
ar
X

iv
:1

01
2.

31
74

v3
 [

qu
an

t-
ph

]
 2

0
Ju

n
20

11

Quantum Property Testing for Bounded-Degree Graphs

Andris Ambainis∗ Andrew M. Childs† Yi-Kai Liu‡

Abstract

We study quantum algorithms for testing bipartiteness and expansion of bounded-degree
graphs. We give quantum algorithms that solve these problems in time Õ(N1/3), beating the
Ω(

√
N) classical lower bound. For testing expansion, we also prove an Ω̃(N1/4) quantum query

lower bound, thus ruling out the possibility of an exponential quantum speedup. Our quantum
algorithms follow from a combination of classical property testing techniques due to Goldreich
and Ron, derandomization, and the quantum algorithm for element distinctness. The quan-
tum lower bound is obtained by the polynomial method, using novel algebraic techniques and
combinatorial analysis to accommodate the graph structure.

1 Introduction

In property testing, one is asked to distinguish between objects that satisfy a property P and objects
that are far from satisfying P . The goal is to design algorithms that test properties in sublinear or
even constant time, without reading the entire input—a task that is nontrivial even for properties
that can be computed in polynomial time. This is motivated by the practical question of how to
extract meaningful information from massive data sets that are too large to fit in a single computer’s
memory and can only be handled in small pieces.

Testing properties of graphs is an interesting special case.1 Many graph properties, such as
connectivity and planarity, can be tested in constant time, independent of the number of vertices
N [18, 21]. However, some graph properties are much harder to test. For bounded-degree graphs
in the adjacency-list representation, the best classical algorithms for testing bipartiteness [19] and
expansion [20, 15, 24, 28] use Õ(

√
N) queries.2 In fact, this is nearly optimal, as there are Ω(

√
N)

query lower bounds for both problems [21]. As a natural extension, we consider whether these
problems can be solved more efficiently using quantum queries.

There has been some previous work on quantum property testing. In particular, there are
examples of exponential separations between quantum and classical property testing [11], and
there are quantum algorithms for testing juntas [8], solvability of black-box groups [23], uniformity
and orthogonality of distributions [12, 13], and certain properties related to the Fourier transform
[2, 13]. However, aside from concurrent work on testing graph isomorphism [13], we are not aware
of previous work on quantum algorithms for testing properties of graphs.3

∗Faculty of Computing, University of Latvia. Email: ambainis@lu.lv
†Department of Combinatorics & Optimization and Institute for Quantum Computing, University of Waterloo.

Email: amchilds@uwaterloo.ca
‡Department of Computer Science, University of California, Berkeley. Email: yikailiu@eecs.berkeley.edu
1Here, the graph can be specified by an adjacency matrix (suitable for dense graphs) or by a collection of adjacency

lists (for bounded-degree graphs).
2We use tilde notation to suppress logarithmic factors.
3Quantum speedups are known for deciding certain graph properties, without the promise that the graph either

has the property or is far from having it [16, 25, 14]. This turns out to be a fairly different setting, and the results
there are not directly comparable to ours.

1

http://arxiv.org/abs/1012.3174v3

Here, we give quantum algorithms for testing bipartiteness and expansion of bounded-degree
graphs in time only Õ(N1/3), beating the Ω(

√
N) classical lower bounds [21]. Moreover, we prove

that any quantum algorithm for testing expansion must use Ω̃(N1/4) queries, showing that quantum
computers cannot achieve a superpolynomial speedup for this problem.

Why might quantum computers offer an advantage for testing bipartiteness and expansion?
The classical algorithms for these problems use random walks to explore the graph, so one might
hope to do better by using quantum walks, which are a powerful tool for searching graphs [31]. In
fact, our algorithms use quantum walks indirectly. The classical algorithm for testing bipartiteness
is based on checking whether a pair of short random walks form an odd-length cycle in the graph,
thereby certifying non-bipartiteness [19]. The algorithm for testing expansion looks for collisions
between the endpoints of short random walks, with a large number of collisions indicating that the
walk is not rapidly mixing [20]. In both cases, the property is tested by looking for collisions among
a set of Õ(

√
N) items. By using the quantum walk algorithm for element distinctness [7, 26] to

look for these collisions, we can solve the problem using Õ(N1/3) quantum queries. In addition, we
show that the above classical algorithms can be derandomized, using O(logN)-wise independent
bits. This yields quantum algorithms that run in time Õ(N1/3).

While we have shown a polynomial quantum speedup, one may ask whether an exponential
speedup is possible. Quantum computers can give at most a polynomial speedup for total functions
[9], but this limitation does not apply to property testing (and indeed, examples of exponential
speedup are known [11]). On the other hand, superpolynomial speedup is impossible for symmetric
functions [3], even in the case of partial functions such as those arising in property testing. It is an
interesting question whether exponential speedups are possible for testing graph properties, which
may have significantly less symmetry.

Here we prove that testing expansion requires Ω̃(N1/4) quantum queries, thus ruling out the
possibility of an exponential speedup. We use the polynomial method [9]—specifically, a technique
of Aaronson based on reduction to a bivariate polynomial [1]. We define a distribution over N -
vertex graphs with ℓ connected components (and with another parameter M ≈ N), such that
each component is an expander with high probability. With ℓ = 1 component, such graphs are
almost surely expanders, whereas graphs with ℓ ≥ 2 components are very far from expanders. Our
main technical contribution is to show that the acceptance probability of any T -query quantum
algorithm, when presented with this distribution, is well-approximated by a bivariate polynomial
in M and ℓ of degree O(T log T). This requires a somewhat involved calculation of a closed-form
expression for the acceptance probability as a function of M and ℓ, using algebraic techniques and
the combinatorics of partitions. Then it follows by known results on polynomial approximation
that Ω(N1/4/ logN) queries are necessary to test expansion.

This proof may be of independent interest since there are very few techniques available to prove
quantum lower bounds for property testing. In particular, the standard quantum adversary method
[6] is subject to a “property testing barrier” [22]. Furthermore, graph structure makes it difficult
to apply the polynomial method, so our lower bound for testing expansion requires substantial
new machinery. These techniques may be applicable to other problems with graph structure. Note
also that our approach uses very different techniques from the classical lower bounds for testing
bipartiteness and expansion [21].

We are only aware of a few previous lower bounds for quantum property testing: the result
that not all languages can be tested efficiently [11] (which is nonconstructive, using a counting
argument), and lower bounds for testing orthogonality and uniformity of distributions [12, 13] and
for testing graph isomorphism [13] (which follow by reduction from the collision problem).

Despite this progress, there remain many unanswered questions about quantum testing of graph
properties. So far, we have been unable to prove a superconstant lower bound for testing bipar-

2

titeness. More generally, is there any graph property testing problem that admits an exponential
quantum speedup?

In the remainder of this section, we define the model of quantum property testing. We use
the adjacency-list model for graphs with bounded (i.e., constant) maximum degree d. A graph
G = (V,E) is represented by a function fG : V × {1, . . . , d} → V ∪ {∗}, where fG(v, i) returns the
ith neighbor of v in G, or ∗ if v has fewer than i neighbors. A quantum computer is provided
with a unitary black box that reversibly computes fG as |v, i, z〉 7→ |v, i, z ⊕ fG(v, i)〉. The query
complexity of an algorithm is the number of calls it makes to the black box for fG.

We say that G is ε-far from satisfying a property P if one must change at least εnd edges of
G in order to satisfy P . We say that an algorithm ε-tests P if it accepts graphs that satisfy P
with probability at least 2/3, and rejects graphs that are ε-far from satisfying P with probability
at least 2/3. (More generally, we may consider algorithms that determine whether a graph satisfies
P or is ε-far from satisfying a related property P ′.)

We say that a graph G is an α-expander if for every U ⊆ V with |U | ≤ |V |/2, we have
|∂(U)| ≥ α|U |, where ∂(U) is the set of vertices in V − U adjacent to at least one vertex of U .

2 Quantum Algorithms for Bipartiteness and Expansion

First, recall the classical algorithm for testing bipartiteness [19]. This algorithm performs T =
Θ(1/ε) repetitions, where during each repetition it chooses a random starting vertex s, then does
K =

√
N poly(logNε) random walks from s, each of length L = poly(logNε), and looks for “collisions”

where two walks from s reach the same vertex v, one after an even number steps, the other after
an odd number of steps.

We derandomize each of the T repetitions separately. Each repetition uses n = O(KL log d)
bits of randomness. We claim that it suffices to use k-wise independent random bits for some
k = O(L log d). To see this, consider the analysis given in [19]. Lemma 4.5 of [19] states sufficient
conditions for the algorithm to find an odd cycle, and hence reject, with high probability. The proof
considers the random variable X =

∑

i<j ηij , where ηij is a Boolean random variable that indicates
whether walk i collides with walk j while having different parity. The probability that X = 0 is
upper bounded using Chebyshev’s inequality together with bounds on E[X] and Var[X]. Note that
E[X] and Var[X] are linear and quadratic in the ηij , respectively, so they only depend on sets of at
most O(L log d) random bits. Thus they are unchanged by substituting k-wise independent random
bits for some k = O(L log d). This reduces the number of random bits required by the algorithm
to O(k log n) = O(poly(logN log d

ε)).
We then combine this derandomized classical algorithm with Ambainis’ quantum algorithm for

element distinctness [7, 26, 34]. (For details, see Appendix A.) This shows

Theorem 1. There is a quantum algorithm that always returns “true” when G is bipartite, returns
“false” with constant probability when G is ε-far from bipartite, and runs in time O(N1/3 poly(logNε)).

Using similar ideas, we can also give an Õ(N1/3)-time quantum algorithm for testing expansion.
We start with the classical algorithm of [20], derandomize it using k-wise independent random
variables, and apply the quantum algorithm for element distinctness. There is a slight complication,
because we need to count collisions, not just detect them. However, the number of collisions is
small—roughly O(N2µ) where µ is chosen to be a small constant—so we can count the collisions
using brute force. See Appendix B for details.

3

3 Quantum Lower Bound for Testing Expansion

3.1 Overview

We now turn to lower bounds for testing expansion. Specifically, we prove

Theorem 2. Any quantum algorithm for testing expansion of bounded-degree graphs must use
Ω(N1/4/ logN) queries.

Proof. We consider random graphs G on N vertices, sampled from the following distribution PM,l

(where M ≥ N and l divides M):

1. We start by constructing a random graph G′ on M vertices, as follows: First, we partition
the vertices into l sets V1, . . . , Vl, with each set Vi containing M/l vertices. Then, on each set
Vi, we create a random subgraph by randomly choosing c perfect matchings on Vi and taking
their union. (Here c is some sufficiently large constant.)

2. We then construct G as follows: First, we pick a subset of vertices v1, . . . , vN from G′. To
pick v1, we choose one of the sets V1, . . . , Vl uniformly at random, call it Vj , and we let v1 be
a random vertex from Vj . For each subsequent vertex vi, we again select a set Vj uniformly at
random, and choose vi uniformly at random among those vertices of Vj that were not chosen
in the previous steps. Then we let G be the induced subgraph of G′ on v1, . . . , vN .

The process above fails if we try to choose more than M/l vertices from the same Vj . However,
the probability of that happening is small—on average, N/l vertices are chosen in each Vj. We
choose M = (1+Θ(N−0.1))N . Then a straightforward application of Chernoff bounds implies that
the process fails with probability at most e−Ω(N0.55). For more detail, see Section C.1.

Note that the resulting graph G has degree at most c. The reason for choosing G as a subgraph
of G′ (rather than constructing G directly) is that this leads to simpler formulas for the probabilities
of certain events, e.g., the probability that vertices v1, v2 and v3 all belong to the same component
of G is 1/l2. This seems essential for our use of the polynomial method.

If l = 1, then this process generates an expander with high probability. It is well known
[30, 27] that the graph on M vertices generated by taking c perfect matchings is an expander with
high probability. In Section C.2, we show that the subgraph that we choose is also an expander.
(Informally, the main reason is that only a Θ(N−1/4) fraction of the vertices of G′ are not included
in G. This allows us to carry out the proof of [30, 27] without substantial changes.)

If l = 2, then this process generates a disconnected graph with two connected components, each
of size roughly N/2. Such a graph is very far from any expander graph—specifically, for any α′, it
is at least about (α′/2d)-far from an α′-expander of maximum degree d.

Therefore, if a quantum algorithm tests expansion, it must accept a random graph generated
according to PM,1 with probability at least 2/3, and a random graph generated according to PM,2

with probability at most 1/3. (Graphs drawn from PM,l with l > 2 must also be accepted with
probability at most 1/3, although this fact is not used in the analysis.)

The strategy of the proof is as follows. We show that for any quantum algorithm run on
a random graph from the distribution PM,l, the acceptance probability of the algorithm can be
approximated by a bivariate polynomial in M and l, where the number of queries used by the
algorithm corresponds to the degree of this polynomial. (This is our main technical contribution.)
We then lower bound the degree of this polynomial.

In more detail, we will prove the following lemma (see Section 3.2):

4

Lemma 3. Let A be a quantum algorithm using T queries. The acceptance probability of A (for the
probability distribution PM,l) is approximated (up to an additive error of e−Ω(N0.55)) by a fraction
f(M,l)
g(M,l) , where f(M, l) and g(M, l) are polynomials of degree O(T log T) and g(M, l) is a product of

factors (M − (2k − 1)l) for k ∈ {1, . . . , T}, with (M − (2k − 1)l) occurring at most 2T/k times.

Now choose a = 1 + Θ(N−0.1) such that aN is even. We say that a pair (M, l) is δ-good if
M ∈ [aN − δ3/2, aN + δ3/2], l ≤ δ, and l divides M .

We then approximate the fraction f(M,l)
g(M,l) (from Lemma 3) by f(M,l)

(aN)deg g(M,l) . For each term M −
(2k − 1)l, we first replace it by M and then by aN . The first step introduces multiplicative error

of 1 − (2k−1)l
M ≥ 1 − 2kl

N ≈ e−2kl/N . For all terms together, the error introduced in this step is at

most
∏T

k=1(e
−2kl/N)2T/k = e−4T 2l/N . If T = O(N1/4/ logN) and l = O(N1/2), the multiplicative

error is 1− o(1).
The second approximation step introduces multiplicative error of

(M
aN)O(T log T) ≈ (e(M−aN)/aN)O(T log T) ≤ (eδ

3/2/aN)O(T log T).

If δ = O(N1/2) and T = O(N1/4/logN), this can be upper bounded by 1 + ǫ for arbitrarily small
ǫ > 0, by appropriately choosing the big-O constant in T = O(N1/4/logN).

Next, we prove a second lemma, which lower bounds the degree of a bivariate polynomial:

Lemma 4. Let f(M, l) be a polynomial such that |f(aN, 1) − f(aN, 2)| ≥ ǫ for some fixed ǫ > 0
and, for any δ-good (M, l), |f(M, l)| ≤ 1. Then the degree of f(M, l) is Ω(

√
δ).

The proof of this lemma follows the collision lower bounds of Aaronson and Shi [1, 32] and is
included in Section C.3 for completeness.

We now set δ = Θ(N1/2) and apply Lemma 4 to f(M,l)

2(aN)deg g(M,l) . This is a polynomial in M

and ℓ, because the denominator is a constant. With M = aN , its values at l = 1 and l = 2 are
bounded away from each other by at least 1/3 since the algorithm works. Its values at δ-good pairs
(M, l) have magnitude at most 1 because the acceptance probability of the algorithm is in [0, 1],

so | f(M,l)

2(aN)deg g(M,l) | ≤ 1
2 + o(1). Thus we find that the degree of f(M, l) must be Ω(N1/4). It follows

that T = Ω(N1/4/logN) queries are necessary.

3.2 Proof of Lemma 3

Here we assume that the process generating a graph G from the probability distribution PM,l does
not fail. (The effect of this process possibly failing is considered in Section C.1.) The acceptance
probability of A is a polynomial PA of degree at most 2T in Boolean variables xu,v,j , where xu,v,j = 1
iff (u, v) is an edge in the jth matching.

PA is a weighted sum of monomials. It suffices to show that the expectation of every such
monomial has the rational form described in Lemma 3. If this is shown, then E[PA] is a sum of

such fractions: E[PA] =
f1(M,l)
g1(M,l) +

f2(M,l)
g2(M,l) + · · · . We put these fractions over a common denominator,

obtaining E[PA] =
f(M,l)
g(M,l) where g(M, l) = lcm(g1(M, l), g2(M, l), . . .). In this common denominator,

(M−(2k−1)l) occurs at most 2T/k times. Therefore, the degree of g(M, l) is at most 2T
∑2T

k=1
1
k =

O(T log T). Similarly, the degree of f(M, l) is at most O(T log T) + deg g(M, l) = O(T log T).
Now consider a particular monomial P = xu1,v1,j1xu2,v2,j2 · · · xud,vd,jd, where d = degP . Let GP

be the graph with edges (u1, v1), . . . , (ud, vd) (i.e., with the edges relevant to P) where the edge
(ua, va) comes from the jtha matching. Let C1, . . . , Ck be the connected components of GP . For
each component Ci, let Xi be the event that every edge (ua, va) in Ci (viewed as a subgraph of

5

GP) is present in the random graph G as part of the jtha matching. We have to find an expression
for the expectation

E[P] = Pr[X1 ∩X2 ∩ . . . ∩Xk].

We first consider Pr[Xi]. Let vi be the number of vertices in Ci, and for each matching j, let
di,j be the number of variables xu,v,j in P that have u, v ∈ Ci and label j. Note that

di,1 + di,2 + · · ·+ di,c ≥ vi − 1 (1)

because a connected graph with vi vertices must have at least vi − 1 edges. We have

Pr[Xi] =
1

lvi−1

c
∏

j=1

di,j
∏

j′=1

1

M/l − (2j′ − 1)
=

1

lvi−1

c
∏

j=1

di,j
∏

j′=1

l

M − (2j′ − 1)l
. (2)

Here l−(vi−1) is the probability that all vi vertices are put into the same set Vj (for some 1 ≤
j ≤ l) (which is a necessary condition for having edges among them), and

∏di,j
j′=1

1
M/l−(2j′−1) is the

probability that di,j particular edges from the jth matching are present. (For the first edge (u, v) in
the jth matching, the probability that it is present is 1

M/l−1 , since u is equally likely to be matched

with any of M/l vertices in Vj except for u itself; for the second edge (u′, v′) in the jth matching,
the probability that it is present is 1

M/l−3 , since u
′ can be matched with any of M/l vertices except

u, v, u′; and so on. Note that without loss of generality, we can assume that the edges in P from
the jth matching are distinct. If P contains the same edge twice from the same matching, then we
can remove one of the duplicates without changing the value of P .)

We can rewrite (2) as Pr[Xi] =
1

lvi−1

∏c
j=1Rdi,j , where we define

Rd =
d
∏

j′=1

l

M − (2j′ − 1)l
. (3)

We now extend this to deal with multiple components Ci at once, i.e., we want to evaluate
Pr[

⋂

i∈S Xi], where S ⊆ {1, . . . , k}. Let ES be the event that the vertices in
⋃

i∈S Ci (i.e., in any of
the components indicated by S) are all put into one set Vj . Then Pr[

⋂

i∈S Xi|ES] =
∏c

j=1R
∑

i∈S di,j .

The event ES happens with probability l−(
∑

i∈S vi)+1, since the total number of vertices in
⋃

i∈S Ci

is
∑

i∈S vi.
Let L = (S1, . . . , St) be a partition of {1, 2, . . . , k}. We call S1, . . . , St classes of the partition

L. We say that S ∈ L if S is one of S1, . . . , St. Let |L| = t. We say that L is a refinement of
L′ (denoted L < L′) if L can be obtained from L′ by splitting some of the classes of L′ into two
or more parts. We write L ≤ L′ if L < L′ or L = L′. When L < L′, let cL,L′ be the number of
sequences L = L0 < L1 < · · · < Lj = L′, with sequences of even length j counting as +1 and
sequences of odd length j counting as −1. We define cL,L′ = 1 when L = L′. We have the following
partition identity, which will be useful later; the proof is given in Section C.4.

Proposition 5. Suppose L′′ < L. Then
∑

L′ : L′′≤L′≤L cL′,L = 0.

We define the expressions

fL(M, l) =
∏

S∈L

c
∏

j=1

R∑
i∈S di,j (4)

f ′
L(M, l) =

∑

L′ : L′≤L

cL′,LfL′(M, l). (5)

6

We can now evaluate Pr[X1 ∩X2 ∩ . . . ∩Xk] as follows. For any partition L of {1, 2, . . . , k}, let
EL be the event

⋂

S∈LES . Let E
′
L be the event that EL happens but no EL′ with L < L′ happens

(i.e., L is the least refined partition that describes the event). Then

Pr[X1 ∩X2 ∩ . . . ∩Xk] =
∑

L

Pr[E′
L]fL(M, l).

By inclusion-exclusion, Pr[E′
L] =

∑

L′ : L≤L′ cL,L′ Pr[EL′]. Now substitute into the previous equa-
tion, reorder the sums, and use the definition of f ′

L(M, l):

Pr[X1 ∩X2 ∩ . . . ∩Xk] =
∑

L′

Pr[EL′]
∑

L : L≤L′

cL,L′fL(M, l) =
∑

L

Pr[EL]f
′
L(M, l).

Note that Pr[EL] =
∏

S∈L Pr[ES] =
∏

S∈L l−(
∑

i∈S vi)+1 = l−(
∑k

i=1 vi)+|L|. Thus we have

Pr[X1 ∩X2 ∩ . . . ∩Xk] =
∑

L

l−(
∑k

i=1 vi)+|L|f ′
L(M, l). (6)

We have now written Pr[X1 ∩X2 ∩ . . .∩Xk] as a sum of rational functions of M and l. We can

combine these into a single fraction f(M,l)
g(M,l) . It remains to show that this fraction has the properties

claimed in Lemma 3.
First, we claim that the denominator g(M, l) contains at most 2T/k factors of M − (2k − 1)l.

Observe that each fL(M, l) is a fraction whose denominator consists of factors M − (2k − 1)l. The
number of factors in the denominator is equal to the number of variables in the monomial P , which
is at most 2T . By the form of (3), for each M − (2k − 1)l in the denominator, we also have M − l,
M − 3l, . . ., M − (2k − 3)l in the denominator. Therefore, if we have t factors of M − (2k − 1)l
in the denominator, then the total degree of the denominator is at least tk. Since tk ≤ 2T , we
have t ≤ 2T/k. This statement holds for fL(M, l) for every L. Thus, when we sum the fL(M, l)
to obtain first f ′

L(M, l) and then Pr[X1 ∩ X2 ∩ . . . ∩ Xk], and put all the terms over a common
denominator g(M, l), this statement also holds for g(M, l).

In Pr[X1 ∩X2 ∩ . . .∩Xk], when we sum the f ′
L(M, l) in (6), we also have factors of l(

∑k
i=1 vi)−|L|

in the denominator. Proposition 6 shows that these factors are cancelled out by corresponding
factors in the numerator.

Proposition 6. f ′
L(M, l) is equal to a fraction whose denominator is a product of factors (M −

(2k − 1)l) and whose numerator is divisible by l(
∑k

i=1 vi)−|L|.

When we combine the different f ′
L(M, l) in (6) into a single fraction f(M,l)

g(M,l) , we see that f and

g have the desired form. Also note that f and g have degree O(T log T), by repeating the same
argument used earlier to combine the different monomials P . This completes the proof of Lemma 3;
it remains to show Proposition 6.

Proof of Proposition 6. Note that Rd contains an obvious factor of ld. We define

R′
d =

Rd

ld
=

d
∏

j′=1

1

M − (2j′ − 1)l

and we redefine fL(M, l) and f ′
L(M, l) (equations (4) and (5)) using R′

d instead of Rd. This removes

a factor of ld from the numerator of Rd and a factor of l
∑

i,j di,j from the numerator of fL(M, l).

7

By equation (1), this factor is at least l(
∑

i vi)−k. Therefore, it remains to show that the numerator
of the redefined f ′

L(M, l) is divisible by lk−|L|.
Recall that f ′

L(M, l) is a sum of terms fL′(M, l) for all L′ ≤ L. Let us write each term as
fL′(M, l) = 1/

∏

k∈K(L′)(M − kl), where K(L′) is a multiset. We put these terms over a common

denominator βL(M, l) =
∏

k∈B(L)(M − kl), where B(L) ⊇ K(L′) for all L′ ≤ L. Then we have

fL′(M, l) =
αL′(M, l)

βL(M, l)
, αL′(M, l) =

∏

k∈B(L)−K(L′)

(M − kl),

f ′
L(M, l) =

α′
L(M, l)

βL(M, l)
, α′

L(M, l) =
∑

L′ : L′≤L

cL′,LαL′(M, l).

Let m = |B(L)|. Also, let m̃ = |K(L′)| =
∑

S∈L′

∑c
j=1

∑

i∈S di,j =
∑k

i=1

∑c
j=1 di,j, which is

independent of L′. Let m′ = |B(L)−K(L′)| = m− m̃, which depends on L but not on L′.
We want to show that α′

L(M, l) is divisible by lk−|L|. First, we multiply out each term αL′(M, l)

to get αL′(M, l) =
∑m′

i=0 ei(B(L) − K(L′))Mm′−i(−l)i, where ei is the ith elementary symmet-
ric polynomial (i.e., ei(B(L) − K(L′)) is the sum of all products of i variables chosen without
replacement from the multiset B(L)−K(L′)). We can then write α′

L(M, l) as

α′
L(M, l) =

m′
∑

i=0

θL,iM
m′−i(−l)i, θL,i =

∑

L′ : L′≤L

cL′,Lei(B(L)−K(L′)).

It suffices to show that, for all 0 ≤ i ≤ k − |L| − 1, the coefficient θL,i is 0. Note that if L is the
finest possible partition L∗, then |L| = k and the above claim is vacuous, so we can assume that
L∗ < L. Also note that θL,0 = 0 by Proposition 5 with L′′ = L∗, so it suffices to consider i > 0.

For any set of variables E and any a ≥ 0, define the power-sum polynomial Ta(E) =
∑

k∈E ka.
We can write ei(B(L)−K(L′)) in terms of power sums:

ei(B(L)−K(L′)) = Λi,L[Ta(B(L)−K(L′)) : a = 0, 1, 2, . . . , i],

where Λi,L is a polynomial function of the power sums Ta(B(L) −K(L′)) of total degree i in the
variables k ∈ B(L) − K(L′). Note that the polynomial Λi,L only depends on the size of the set
B(L) − K(L′), hence it only depends on L, and not on L′. To simplify things, we can write
Ta(B(L)−K(L′)) = Ta(B(L))−Ta(K(L′)) and absorb the Ta(B(L)) term into the polynomial Λi,L

to get a new polynomial Λ̃i,L. Then we have ei(B(L)−K(L′)) = Λ̃i,L[Ta(K(L′)) : a = 0, 1, 2, . . . , i],
and

θL,i =
∑

L′ : L′≤L

cL′,LΛ̃i,L[Ta(K(L′)) : a = 0, 1, 2, . . . , i].

It suffices to show that, for all 0 ≤ i ≤ k − |L| − 1, the above sum vanishes term-by-term, i.e., for
all sequences {aj} such that aj ≥ 0 and

∑

j aj ≤ i, we have

∑

L′ : L′≤L

cL′,L

∏

j

Taj (K(L′)) = 0. (7)

We have Ta(K(L′)) =
∑

S∈L′

∑c
j=1 Ta({1, 3, 5, . . . , 2(

∑

i∈S di,j)−1}), by the definition of K(L′).
Note that, for any integer s, Ta({1, 3, 5, . . . , 2s − 1}) = Ta({1, 2, 3, . . . , 2s})− 2aTa({1, 2, 3, . . . , s}),
and by Faulhaber’s formula, this equals a polynomial Qa(s) of degree a+1, with rational coefficients

8

and no constant term. We have Ta(K(L′)) =
∑

S∈L′

∑c
j=1Qa(

∑

i∈S di,j). Let qa,α (α = 1, . . . , a+1)
be the coefficients of Qa. Then we can rewrite this as

Ta(K(L′)) =

a+1
∑

α=1

qa,αSα(L
′), where Sα(L

′) =
∑

S∈L′

c
∑

j=1

(

∑

i∈S

di,j

)α
.

It suffices to show that the sum in equation (7) vanishes term-by-term, i.e., for all 0 ≤ i ≤ k−|L|−1
and for all sequences {αj} such that αj ≥ 1 and

∑

j(αj − 1) ≤ i, we have

∑

L′ : L′≤L

cL′,L

∏

j

Sαj (L
′) = 0.

This final claim is shown by Proposition 19 in Section C.5. This completes the proof of Proposition 6.

Acknowledgments. We thank the anonymous referees for several helpful comments. AA was
supported by ESF project 1DP/1.1.1.2.0/09/APIA/VIAA/044, FP7 Marie Curie Grant PIRG02-
GA-2007-224886 and FP7 FET-Open project QCS. AMC and YKL acknowledge the hospitality of
the Kavli Institute for Theoretical Physics, where this research was supported in part by the Na-
tional Science Foundation under Grant No. PHY05-51164. AMC received support from MITACS,
NSERC, QuantumWorks, and the US ARO/DTO. YKL received support from an NSF postdoc-
toral fellowship and ARO/NSA. This work was done in part while YKL was at the Institute for
Quantum Information at Caltech.

References

[1] S. Aaronson. Quantum lower bound for the collision problem. In STOC, pages 635-642. 2002.

[2] S. Aaronson. BQP and the polynomial hierarchy. In STOC, pages 141-150. 2010.

[3] S. Aaronson and A. Ambainis. The need for structure in quantum speedups. In Innovations in
Computer Science, pages 338-352. 2011.

[4] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal
independent set problem. J. of Algorithms 7 (4):567-583, 1986.

[5] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise
independent random variables. Random Structures and Algorithms 3 (3):289-304, 1992.

[6] A. Ambainis. Quantum lower bounds by quantum arguments. J. of Computer and System
Sciences 64 (4):750-767, 2002.

[7] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J. on Computing 37
(1):210-239, 2007.

[8] A. Atici and R. Servedio. Quantum algorithms for learning and testing juntas. Quantum In-
formation Processing 6 (5):323-348, 2007.

[9] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. J. of the ACM 48 (4):778-797, 2001.

9

[10] H. Buhrman, C. Durr, M. Heiligman, P. Hoyer, F. Magniez, M. Santha, and R. de Wolf.
Quantum algorithms for element distinctness. SIAM J. on Computing 34 (6):1324-1330, 2005.

[11] H. Buhrman, L. Fortnow, I. Newman, and H. Rohrig. Quantum property testing. SIAM J. on
Computing 37 (5):1387-1400, 2008.

[12] S. Bravyi, A. W. Harrow, and A. Hassidim. Quantum algorithms for testing properties of
distributions. In STACS, pages 131-142, 2010.

[13] S. Chakraborty, E. Fischer, A. Matsliah, and R. de Wolf. New results on quantum property
testing. In FSTTCS, pages 145-156. 2010.

[14] A. M. Childs and R. Kothari. Quantum query complexity of minor-closed graph properties. In
STACS, pages 661-672. 2011.

[15] A. Czumaj and C. Sohler. Testing expansion in bounded-degree graphs. In FOCS, pages 570-
578. 2007.

[16] C. Durr, M. Heiligman, P. Hoyer, and M. Mhalla. Quantum query complexity of some graph
problems. SIAM J. on Computing 35 (6):1310-1328, 2006.

[17] O. Goldreich. Randomized Methods in Computation, 2001. Lecture notes available at
http://www.wisdom.weizmann.ac.il/∼oded/rnd.html, Lecture 2.

[18] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. J. of the ACM 45 (4):653-750, 1998.

[19] O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. Combi-
natorica 19 (3):335-373, 1999.

[20] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs, 2000. ECCC report
TR00-020.

[21] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica 32 (2):302-
343, 2002.

[22] P. Hoyer, T. Lee, and R. Spalek. Negative weights make adversaries stronger. In STOC, pages
526-535. 2007.

[23] Y. Inui and F. L. Gall. Quantum property testing of group solvability. In LATIN, pages 772-
783. 2008.

[24] S. Kale and C. Seshadhri. Testing expansion in bounded-degree graphs, 2007. ECCC report
TR07-076.

[25] F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. SIAM
J. on Computing 37 (2):413-424, 2007.

[26] F. Magniez, A. Nayak, J. Roland, and M. Santha. Search via quantum walk. In STOC, pages
575-584. 2007.

[27] R. Motwani and P. Raghavan. Randomized Algorithms, 1995. Cambridge University Press.

[28] A. Nachmias and A. Shapira. Testing the expansion of a graph. Information and Computation
208:309-314, 2010.

10

Algorithm 1 Testing bipartiteness (classical)

Given: Oracle fG specifying a graph G with N vertices and max degree d; accuracy parameter ε
for τ = 1, . . . , T for some T = Θ(1/ε) do

Pick a random vertex s
for i = 1, . . . ,K where K =

√
N poly(logNε) do

Starting from s, take a random walk of length L = poly(logNε), with steps chosen as follows:
At vertex v, for each adjacent vertex u, move to u with probability 1

2d ; stay at v with

probability 1− deg(v)
2d

Let (wij)j=0,1,2,... be the sequence of vertices visited during the walk, omitting consecutive
repetitions of the same vertex (i.e., when the walk stays at the same vertex for more than
one time step, only include that vertex once in the sequence, so wij 6= wi(j+1))

end for

if wij = wi′j′ for some i, j, i′, j′, where j is even and j′ is odd then

return “false”
end if

end for

return “true”

[29] R. Paturi. On the degree of polynomials that approximate symmetric Boolean functions (pre-
liminary version). In STOC, pages 468-474. 1992.

[30] M. Pinsker. On the complexity of a concentrator. In Proceedings of the 7th International
Teletraffic Conference, pages 318/1-318/4. 1973.

[31] M. Santha. Quantum walk based search algorithms. In Theory and Applications of Models of
Computation, pages 31-46. 2008.

[32] Y. Shi. Quantum lower bounds for the collision and the element distinctness problems. In
FOCS, pages 513-519. 2002.

[33] D. R. Simon. On the power of quantum computation. SIAM J. on Computing 26 (5):1474-1483,
1997.

[34] M. Szegedy. Quantum speed-up of Markov chain based algorithms. In FOCS, pages 32-41.
2004.

A Quantum algorithm for testing bipartiteness

A.1 Derandomization

We recall the classical algorithm for testing bipartiteness [19]. This is based on the fact that a
bipartite graph contains no cycles of odd length, whereas if a graph is far from bipartite, then
it contains many short odd cycles. The algorithm tries to find an odd cycle by running several
random walks from a common starting vertex s and looking for “collisions” where two walks reach
the same vertex v, one after an even number steps, the other after an odd number of steps. More
precisely, the algorithm performs T = Θ(1/ε) repetitions, where during each repetition it chooses
a random starting vertex s, then does K =

√
N poly(logNε) random walks from s, each of length

L = poly(logNε). See Algorithm 1 for a precise description.
This algorithm has the following performance guarantees:

11

Theorem 7 (Theorem 2 in [19]). Algorithm 1 always returns “true” when G is bipartite and returns
“false” with probability at least 2/3 when G is ε-far from bipartite. The algorithm has running time
poly(

√
N logN

ε), and in particular, makes poly(
√
N logN

ε) queries.

Our first step is to partially derandomize Algorithm 1 using k-wise independent random vari-
ables.4 Intuitively, this is possible because the algorithm (and the analysis of its performance) only
depend on the behavior of pairs of random walks, which are determined by subsets of poly(logN)
random bits. Derandomization reduces the number of random bits from O(

√
N poly(logN)) to

poly(logN), which in turn reduces the running time of our quantum algorithm.
We use the following simple construction for k-independent random variables:

Proposition 8 (Proposition 6.5 in [4]). Suppose n+ 1 is a power of 2 and k is odd, k ≤ n. Then
there exists a uniform probability space Ω = {0, 1}m where m = 1+ 1

2(k − 1) log2(n+ 1), and there
exist k-wise independent random variables ξ1, . . . , ξn over Ω, such that Pr[ξj = 1] = Pr[ξj = 0] = 1

2 .
Furthermore, there exists an algorithm that, given i ∈ Ω and 1 ≤ j ≤ n, computes ξj(i) in time

O(k log n).

Note that even more efficient constructions are possible for random variables that are almost
k-wise independent [5], which might facilitate slight improvements to the running times of our
algorithms.

We derandomize each of the T repetitions of Algorithm 1 separately. Each repetition uses
O(KL log d) bits of randomness.5 We claim that it suffices to use k-wise independent random bits
for some k = O(L log d). To see this, consider the analysis of Algorithm 1 in [19]. It is clear that
when G is bipartite, the algorithm accepts; the main task is to show that when G is ε-far from
bipartite, the algorithm rejects. The proof establishes the contrapositive: assuming the algorithm
accepts with probability at least 1/3, one can construct a bipartition of G with few violating edges,
thus showing that G is ε-close to bipartite.

Lemma 4.5 of [19] states sufficient conditions for the algorithm to find an odd cycle, and hence
reject, with high probability. The proof considers the random variable X =

∑

i<j ηij , where ηij is a
Boolean random variable that indicates whether walk i collides with walk j while having different
parity. The probability that X = 0 is upper bounded using Chebyshev’s inequality together with
bounds on E[X] and Var[X]. In particular, E[X] and Var[X] are bounded in terms of quantities
that only involve the behavior of a single random walk. (Likewise, the sufficient conditions in
Lemma 4.5 only involve a single random walk.) Using Lemma 4.5, and the fact that the algorithm
accepts, one can deduce properties of the graph G. In the remainder of the proof, these properties
are used to construct a bipartition of G with few violating edges, as desired.

Note that E[X] and Var[X] are linear and quadratic in the ηij, respectively, so they only
depend on the behavior of sets of at most 4 random walks. Thus they only depend on sets of at
most O(L log d) random bits, so they are unchanged by substituting k-wise independent random
bits for some k = O(L log d). In particular, letting X̃ denote the derandomized version of X, we
have E[X̃] = E[X] and Var[X̃] = Var[X]. Thus the probability that X̃ = 0 is upper bounded
using the same argument as above. It follows that we can substitute k-wise independent random
variables, constructed using Proposition 8, with n = O(KL log d) and k = O(L log d). This reduces
the number of random bits required by the algorithm to O(k log n) = O(poly(logN log d

ε)).

4We say that a collection of random variables is k-wise independent if any subset of at most k of the variables is
independent.

5This involves a minor technical issue: the random walk chooses uniformly among 2d outcomes, and when d is not
a power of 2, we have to approximate the desired distribution. This can be handled using standard techniques [4].

12

Algorithm 2 Testing bipartiteness (quantum)

Given: Oracle fG specifying a graph G with N vertices and max degree d; accuracy parameter ε
for τ = 1, . . . , T for some T = Θ(1/ε) do

Pick a random vertex s
Let K = poly(logNε)

√
N , L = poly(logNε), n = KL, and k = Θ(L)

Using Proposition 8, construct k-wise independent random variables bij taking values in
{0, 1, . . . , 2d − 1} (for i = 1, . . . ,K and j = 1, . . . , L)
Let X = {1, . . . ,K} × {1, . . . , L} and Y = {1, . . . , N} × {0, 1}
Define f : X → Y as follows: Given (i, j), run a random walk in G, starting at s, with random
coin flips (bi1, . . . , bij). Let v be the endpoint of the walk, and let q be the number of steps
taken in the graph, not counting steps where the random walk chooses to stay at its current
location. Return (v, q mod 2).
Define R ⊆ Y × Y such that ((v, c), (v′, c′)) ∈ R iff (v = v′ and c 6= c′)
if the algorithm from Theorem 9 finds a collision in R then

return “false”
end if

end for

return “true”

A.2 A quantum algorithm

We now give a quantum algorithm (Algorithm 2) for testing bipartiteness. The basic idea is to run
several random walks starting from the same vertex s and solve the element distinctness problem
to find “collisions” between these walks. We use the following variant of Ambainis’s quantum
algorithm for element distinctness. Let X and Y be finite sets. Suppose we are given oracle access
to a function f : X → Y , and let R ⊆ Y ×Y be a symmetric binary relation that we can compute in
time poly(log |Y |). We define a collision to be a distinct pair x, x′ ∈ X such that (f(x), f(x′)) ∈ R.
The following result gives a quantum algorithm for finding collisions [7, 26, 34]:

Theorem 9 (Special case of Theorem 3 in [26]). There is a quantum algorithm (with oracle f)
that finds a collision (with respect to R) with constant probability when a collision exists, always
returns “false” when there are no collisions, and runs in time O(|X|2/3 · poly(log |Y |)).

In our application, each element of X is a sequence of coin tosses; the function f computes
the endpoint of the corresponding walk in the graph, together with the number of steps along the
way; and the relation R tests whether two walks reach the same vertex, one after an even number
of steps, the other after an odd number of steps. Since we search for collisions among Õ(

√
N)

elements, we require Õ(N1/3) evaluations of the function f . Moreover, f can be computed using
only poly(logNε) queries, so the quantum algorithm uses O(N1/3 poly(logNε)) queries.

It is now clear why derandomizing the classical algorithm is useful: it allows a concise represen-
tation of the elements of X. Rather than enumerating them explicitly, which would take Õ(

√
N)

time, we can describe and manipulate them in time poly(logNε), so the quantum algorithm runs in

time O(N1/3 poly(logNε)).
Note that the element distinctness algorithm requires that the function f is computed unitarily

as Uf : |x〉|z〉 7→ |x〉|z ⊕ f(x)〉. We have access to the unitary operation UfG : |v, i〉|w〉 7→ |v, i〉|w ⊕
fG(v, i)〉 provided by the oracle fG. Since computing f only requires classical operations and queries
to fG, we can perform Uf using reversible classical computation and queries to UfG .

13

Algorithm 3 Testing expansion (classical)

Given: Oracle fG specifying a graph G with N vertices and max degree d; accuracy parameter ε;
expansion parameter α; running time parameter µ
for τ = 1, . . . , T for some T = Θ(1/ε) do

Pick a random vertex s
for i = 1, . . . ,K where K = N1/2+µ do

Starting from s, take a random walk of length L = (16d2/α2) logN (the random walk
proceeds as follows: at vertex v, for each adjacent vertex u, move to u with probability 1

2d ;

stay at v with probability 1− deg(v)
2d)

Let wi be the endpoint of the walk
end for

Let X be the number of pairwise collisions among the vertices w1, . . . , wK

Let M = 1
2N

2µ + 1
128N

1.75µ

if X > M then

return “false”
end if

end for

return “true”

Theorem 10. Algorithm 2 always returns “true” when G is bipartite, returns “false” with constant
probability when G is ε-far from bipartite, and runs in time O(N1/3 poly(logNε)).

Proof of Theorem 10. When G is bipartite, it has no odd cycles, so Algorithm 2 never finds a
collision. Thus the algorithm returns “true.”

When G is ε-far from bipartite, the analysis of [19] implies that, with constant probability, one
of the sets of random walks sampled by the algorithm contains a collision. Thus the algorithm
returns “false.”

For the bound on the running time, note that evaluating the k-wise independent random
variables bij(ω) takes time O(k log n) = O(poly(logNε)). Also, each evaluation of the function

f takes time poly(logNε). Since X has size O(
√
N poly(logNε)), finding a collision takes time

O(N1/3 poly(logNε)).

B Quantum algorithm for testing expansion

B.1 Derandomization

We now turn to the problem of testing expansion. We begin by recalling the classical algorithm for
this problem, originally due to [20]. The basic idea is to test how rapidly a random walk from some
starting vertex s converges to the uniform distribution. This can be done by running several random
walks starting from s and counting the number of collisions among their endpoints—the number of
collisions is smallest when the distribution is uniform. Here we consider the version of the algorithm
that appears in [28]. (See Algorithm 3 for details.) This algorithm makes T = Θ(1/ε) repetitions,
and during each repetition, it runs K = N1/2+µ random walks, each of length L = (16d2/α2) logN .
(Here ε, µ, d, and α are parameters describing the problem of testing expansion. They play only a
minor role in the present discussion.)

This algorithm has the following performance guarantee [28, 24, 15]:

14

Theorem 11 (Theorem 2.1 in [28]). Assume d ≥ 3, 0 < α < 1, and 0 < µ < 1
4 . Algorithm 3 runs

in time O(N1/2+µ logN · d2/εα2). Furthermore, there exists a constant c > 0 (which depends on
d) such that, for any 0 < ε < 1:

1. If G is an α-expander, then the algorithm returns “true” with probability at least 2/3.

2. If G is ε-far from any (cµα2)-expander of degree at most d, then the algorithm returns “false”
with probability at least 2/3.

We partially derandomize Algorithm 3 using k-wise independent random variables, with sim-
ilar motivation and techniques as for testing bipartiteness. Note that the algorithm originally
requires KL log d = O(N1/2+µ(d2/α2) logN log d) random bits for each of the T repetitions. As for
bipartiteness, we derandomize each of the repetitions independently.

To explain how the derandomization works, we recall the proof of Theorem 11 in [28]. Letting ηij
indicate whether walk i collides with walk j, one must show that the random variable X =

∑

i<j ηij
is concentrated around its expectation. This is done using Chebyshev’s inequality together with
bounds on E[X] and Var[X]. In particular, it is possible to bound E[X] and Var[X] in terms of
quantities that only depend on the behavior of a single random walk.6

Note that E[X] and Var[X] are linear and quadratic in the ηij , respectively, so they only depend
on correlations among up to 4 random walks. These correlations involve subsets of at most 4L log d
random bits. Thus, we can substitute k-wise independent random bits, where k = 4L log d. Letting
X̃ denote the number of collisions in the derandomized algorithm, we have E[X̃] = E[X] and
Var[X̃] = Var[X]. Thus the proof goes through just as before: the bounds on E[X] and Var[X]
also imply that X̃ is concentrated around its expectation. Finally, note that the derandomized
algorithm requires only O

(

k log(KL log d)
)

= O
(

(d2/α2) log2 N log d
)

bits of randomness for each

of the T repetitions. We have reduced the number of random bits from Õ(N1/2+µ) to O(log2 N).

B.2 A quantum algorithm

We now describe a quantum algorithm for testing expansion. The basic idea is similar to that
for bipartiteness, with one additional detail: we run several random walks from the same starting
vertex, then use a quantum algorithm to count the number of collisions among the endpoints of
the walks. More precisely, we determine whether the number of collisions is greater or less than
M , for small values of M . We do this by using the algorithm of Theorem 9 to explicitly find up to
M collisions, one at a time; this takes time polynomial in M . See Algorithm 4, whose performance
is characterized as follows.

Lemma 12. Algorithm 4 returns “true” with constant probability if there are M or more collisions,
always returns “false” if there are strictly fewer than M collisions, and runs in time O(M logM ·
|X|2/3 · poly(log |Y |)).

Proof of Lemma 12. Suppose there areM or more collisions. Then in each iteration (i = 1, . . . ,M),
there are collisions to be found. Consider what happens in iteration i. Say that the algorithm from
Theorem 9 returns “false” with probability at most p (some constant). We run that algorithm
t = log1/p(3M) times. The probability that it returns “false” on every attempt is at most pt = 1

3M ,

so the probability that we return “false” during iteration i is at most 1
3M , and by the union bound,

the probability that we return “false” is at most 1/3.
The other claims are easy to see.

6This step occurs in Lemma 3.4 of [28], Lemma 3.1 of [24], Lemma 4.1 of [15], and Lemma 1 of [20].

15

Algorithm 4 Counting collisions (quantum)

Given: A set X, an oracle f : X → Y , a relation R ⊆ Y × Y , and a number M
Initialize S = ∅

for i = 1, . . . ,M do

for j = 1, . . . , t for some t = Θ(logM) do
Run the algorithm of Theorem 9 to find some distinct x, x′ ∈ X such that (f(x), f(x′)) ∈ R
and (x, x′) /∈ S.
if the algorithm finds a collision (x, x′) then

set S = S ∪ {(x, x′), (x′, x)}
break out of the inner for loop

end if

end for

if the algorithm did not find a collision on any of the t tries then
return “false”

end if

end for

return “true”

Our quantum algorithm for testing expansion is now straightforward; see Algorithm 5. We
prove the following:

Theorem 13. Algorithm 5 runs in time O(N1/3+3µ poly(logN) · (d2/εα2) log(d/α)). Furthermore,
there exists a constant c > 0 (which depends on d) such that, for any 0 < ε < 1:

1. If G is an α-expander, then the algorithm returns “true” with probability at least 2/3.

2. If G is ε-far from any (cµα2)-expander of degree at most d, then the algorithm returns “false”
with probability at least 0.6.

Proof of Theorem 13. Suppose G is an α-expander. Then with probability at least 2/3, the number
of collisions in each of the T repetitions is at most M . When this happens, the collision-counting
algorithm always returns “false,” so we return “true.”

Suppose G is ε-far from any (cµα2)-expander of degree at most d. Then with probability at
most 2/3, the number of collisions is at most M +1 in at least one of the T repetitions. When this
happens, the collision-counting algorithm returns “true” with probability at least some constant p.
We run the collision-counting algorithm t times, where t = log1/(1−p) 10. The probability that this
returns “false” every time is at most (1 − p)t = 1/10. Thus, with probability at least 9/10, the
collision-counting algorithm returns “true” at least once, so we return “false.”

The bound on the running time is straightforward. In particular, implementing the k-wise inde-
pendent random variables bij takes time and space O(k log n) = O((d2/α2) poly(logN) log(d/α)).
Also, note that the only way we query the graph oracle fG is to evaluate the function f . Evalu-
ating f requires L = O((d2/α2) logN) queries to fG, and the collision-counting algorithm requires
O(N1/3+3µ poly(logN)) evaluations of f .

16

Algorithm 5 Testing expansion (quantum)

Given: Oracle fG specifying a graph G with N vertices and max degree d; accuracy parameter ε;
expansion parameter α; running time parameter µ
for τ = 1, . . . , T for some T = Θ(1/ε) do

Pick a random vertex s
Let K = N1/2+µ, L = (16d2/α2) logN , n = KL, and k = Θ(L)
Using Proposition 8, construct probability space Ω and k-wise independent random variables
bij taking values in {0, 1, . . . , 2d − 1} (for i = 1, . . . ,K and j = 1, . . . , L)
Choose ω ∈ Ω uniformly at random
Let X = {1, . . . ,K} and Y = {1, . . . , N}
Define f : X → Y as follows: Given i, return the endpoint of the random walk in G that starts
at s and uses random coin flips (bi1(ω), . . . , biL(ω))
Define R ⊆ Y × Y such that (v, v′) ∈ R iff v = v′

Let M = 1
2N

2µ + 1
128N

(1.75)µ

for σ = 1, . . . , t for some t = Θ(1) do
Run Algorithm 4 to test whether there are M + 1 or more collisions
if Algorithm 4 returns “true” then

return “false”
end if

end for

end for

return “true”

C Quantum lower bound for testing expansion

C.1 Bounding the failure probability and its impact

Lemma 14. Let M
N = 1 + Ω(1

Nc) and l ≤ N1/4. The probability that the process generating PM,l

fails is at most e−Ω(N0.75−2c).

Proof. Let Xi be the number of vertices chosen from Vi. Xi is a random variable with expectation
E[Xi] = N/l. Since l ≤ N1/4, we have E[Xi] ≥ N0.75. We have to bound the probability that
Xi > (1 + ǫ)N/l where ǫ = Ω(1/N c). By standard Chernoff bounds,

Pr

[

Xi > (1 + ǫ)
N

l

]

≤ e−ǫ2 E[Xi]/3 ≤ e−N0.75−2c/3.

By the union bound, the probability of the process failing is at most l ≤ N1/4 times the probability
above.

Thus the expectations E[P] for monomials P calculated in Section 3.2 are within a factor
1 + e−Ω(N0.75−2c) of the correct ones. To estimate the overall error in the expectation E[PA], we
also need bounds on the coefficients of various monomials P in the polynomial PA. (A small error
times a large coefficient might mean a larger error.) These can be obtained as follows.

Lemma 15. Let PA be the polynomial describing the acceptance probability of a quantum algorithm.
Let P be a monomial of degree k. Then the absolute value of the coefficient of P in the polynomial
PA is at most 2k.

17

Proof. Let S be the set of variables that appear in PA. For a set of variables S′, let x(S′) be the
input in which xi = 1 for all i ∈ S′ and xi = 0 for all other i. By inclusion-exclusion, the coefficient
of P is equal to

∑

S′⊆S

(−1)|S|−|S′|PA(x(S
′)). (8)

Since PA describes the acceptance probability of a quantum algorithm, 0 ≤ PA(x(S
′)) ≤ 1. Since

the sum (8) contains 2k terms, its magnitude is at most 2k.

Since our input is described by O(N2) variables, PA contains at most
(O(N2)

k

)

≤ N2k monomials
P of degree k. Therefore, the overall error introduced by the fact that the process generating the
probability distribution PM,l may fail is at most

N2k2ke−Ω(N0.75−2c). (9)

Since k < N1/4, we have N2k2k = eO(N1/2 logN). If c < 0.125, then N1/2 logN = o(N0.75−2c) and
the overall error (9) is of the order e−Ω(N0.75−2c).

C.2 Expansion properties of subgraphs of unions of random matchings

Here we prove that graphs drawn from the distribution PM,1 (restricted to the l = 1 case) are
expanders with high probability. As described in Section 3.1, we consider a random graph G on N
vertices obtained in two steps:

1. Let G′ = (V ′, E′) be a union of c perfect matchings on M vertices;

2. Let G = (V,E) be the induced subgraph on a random subset of N vertices of G′.

We follow the proof that a union of 3 random matchings is an expander with high probability,
as described in [17].

Lemma 16. Assume that M ≤ (1 + 1
Na)N for some a > 0 and that a, c satisfy c ≥ 5 and

ac > 2. Then there exists α > 0 such that a random graph G generated according to the probability
distribution PM,1 is an α-expander with probability 1− o(1).

Proof. Let Ei,j be the event that in graph G, for two sets of vertices U1, U2 with |U1| = i, |U2| = j,
U1 ∩ U2 = ∅, all the neighbors of vertices v ∈ U1 belong to U1 ∪ U2. By the union bound, the
probability that G is not an α-expander is upper bounded by

N/2
∑

i=1

(

N

i

)(

N

αi

)

Pr[Ei,αi]. (10)

We claim the following:

Proposition 17.

Pr[Ei,αi] ≤
(

1

Na
+

(1 + α)i

N

)
ci
2

.

Using this claim, we can upper bound (10) by

N/2
∑

i=1

(

N

i

)(

N

αi

)(

1

Na
+

(1 + α)i

N

) ci
2

.

18

If (1 + α)i ≤ 3N1−a, we can upper bound the ith term of this sum by

N (1+α)i

(

4

Na

) ci
2

=
2ci

N (ac
2
−1−α)i

.

If ac > 2(1 + α), the sum of all such terms is o(1) because they form a geometric progression with
common ratio 2c/Nac/2−1−α = o(1).

Terms with (1 + α)i ≤ 3N1−a are upper bounded by

(

eN

i

)i (eN

αi

)αi(4(1 + α)i

3N

) ci
2

=

(

i

N

)(c/2−1−α)i e(1+α)i

ααi

(

4(1 + α)

3

)ci/2

≤
(

1

2

)(c/2−1−α)i e(1+α)i

ααi

(

4(1 + α)

3

)ci/2

.

If c ≥ 5 and α is sufficiently small, this is equal to Ci with C = 1−Ω(1). The sum of Ci over all i
such that (1 + α)i ≤ 3N1−a is C−Ω(N1−a) = o(1).

To establish Lemma 16, it remains to prove Proposition 17.

Proof of Proposition 17. To show this, we first observe that Ei,αi is equivalent to all neighbors of
vertices v ∈ U1 in graph G′ belonging to (V ′ − V) ∪ U1 ∪ U2. Let m = |(V ′ − V) ∪ U1 ∪ U2|. Then
m ≤ N

Na + (1 + α)i because there are M − N ≤ N
Na vertices in V ′ − V and (1 + α)i vertices in

U1 ∪ U2. We consider one of c matchings. The probability that the first vertex v ∈ Ui is matched
to a vertex in (V ′ − V) ∪ U1 ∪ U2 is equal to m−1

M−1 . The probability that the next vertex v ∈ U1 is

matched to a vertex in (V ′ − V) ∪ U1 ∪ U2 is equal to m−3
M−3 , and so on. Since |U1| = i, there must

be at least i/2 edges incident to a vertex v ∈ U1. Therefore, the probability that all vertices v ∈ U1

are matched to vertices in (V ′ − V) ∪ U1 ∪ U2 is

m− 1

M − 1

m− 3

M − 3
· · · m− i+ 1

M − i+ 1
≤

(m

M

)i/2
.

The probability that this happens for all c matchings is at most (mM)ci/2. Since M > N , we have
m
M < 1

Na + (1+α)i
N . The desired result follows.

C.3 Lower bound on polynomial degree

In this section, we prove Lemma 4. We do not believe that this result is new, but it does not appear
in exactly this form in either [1] or [32]. Aaronson’s argument in [1] is weaker in one place, while Shi
[32] proves a stronger lower bound of Ω(n1/3) for the collision problem using a different reduction
to polynomial approximation (which does not seem to be applicable to our graph problem). Thus,
we include the proof of Lemma 4 for completeness.

The proof uses the following result of Paturi [29].

Theorem 18. Let g(x) be a polynomial such that |g(x)| ≤ 1 for all integers x ∈ [A,B] and
|g(ζ)− g(⌊ζ⌋)| ≥ c for some constant c > 0 and some ζ ∈ [A,B]. Then the degree of g(x) is

Ω
(

√

(ζ −A+ 1)(B − ζ + 1)
)

.

19

Proof of Lemma 4. We consider the behavior of f(M, l) when we fix M = aN . Similarly to [1], we
consider two cases:

Case 1. Suppose |f(aN, l)| ≤ 4
3 for all l ∈ {1, . . . , δ}. Then g(l) = 3

4f(aN, l) is a polynomial
satisfying |g(l)| ≤ 1 for all l ∈ {1, . . . , δ}. We have |g(1)− g(2)| ≥ 3

4ǫ, so by Theorem 18, the degree

of g is Ω(
√
δ).

Case 2. Suppose |f(aN, l)| > 4
3 for some l ∈ {1, . . . , δ}. Fix this value of l, and let M0 be the

smallest value for which (M0, l) is δ-good. Let M1 be the largest value for which (M1, l) is δ-good.
We define g(x) = f(M0 + xl, l). Then |g(x)| ≤ 1 for all x ∈ {0, 1, . . . ,m} where m = M1−M0

l . Also,

|g(x0)| > 4
3 for x0 =

aN−M0
l .

We have M0 = l⌈1l (aN − δ3/2)⌉ < aN − δ3/2 + l and M1 = l⌊1l (aN + δ3/2)⌋ > aN + δ3/2 − l.

Therefore, m > 2δ3/2

l − 2. Since l ≤ δ, this means that m ≥ 2
√
δ − 2. Also, the above bounds

on M0 and M1 imply that M0+M1
2 ∈ [aN − l

2 , aN + l
2]. Therefore, aN ∈ [M0+M1−l

2 , M0+M1+l
2], so

x0 ∈ [m−1
2 , m+1

2]. By Theorem 18, the degree of g must be Ω(m) = Ω(
√
δ).

C.4 A partition identity

Proof of Proposition 5. We want to establish the identity

∑

L′ : L′′≤L′≤L

cL′,L = 0 (11)

for any L,L′′ with L′′ < L. We prove the claim by induction on |L′′| − |L|.
If |L′′| − |L| = 1, then the sum (11) is just 1 + cL′′,L. Since the only way to obtain L′′ by

successive refinements of L consists of one step L′′ < L, we have cL′′,L = −1 and 1 + cL′′,L = 0.
For the inductive case, we can express

cL′,L = −
∑

L1 : L′≤L1<L

cL′,L1 (12)

where the term with L1 = L′ counts the path L′ < L and a general term counts the paths
L′ < · · · < L1 < L. If we expand each cL′,L on the left hand side of (11) using (12), we get

−
∑

L′ : L′′≤L′≤L

∑

L1 : L′≤L1<L

cL′,L1

 = −
∑

L′,L1 : L′′≤L′≤L1<L

cL′,L1

= −
∑

L1 : L′′≤L1<L

∑

L′ : L′′≤L′≤L1

cL′,L1

 .

Each of the terms in brackets on the right hand side is 0 by the inductive assumption.

C.5 Proof of Proposition 6: The final step

To complete the proof of Proposition 6, it remains to show the following.

Proposition 19. Let F (L′) = Sα1(L
′) . . . Sαm(L

′) where αj ≥ 1 and
∑

j(αj − 1) ≤ k − |L| − 1.
Then

∑

L′ : L′≤L

cL′,LF (L′) = 0. (13)

20

Proof. First, observe that for αi = 1, S1(L
′) =

∑c
j=1

∑k
i=1 di,j , which is independent of the partition

L. Therefore, S1(L
′) is just a multiplicative constant, and it suffices to prove the claim assuming

αi ≥ 2 for all i.
We expand each F (L′) in (13) into a linear combination of terms, where each term is a product

of di,js. Consider one such term. We can write it as

m
∏

l=1

αl
∏

o=1

dil,o,jl,o (14)

where
∏αl

o=1 dil,o,jl,o is the part that comes from expanding Sαl
(L′).

We would like to show that the sum of all coefficients of (14) in the expansion of (13) is 0. In
order for a term (14) to appear in the expansion of F (L′), for each l, Il = {il,1, . . . , il,αl

} must be
contained in one class S of the partition L′.

We consider two cases. If, for some i, Il is not contained in one class S of the partition L, then
Il is also not contained in one class of any other L′, because all the L′s in (13) are refinements of
L. Then the term (14) does not appear in the expansion of any F (L′).

Therefore, we can restrict to terms for which each Il is contained in one class S of the partition
L. We consider a partition L′′ defined as follows. Let G be a graph with vertex set {1, . . . , k} and
edges from il,1 to il,2, . . ., il,αl

, for each l. The classes of L′′ are the connected components of G. In
other words, L′′ is the finest partition such that, for all l, all elements of Il are in the same class.

If a term (14) appears in the expansion of F (L′), then L′′ ≤ L′. Therefore, the sum of all the
coefficients of (14) is

∑

L′ : L′′≤L′≤L

cL′,L.

We claim that L′′ < L; then this sum is 0 by Proposition 5. Clearly, L′′ ≤ L, so it remains to prove
that L 6= L′′.

Observe that the graph G used to define L′′ has µ =
∑

j(αj − 1) edges. Therefore, it has at
least k−µ connected components, i.e., |L′′| ≥ k−µ. Since µ ≤ k−|L|−1, we have |L| ≤ k−µ−1,
so L 6= L′′.

21

	1 Introduction
	2 Quantum Algorithms for Bipartiteness and Expansion
	3 Quantum Lower Bound for Testing Expansion
	3.1 Overview
	3.2 Proof of [lem:apx]Lemma ??

	A Quantum algorithm for testing bipartiteness
	A.1 Derandomization
	A.2 A quantum algorithm

	B Quantum algorithm for testing expansion
	B.1 Derandomization
	B.2 A quantum algorithm

	C Quantum lower bound for testing expansion
	C.1 Bounding the failure probability and its impact
	C.2 Expansion properties of subgraphs of unions of random matchings
	C.3 Lower bound on polynomial degree
	C.4 A partition identity
	C.5 Proof of [prop:2]Proposition ??: The final step

