Skip to main content

A Deterministic Algorithm for the Frieze-Kannan Regularity Lemma

  • Conference paper
  • 1506 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6845))

Abstract

The Frieze-Kannan regularity lemma is a powerful tool in combinatorics. It has also found applications in the design of approximation algorithms and recently in the design of fast combinatorial algorithms for boolean matrix multiplication. The algorithmic applications of this lemma require one to efficiently construct a partition satisfying the conditions of the lemma.

Williams [24] recently asked if one can construct a partition satisfying the conditions of the Frieze-Kannan regularity lemma in deterministic sub-cubic time. We resolve this problem by designing an \(\tilde O(n^{\omega})\) time algorithm for constructing such a partition, where ω < 2.376 is the exponent of fast matrix multiplication. The algorithm relies on a spectral characterization of vertex partitions satisfying the properties of the Frieze-Kannan regularity lemma.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: Eigenvalues and expanders. Combinatorica 6, 83–96 (1986), doi:10.1007/BF02579166

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Duke, R.A., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic aspects of the regularity lemma. J. Algorithms 16, 80–109 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC 1984, pp. 72–80. ACM, New York (2004)

    Chapter  Google Scholar 

  4. Bansal, N., Williams, R.: Regularity lemmas and combinatorial algorithms. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 745–754. IEEE Computer Society, Washington, DC, USA (2009)

    Chapter  Google Scholar 

  5. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  MATH  Google Scholar 

  6. Coppersmith, D.: Rapid multiplication of rectangular matrices. SIAM J. Computing 11, 467–471 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 1–6. ACM, New York (1987)

    Google Scholar 

  8. Duke, R.A., Lefmann, H., Rödl, V.: A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput. 24(3), 598–620 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frieze, A., Kannan, R.: The regularity lemma and approximation schemes for dense problems. In: Annual IEEE Symposium on Foundations of Computer Science, p. 12 (1996)

    Google Scholar 

  10. Frieze, A., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19, 175–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frieze, A., Kannan, R.: A simple algorithm for constructing Szemerédi’s regularity partition. Electr. J. Comb. 6 (1999) (electronic)

    Google Scholar 

  12. Gowers, W.T.: Quasirandomness, counting and regularity for 3-uniform hypergraphs. Comb. Probab. Comput. 15, 143–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gowers, W.T.: Lower bounds of tower type for Szemerédi’s uniformity lemma. Geometric And Functional Analysis 7, 322–337 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kohayakawa, Y., Rödl, V., Thoma, L.: An optimal algorithm for checking regularity. SIAM J. Comput. 32, 1210–1235 (2003); Earlier verison in SODA 2002

    Article  MathSciNet  MATH  Google Scholar 

  15. Komlós, J., Shokoufandeh, A., Simonovits, M., Szemerédi, E.: The regularity lemma and its applications in graph theory, pp. 84–112. Springer-Verlag New York, Inc., New York (2002)

    MATH  Google Scholar 

  16. Kuczyński, J., Woźniakowski, H.: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and Applications 13(4), 1094–1122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovász, L.: Very large graphs. In: Jerison, D., Mazur, B., Mrowka, T., Schmid, W., Stanley, R., Yau, S.T. (eds.) Current Developments in Mathematics (2008)

    Google Scholar 

  18. O’Leary, D.P., Stewart, G.W., Vandergraft, J.S.: Quasirandomness, counting and regularity for 3-uniform hypergraphs. Mathematics of Computation 33, 1289–1292 (1979)

    Article  MathSciNet  Google Scholar 

  19. Rödl, V., Schacht., M.: Regularity lemmas for graphs. In: Fete of Combinatorics and Computer Science. Bolyai Society Mathematical Studies, vol. 20, pp. 287–325. Springer, Heidelberg

    Google Scholar 

  20. Szemerédi, E.: On sets of integers containing no k elements in arithmetic progressions. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica 27, 199–245 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Szemerédi, E.: Regular partitions of graphs. In: Problémes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pp. 399–401. Éditions du Centre National de la Recherche Scientifique (CNRS), Paris (1978)

    Google Scholar 

  22. Trevisan, L.: Pseudorandomness in computer science and in additive combinatorics. In: An Irregular Mind. Bolyai Society Mathematical Studies, vol. 21, pp. 619–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Trevisan, L.: Lecture notes, http://lucatrevisan.wordpress.com/

  24. Williams, R.: Private Communication (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dellamonica, D., Kalyanasundaram, S., Martin, D., Rödl, V., Shapira, A. (2011). A Deterministic Algorithm for the Frieze-Kannan Regularity Lemma. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics