, . . . , jk, jk+1) such that,j1, . . . , jk ∈
[r] ∪ {0} andjk+1 ∈ [r] such that:

∑k
i=1 1{ji 6=0} qji ≥ 1.

(2.) Add all possible hyperedgese such that for alli ∈ [k]:

(2.a) If ji 6= 0 thene ∩ Vσ(i) =: vσ(i) ∈ Hx
σ(i),ji

, and,

(2.b) If ji = 0 thene ∩ Vσ(i) = dσ(i) and,

(2.c)e ∩ Vσ(k+1) =: uσ(k+1) ∈ Hy
σ(k+1),jk+1

,
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which satisfy,

πx→y









⋂

i: i∈[k]
ji 6=0

vσ(i)









∩ uσ(k+1) = ∅. (3)

Let us denote the hypergraph constructed above byG(Φ). From the construction it is clear theG(Φ) is
(k + 1)-partite with partitionV = ∪i∈[k+1]Vi.

Note that the edges are defined in such a way that the set{d1, . . . , dk+1} is an independent set in the
hypergraph. Moreover, since the weight of each dummy vertexdi is 2, while total weight of all except the
dummy vertices is1, this implies that any maximum independent setI contains all the dummy vertices.
Thus,V \ I is a minimum vertex cover that does not contain any dummy vertices. For convenience, the
analysis of our reduction, presented in the rest of this section, shall focus on the weight of(I ∩ V ) \
{d1, . . . , dk+1}.

4.2 Completeness

In the completeness case, the instanceΦ is a YES instance i.e. there is a labelingA which maps each
variablex in layerXl to an assignment inRXl

for all l = 1, . . . , L, such that all the constraints ofΦ are
satisfied.

Consider the set of verticesI∗ which satisfies the following properties:
(1) di ∈ I∗ for all i = 1, . . . , k + 1.
(2) For all l ∈ [L], x ∈ Xl, i ∈ [k + 1], j ∈ [r],

I∗ ∩Hx
ij = {v ∈ Hx

ij : A(x) ∈ v}. (4)

Supposex andy are two variables inΦ with a constraintπx→y between them. Consider anyv ∈ I∗ ∩ V [x]
andu ∈ I∗ ∩ V [y]. The above construction ofI∗ along with the fact that the labelingA satisfies the
constraintπx→y implies thatA(x) ∈ v andA(y) ∈ u andA(y) ∈ πx→y(v) ∩ u. Therefore, Equation (3)
of the construction is not satisfied by the vertices inI∗, and soI∗ is an independent set in the hypergraph.
By Equation (4), the fraction of the weight of the Long CodeHx

ij which lies inI∗ is pj , for any variablex,
i ∈ [k + 1] andj ∈ [r]. Therefore,

wt(I∗ ∩ V [x])

wt(V [x])
=

1

r

r
∑

j=1

pj = 1−
1

k

(

1 +
1

r

)

− ε, (5)

by our setting ofpj in Section 4.1. The above yields that

wt (I∗ ∩ (V \ {d1, . . . , dk+1})) = 1−
1

k

(

1 +
1

r

)

− ε ≥ 1−
1

k
− 2ε, (6)

for a small enough value ofε > 0 and our setting of the parameterr.

4.3 Soundness

For the soundness analysis we have thatΦ is a NO instance as given in Theorem 3.2 and we wish to prove
that the size of the maximum independent set inG(Φ) is appropriately small. For a contradiction, we assume
that there is a maximum independent setI in G(Φ) such that,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≥ 1−
k

2(k + 1)
+ ε. (7)
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Define the set of variablesX ′ to be as follows:

X ′ :=

{

x a variable inΦ :
wt(I ∩ V [x])

wt(V [x])
≥ 1−

k

2(k + 1)
+

ε

2

}

. (8)

An averaging argument shows thatwt(∪x∈X′V [x]) ≥ ε/2. A further averaging implies that there are
ε
4L = 8

ε layers ofΦ such thatε4 fraction of the variables in each of these layers belong toX ′. Applying
the Weak Density property ofΦ given by Definition 3.1 and Theorem 3.2 yields two layersXl′ andXl′′

(l′ < l′′) such thatε
2

64 fraction of the constraints between them are between variables inX ′. The rest of the
analysis shall focus on these two layers and for conveniencewe shall denoteX ′ ∩Xl′ by X andX ′ ∩Xl′′

by Y , and denote the respective label sets byRX andRY .

Consider any variablex ∈ X. For anyi ∈ [k+1], j ∈ [r], call a Long CodeHx
ij significantif µpj(I∩H

x
ij) ≥

ε
2 . From Equation (8) and an averaging argument we obtain that,

∣

∣{(i, j) ∈ [k + 1]× [r] : Hx
ij is significant.}

∣

∣ ≥

(

1−
k

2(k + 1)

)

(r(k + 1)) =
rk

2
+ r. (9)

Using an analogous argument we obtain a similar statement for every variabley ∈ Y and corresponding
Long CodesHy

ij. The following structural lemma follows from the above bound.

Lemma 4.1 Consider any variablex ∈ X. Then there exists a sequence(j1, . . . , jk+1) with ji ∈ [r] ∪ {0}
for i ∈ [k + 1]; such that the Long Codes{Hx

i,ji
| i ∈ [k + 1] whereji 6= 0}, are all significant. Moreover,

k+1
∑

i=1

ji ≥
rk

2
+ r . (10)

Proof: For all i ∈ [k + 1] chooseji as follows: if none of the Long CodesHx
ij for j ∈ [r] aresignificant

then letji := 0, otherwise letji := max{j ∈ [r] : Hx
ij is significant}. It is easy to see thatji is an upper

bound on the number of significant Long Codes of the formHx
ij . Therefore,

k+1
∑

i=1

ji ≥
∣

∣{(i, j) ∈ [k + 1]× [r] : Hx
ij is significant.}

∣

∣ ≥
rk

2
+ r (From Equation (9)) (11)

which proves the lemma.

Next we define the decoding procedure to define a label for any given variablex ∈ X.

4.3.1 Labeling for variablex ∈ X

The labelA(x) for each variablex ∈ X is chosen independently via the following three step (randomized)
procedure.

Step 1. Choose a sequence(j1, . . . , jk+1) yielded by Lemma 4.1 applied tox.

Step 2. Choose an elementi0 uniformly at random from[k + 1].

Before describing the third step of the procedure we requirethe following lemma.

Lemma 4.2 There exist verticesvi ∈ I ∩ Hx
iji

for everyi : i ∈ [k + 1] \ {i0}, ji 6= 0, and an integer
t := t(ε) satisfying:

∣

∣

∣

∣

∣

∣

∣

∣

⋂

i:i∈[k+1]\{i0},
ji 6=0

vi

∣

∣

∣

∣

∣

∣

∣

∣

< t. (12)
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Proof: Sinceji0 ≤ r it is easy to see,

∑

i∈[k+1]\{i0}

ji ≥
rk

2
⇒

∑

i:i∈[k+1]\{i0},
ji 6=0

qji ≥ 1. (13)

Moreover, since the sequence(j1, . . . , jk+1) was obtained by Lemma 4.1 applied tox, we know thatµpji
(I∩

Hx
iji
) ≥ ε

2 , ∀i : i ∈ [k + 1] \ {i0}, ji 6= 0. Combining this with Equation (13) and Lemma 2.8 we obtain
that for some integert := t(ε) the collection of set families{Hx

iji
: i ∈ [k+1] \ {i0}, ji 6= 0} is notk′-wise

t-cross-intersecting, wherek′ = |{i ∈ [k + 1] \ {i0} : ji 6= 0}|. This proves the lemma.

The third step of the labeling procedure is as follows:

Step 3. Apply Lemma 4.2 to obtain the the verticesvi ∈ I ∩ Hx
iji

for everyi : i ∈ [k + 1] \ {i0}, ji 6= 0
satisfying Equation (12). DefineB(x) as,

B(x) :=
⋂

i:i∈[k+1]\{i0},
ji 6=0

vi, (14)

noting that|B(x)| < t. Assign a random label fromB(x) to the variablex and call the assigned labelA(x).

4.3.2 Labeling for variable y ∈ Y

After labeling the variablesx ∈ X via the procedure above, we construct a labelingA(y) for any variable
y ∈ Y by defining,

A(y) := argmaxa∈RY
|{x ∈ X ∩N(y) | a ∈ πx→y(B(x))}| , (15)

whereN(y) is the set of all variables that have a constraint withy. The above process selects a label fory
which lies in maximum number of projections ofB(x) for variablesx ∈ X which have a constraint withy.

The rest of this section is devoted to lower bounding the number of constraints satisfied by the labeling
process, and thus obtain a contradiction to the fact thatΦ is a NO instance.

4.3.3 Lower bounding the number of satisfied constraints

Fix a variabley ∈ Y . Let U(y) := X ∩ N(y), i.e. the variables inX which have a constraint withy.
Further, define the setP (y) ⊆ [k + 1] as follows,

P (y) = {i ∈ [k + 1] | ∃j ∈ [r] such thatµpj(I ∩ Hy
ij) ≥ ε/2}. (16)

In other words,P (y) is the set of all those indices in[k + 1] such that there is asignificantLong Code cor-
responding to each of them. Applying Equation (9) toy we obtain that there at leastr(k+2)

2 significantLong
Codes corresponding toy, and therefore|P (y)| ≥ k+1

2 ≥ 1. Next we define subsets ofU(y) depending on
the outcome of Step 2 in the labeling procedure for variablesx ∈ U(y). Fori ∈ [k + 1] define,

U(i, y) := {x ∈ U(y) | i was chosen in Step 2 of the labeling procedure forx}, (17)

and,
U∗(y) :=

⋃

i∈P (y)

U(i, y). (18)
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Note that{U(i, y)}i∈[k+1] is a partition ofU(y). Also, since|P (y)| ≥ k+1
2 and the labeling procedure for

each variablex chooses the index in Step 2 uniformly and independently at random we have,

E[|U∗(y)|] ≥
|U(y)|

2
, (19)

where the expectation is over the random choice of the indices in Step 2 of the labeling procedure for all
x ∈ U(y). Before continuing we need the following simple lemma (proved as Claim 5.4 in [8]).

Lemma 4.3 LetA1, . . . , AN be a collection ofN sets, each of size at mostT ≥ 1. If there are not more
thanD pairwise disjoint sets in the collection, then there is an element that is contained in at leastNTD sets.

Now consider anyi′ ∈ P (y) such thatU(i′, y) 6= ∅ and a variablex ∈ U(i′, y). Sincei′ ∈ P (y) there is a
significantLong CodeHy

i′j′ for somej′ ∈ [r]. Furthermore, sinceI is an independent set there cannot be a
u ∈ I ∩Hy

i′,j′ such thatπx→y(B(x)) ∩ u = ∅, otherwise the following set ofk + 1 vertices,

{vi | i ∈ [k + 1] \ {i′}, ji 6= 0} ∪ {di | i ∈ [k + 1] \ {i′}, ji = 0} ∪ {u}

form an edge inI, wherevi, ji (i ∈ [k + 1]) are as constructed in the labeling procedure forx.

Consider the collection of setsπx→y(B(x)) for all x ∈ U(i′, y). Clearly each set is of size less thant. Let
D be the maximum number of disjoint sets in this collection. Each disjoint set independently reduces the
measure ofI ∩Hy

i′,j′ by a factor of(1−(1−pj′ )
t). However, sinceµpj′ (I ∩Hy

i′,j′) is at leastε2 , this implies

thatD is at mostlog( ε2 )/ log(1− (2/rk)t), sincepj′ ≤ 1− 2
rk . Moreover, sincet andr depends only onε,

the upper bound onD also depends only onε.

Therefore by Lemma 4.3, there is an elementa ∈ RY such thata ∈ πx→y(B(x)) for at least 1
Dt fraction of

x ∈ U(i′, y). Noting that this bound is independent ofj′ and that{U(i′, y)}i′∈P (y) is a partition ofU∗(y),
we obtain that there is an elementa ∈ RY such thata ∈ πx→y(B(x)) for 1

(k+1)Dt fraction ofx ∈ U∗(y).
Therefore, in Step 3 of the labeling procedure when a labelA(x) is chosen uniformly at random from
B(x), in exception,a = πx→y((A(x)) for 1

(k+1)Dt2
fraction ofx ∈ U∗(y). Combining this with Equation

(19) gives us that there is a labeling to the variables inX andY which satisfies 1
2(k+1)Dt2

fraction of the

constraints between variables inX andY which is in turn at leastε
2

64 fraction of the constraints between the
layersXl′ andXl′′ . SinceD andt depend only onε, choosing the parameterR of Φ to be large enough we
obtain a contradiction to our supposition on the lower boundon the size of the independent set. Therefore
in the Soundness case, any for any independent setI,

wt(I ∩ (V \ {d1, . . . , dk+1})) ≤ 1−
k

2(k + 1)
+ ε.

Combining the above with Equation (6) of the analysis in the Completeness case yields a factork
2

2(k+1) − δ

(for anyδ > 0) hardness for approximating(k + 1)-HYPVC-PARTITE .

Thus, we obtain a factork2 − 1 + 1
2k − δ hardness for approximatingk-HYPVC-PARTITE.
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A LP Integrality Gap for k-HYPVC-PARTITE

This section describes thek2 − o(1) integrality gap construction of Aharoniet al. [1] for the standard LP
relaxation fork-HYPVC-PARTITE. The hypergraph that is constructed is unweighted.

Let r be a (large) positive integer. The vertex setV of the hypergraph is partitioned into subsetsV1, . . . , Vk

where, for alli = 1, . . . , k,

Vi = {xij | j = 1, . . . , r} ∪ {yil | l = 1, . . . , rk + 1}. (20)

Before we define the hyperedges, for convenience we shall define the LP solution. The LP values of the
vertices are as given by the functionh : V 7→ [0, 1] as follows: for alli = 1, . . . , k,

h(xij) =
2j

rk
, ∀j = 1, . . . , r

h(yil) = 0, ∀l = 1, . . . , rk + 1.

The set of hyperedges is naturally defined to be the set of all possible hyperedges, choosing exactly one
vertex from eachVi such that the sum of the LP values of the corresponding vertices is at least1. Formally,

E = {e ⊆ V | ∀i ∈ [k], |e ∩ Vi| = 1 and
∑

v∈e

h(v) ≥ 1}. (21)

Clearly the graph isk-uniform andk-partite with{Vi}i∈[k] being thek-partition ofV .

The value of the LP solution is
∑

v∈V

h(v) = k
∑

j∈[r]

2j

rk
= r + 1. (22)

Now letV ′ be a minimum vertex cover in the hypergraph. To lower bound the size of the minimum vertex
cover, we first note that the set{v ∈ V | h(v) > 0} is a vertex cover of sizerk, and therefore|V ′| ≤ rk.
Also, for anyi ∈ [k] the vertices{yil}l∈[rk+1] have the same neighborhood. Therefore, we can assume that
V ′ has no vertexyil, otherwise it will contain at leastrk + 1 such vertices.

For all i ∈ [k] let define indicesji ∈ [r] ∪ {0} as follows:

ji =

{

0 if: ∀j ∈ [r], xij ∈ V ′,

max {j ∈ [r] | xij 6∈ V ′} otherwise.
(23)
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It is easy to see that sinceV ′ is a vertex cover,

∑

i∈[k]

h(xiji) < 1,

which implies,
∑

i∈[k]

ji <
rk

2
.

Also, the size ofV ′ is lower bounded by
∑

i∈[k](r − ji). Therefore,

|V ′| ≥
∑

i∈[k]

(r − ji) ≥ rk −
∑

i∈[k]

ji ≥ rk −
rk

2
=

rk

2
. (24)

The above combined with the value of the LP solution yields anintegrality gap of rk
2(r+1) ≥ k

2 − o(1) for
large enoughr.
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