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Abstract. In two-player games on graph, the players construct an iefjpath
through the game graph and get a reward computed by a payatida over in-
finite paths. Over weighted graphs, the typical and mosietiylyoff functions
compute the limit-average or the discounted sum of the msvalong the path.
Beside their simple definition, these two payoff functionfog the property that
memoryless optimal strategies always exist.

In an attempt to construct other simple payoff functionsdefne a class of pay-
off functions which compute an (infinite) weighted averag¢he rewards. This
new class contains both the limit-average and discountedfsaoctions, and we
show that they are the only members of this class which indwemoryless opti-
mal strategies, showing that there is essentially no oihgsle payoff functions.

1 Introduction

Two-player games on graphs have many applications in canpatence, such as the
synthesis problem [7], and the model-checking of open remslystems [1]. Games
are also fundamental in logics, topology, and automataryhi@®, 15, 21]. Games with
gquantitative objectives have been used to design resmanmstrained systems [28, 9, 3,
4], and to support quantitative model-checking and rolessti5, 6, 27].

In a two-player game on a graph, a token is moved by the plajferg) the edges
of the graph. The set of states is partitioned into playetaies from which playet
moves the token, and player-2 states from which pl&yaoves the token. The inter-
action of the two players results in a play, an infinite patiotigh the game graph. In
qualitative zero-sum games, each play is winning for onéefdlayer; in quantitative
games, a payoff function assigns a value to every play, wisighaid by player to
playerl. Therefore, playet tries to maximize the payoff while playértries to mini-
mize it. Typically, the edges of the graph carry a reward, thedpayoff is computed as
a function of the infinite sequences of rewards on the play.

Two payoff functions have received most of the attentioniterdture: themean-
payoff function (for example, see [11, 28, 16, 20, 12, 22]) anddiseounted-surfunc-
tion (for example, see [25, 12, 23, 24, 9]). The mean-payalff&is the long-run average
of the rewards. The discounted sum is the infinite sum of thergs under a discount
factor0 < A < 1. For an infinite sequence of rewards= wyw; . .., we have:
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While these payoff functions have a simple, intuitive, aratimematically elegant def-
inition, it is natural to ask why they are playing such a cahtole in the study of
quantitative games. One answer is perhapsritehorylessptimal strategies exist for
these objectives. A strategy is memoryless if it is indegendf the history of the play
and depends only on the current state. Related to this gyoigehe fact that the prob-
lem of deciding the winner in such games is in NRoNP, while no polynomial time
algorithm is known for this problem. The situation is simila the case of parity games
in the setting of qualitative games where it was proved thatgarity objective is the
only prefix-independent objective to admit memoryless wigrstrategies [8], and the
parity condition is known as a canonical way to expresggular languages [26].

In this paper, we prove a similar result in the setting of ditative games. We con-
sider a general class of payoff functions which compute &nifa weighted average of
the rewards. The payoff functions are parameterized byfantmsequence of rational
coefficients{c, }»>0, and defined as follows:

n

WeightedAvg(w) = lim inf w
n—oo Zi:o Ci

We consider this class of functions for its simple and ndtdedinition, and because
it generalizes both mean-payoff and discounted-sum whachbe obtained as special
cases, namely far; = 1 for all* i > 0, andc; = A respectively. We study the prob-
lem of characterizing which payoff functions in this clagkrdt memoryless optimal
strategies for both players. Our results are as follows:

1. If the series)";-, ¢; converges (and is finite), then discounted sum isahly
payoff function that admits memoryless optimal stratefpedoth players.

2. Ifthe serie”;” , ¢; does not converge, but the sequefieg},.>o is bounded, then
for memoryless optimal strategies the payoff function isiegjent to the mean-
payoff function (equivalent for the optimal value and ominstrategies of both
players).

Thus our results show that the discounted sum and meanfgapcfions, beside
their elegant and intuitive definition, are the only memijeym a large class of natural
payoff functions that are simple (both players have mensesg/loptimal strategies).
In other words, there is essentially no other simple payaficfions in the class of
weighted infinite average payoff functions. This furthetabishes the canonicity of
the mean-payoff and discounted-sum functions, and sugjgfest they should play a
central role in the emerging theory of quantitative autaaid languages [10, 17, 2,
5].

In the study of games on graphs, characterizing the clagges/off functions that
admit memoryless strategies is a research direction thebban investigated in the
works of [13, 14] which give general conditions on the payoffctions such that both
players have memoryless optimal strategies, and [19] whielsents similar results
when only one player has memoryless optimal strategiesc@heitions given in these
previous works are useful in this paper, in particular thet flaat it is sufficient to check

“ Note that other sequences also define the mean-payoff metich ag; = 1 + 1/2°.



that memoryless strategies are sufficient in one-playeegdf]. However, conditions
such as sub-mixing and selectiveness of the payoff funeiemot immediate to es-
tablish, especially when the sum of the coefficiefts},,>o does not converge. We
identify the necessary condition of boundedness of theficasits{c,, },,>o to derive
the mean-payoff function. Our results show that if the seqeés convergent, then dis-
counted sum (specified 48" },,>0, for A < 1) is the only memoryless payoff function;
and if the sequence is divergent and bounded, then meariffspyecified as{A\" },,>¢
with A = 1) is the only memoryless payoff function. However we showt ththe se-
quence is divergent and unbounded, then there exists arsgefue' },,>o, with A > 1,
that does not induce memoryless optimal strategies.

2 Definitions

Game graphs.A two-playergame graphG = (Q, F,w) consists of a finite s of
states partitioned into playédrstates), and player-2 stateQ, (i.e.,Q = Q1 U Q2),
and asef C @Q x Q of edges such that for ajl € Q, there exists (at least ong) € Q
such that(q, ¢’') € E. The weight functionv : E — Q assigns a reward to each edge.
For a statey € Q, we writeE(q) = {r € Q | (¢,r) € E} for the set of successor states
of ¢q. A player-1 gameis a game graph whe®@; = Q andQ@, = (. Player2 games are
defined analogously.

Plays and strategiesA game onG starting from a state, € @ is played in rounds
as follows. If the game is in a player-1 state, then playehooses the successor state
from the set of outgoing edges; otherwise the game is in aepiagtate, and player
2 chooses the successor state. The game resultplay&rom ¢, i.e., an infinite path

p = {qoq1 - ..) suchthatq;, ¢;+1) € E forall: > 0. We write(? for the set of all plays.
The prefix of length: of p is denoted by(n) = qo . . . ¢,,. A Strategy for a player is a
recipe that specifies how to extend plays. Formalbktrategyfor player1 is a function
o:Q*Q1 — Qsuchthatg,o(p-q)) € Eforall p € Q* andg € Q1. The strategies
for player 2 are defined analogously. We wilteand I7 for the sets of all strategies for
player 1 and player 2, respectively.

An important special class of strategies anemorylesstrategies which do not
depend on the history of a play, but only on the current skedeh memoryless strategy
for player 1 can be specified as a functioen@; — @ such thatr(q) € E(q) for all
q € @1, and analogously for memoryless player 2 strategies.

Given a starting state € @), theoutcomeof strategiesr € X' for player 1, andr €
IT for player 2, is the play(s, o, 7) = (goq1 - - .) such that gy = ¢ and for allk > 0,
if g € Q1,theno(qo,q1,--.,q9k) = qut+1, and ifgi. € Qo, thenw(qo,q1,--.,qx) =
qk+1-

Payoff functions, optimal strategies.The objective of playet is to construct a play
that maximizes gayoff functionp : 2 — R U {—o0, o0} which is a measurable
function that assigns to every value a real-valued paydfé Value for playet is the
maximal payoff that can be achieved against all strateditsecother player. Formally
the value for player 1 for a starting statés defined as

valy(¢) = sup nf ¢(wlg, o, 7).
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A strategyo™ is optimalfor player 1 fromyg if the strategy achieves at least the value of
the game against all strategies for player 2, i.e.,

7THg’7 d(w(g, 0", m)) = vali(@).
The values and optimal strategies for player 2 are defineldognasly.

The mean-payoff and discounted-sum functions are exanmplpayoff functions
that are well studied, probably because they are simpledrséimse that they induce
memoryless optimal strategies and that this property gietwhceptually simple fix-
point algorithms for game solving [25, 11, 28, 12]. In an iait¢ to construct other sim-
ple payoff functions, we define the classwéighted average payofighich compute
(infinite) weighted averages of the rewards, and we ask whégtoff functions in this
class induce memoryless optimal strategies.

We say that a sequende,,},>o of rational numbers haso zero partial sunif
Yoi,ci # 0foralln > 0. Given a sequencgr, }»,>o With no zero partial sum, the
weighted average payoff functior a play(goqiq2 - . .) is

¢ (qo1g2 ) = lim inf iz CZ{UO(Z Gix1)

Note that we uséim inf,, . in this definition because the plain limit may not exist
in general. The behavior of the weighted average payofftfans crucially depends on
whether the serie§ = >":° ¢, converges or not. In particular, the plain limit exists
if S converges (and is finite). Accordingly, we consider the sasfeconverging and
diverging sum of weights to characterize the class of weighierage payoff functions
that admit memoryless optimal strategies for both playdte that the case where
¢; = 1forall i > 0 gives the mean-payoff function (arftldiverges), and the case
¢ = M for0 < A < 1 gives the discounted sum with discount factofand S
converges). All our results hold if we considém sup,,_,., instead oflim inf,,
in the definition of weighted average objectives.

In the sequel, we consider payoff functions Q¥ — R with the implicit assump-
tion that the value of a play g1 g2 - - - € Q“ according tap is ¢(w(qo, g1)w(q1,q2) - - .)
since the sequence of rewards determines the payoff value.

We recall the following useful necessary condition for meyhess optimal strate-
gies to exist [14]. A payoff functiorp is monotonef whenever there exists a finite
sequence of rewardse Q* and two sequences v € Q¥ such thaip(zu) < ¢(zv),
theng(yu) < ¢(yv) for all finite sequence of rewardse Q*.

Lemma 2.1 ([14]).If the payoff functior induces memoryless optimal strategy for all
two-player game graphs, thehis monotone.

3 Weighted Average with Converging Sum of Weights

The main result of this section is that for converging sum ddighits (i.e., if
lim, 00 > g¢i = ¢* € R), the only weighted average payoff function that induce
memoryless optimal strategies is the discounted sum.
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Fig. 1. Examples of one-player game graphs.

Theorem 3.1. Let (¢, )nen be a sequence of real numbers with no zero partial sum
suchthay~;° ¢; = ¢* € R. The weighted average payoff function defineddy,,ci
induces optimal memoryless strategies forkafilayer game graphs if and only if there
exists0 < A < 1 suchthate;11 = A-¢; forall ¢ > 0.

To prove Theorem 3.1, we first use its assumptions to obtaiagsary conditions
for the weighted average payoff function defined(by),cn to induce optimal mem-
oryless strategies. Bgssumptions of Theorem 3Me refer to the fact thate,, ),en
is a sequence of real numbers with no zero partial sum su¢thpifia, c¢; = ¢* € R,
and that it defines a weighted average payoff function tthiées optimal memoryless
strategies for al2-player game graphs. All lemmas of this section use the thenags-
tions of Theorem 3 1, but we generally omit to mention them.

Letd,, ZZ o Cir | =lim inf, oo = a andL = limsup,,_, ., d . The assumption
that} ;° ¢; = ¢* € R implies thatl # 0.

Note thatcy # 0 since(c,)nen IS @ sequence with no zero partial sum. We can
define the sequeneg, = <= which defines the same payoff functign Therefore we
assume without loss of generahty thgt= 1.

Lemma 3.1. If the weighted average payoff function defined &y)..cn induces opti-
mal memoryless strategies for @lplayer game graphs, then< i < L < 1.

Proof. Consider the one-player game gragh shown in Fig. 1. In one-player games,
strategies correspond to paths. The two memoryless Seatgiye the pathg” and1v
with payoff value0 and1 respectively. The strategy which takes edge with reward
once, and then always the edge with rewdgets payofiy (10+) = liminf,, i =

{. Similarly, the path01“ has payoff¢ (01¢) = liminf, (1— %) = 1-

limsup,,_, d = 1 — L. Since all such payoffs must be between the payoffs ob-
tained by the only two memoryless strategies, we liave) andL < 1, and the result
follows (L > [ follows from their definition). a

Lemma 3.2. There existavy € N such thatwyl > 1 and the following inequalities
hold, forallk > 0: ¢xl <1 —diL andcpwgl > 1 — di L.

Proof. Sincel > [ > 0 (by Lemma 3.1), we can choosg < N such thatwyl > 1.
Consider the game gragh, shown in Fig. 1 and the case when= 1. The optimal
memoryless strategy is to stay on the starting state foleeeause)(10¥) = [ <
#»(1") = 1. Using Lemma 2.1, we conclude that sintd0«) < ¢(1*), we must have

#(0%10%) < p(0F1¥) ie.cpl <1 — (Zf 0101) L which impliescil < 1 — di L.



Now consider the case when = wy in Fig. 1. The optimal memoryless strategy
is to choose the edge with rewang from the starting state sinegw,0%) = wpl >
(1) = 1. Using Lemma 2.1, we conclude that singiev,0¥) > ¢(1¢), we must have

#(0Fw0%) > p(0F1¢) i.e.cpwol > 1— (Zf 0101) L which impliesciwgl > 1—dj L.
O

From the inequalities in Lemma 3.2, it is easy to see thatesinc > 1 we must
havec;, > 0 for all k.

Corollary 3.1. Assuming = 1, we have;;, > 0 forall £ > 0.

It follows from Corollary 3.1 that the sequengég,).,>¢ is increasing and bounded
from above (ifd,, was not bounded, then there would exist a subsequehg¢e which
diverges, implying that the sequen(:gl—} converges td in contradiction with the

fact thatlim inf,,_, o, = = =1>0). Thereforedn must converge to some real number
sayc* > 0 (sincecy = 1). We need a last lemma to prove Theorem 3.1. Recall that
we havec; > 0 for all i and)"°, ¢; = ¢* > 0. Given a finite game grap¥, let W

be the largest reward in absolute value. For any sequen@vafds(w,,) in a run on

G, the sequencg,, = Y ., c¢i(w; + W) is increasing and bounded from above by
2 - Wd, and thus by2 - Wc*. Thereforeyy,, is a convergent sequence ang-, c;w;

converges as well. Now, we can write the payoff functlogtesowl )= ZCM

We decompose* into Sy = >~ co; andSy = .7 caiq1, i.e.¢* = Sy + S1. Note
thatSy andS; are well defined.

Lemma 3.3. If there exist numbers, 3,~ such thatwSy + 851 < v(So + S1), then
(v —a)e; > (B8 —)ciqq forall i > 0.

Proof. Consider the game graph, as shown in Fig. 1. The conditianS, + 851 <
~v(So + S1) implies that the optimal memoryless strategy is to alwaysosk the edge
with rewardy. This means that(v'a8v%) < ¢(v*) hencenc;+feir1 < y(ci+civ1),
i.e.(y—a)e > (8 —7)cip foralli > 0. O

We are now ready to prove the main theorem of this section.

Proof (of Theorem 3.1)irst, we show thatt; < Sy. By contradiction, assume that
S1 > Sy. Choosingy = 1, 8 = —1, andy = 0 in Lemma 3.3, and sinc&, — S; <0,
we get—c; > —c;qq for all ¢ > 0 which impliese,, > ¢o = 1 for all n, which
contradicts tha}p ;- ¢; converges te* € R.

Now, we haveS; < Sy and let)\ = gl < 1. Consider a sequence of rational

numbersk— converging to\ from the right, i.e.;.= > X for all n, andlim,, . L= == =\
Takingae =1, =k, +1,+1,andy =1, +1 in Lemma 3.3, and since the condition
So + (k: + 1, +1)S1 < (I, +1)(So + S1) is equivalent tdk,, S1 < 1,,So which holds
smcek" > A\, we obtain,,¢; > k,c; 1 foralln > 0and alli > 0, thatisc;;1 < —cZ
and in the limit forn — oo, we gete;11 < A¢; forall i > 0.

Similarly, consider a sequence of rational numbergsonverging to\ from the left.
Takinga =7, +s,+1,8=1,andy =s, +1in Lemma 3.3, and since the condition
(rn+sn+1)So+ 51 < (sn +1)(So + 51) is equivalent ta,, Sy < s,,.51 which holds



smce’”" < A, we obtainr,¢; < s,c;y1 foralln > 0and alli > 0, thatisc;;1 > —cZ
andi |n the limit forn, — oo, we gete; 11 > Ac¢; foralli > 0.

The two results imply that; . ; = A¢; for all « > 0 where0 < A < 1. Note that
A # 1 becausé . ¢; converges. 0

Since it is known that for; = A, the weighted average payoff function induces
memoryless optimal strategies in all two-player gamespoféma 3.1 shows that dis-
counted sum is the only memoryless payoff function when time sf weightsy_.°  ¢;
converges.

4 Weighted Average with Diverging Sum of Weights

In this section we consider weighted average objectives that the sum of the weights
Z;’io ¢; is divergent. We first consider the case when the sequenggcy is bounded
and show that the mean-payoff function is the only memosytez.

4.1 Bounded sequence

We are interested in characterizing the class of weightedaae objectives that are
memoryless, under the assumption the sequéngceis boundedi.e., there exists a
constantc such that/c,,| < ¢ for all n. The boundedness assumption is satisfied by
the important special case of regular sequence of weighishvdan be produced by a
deterministic finite automaton. We say that a sequéngg is regularif it is eventually
periodic, i.e. there exisiy > 0 andp > 0 such thak,, = ¢, for all n > ny. Recall
that we assume the partial sum to be always non-zerodj,e= Z;:Ol c; # 0 for all

n. We show the following result.

Theorem 4.1. Let (¢, )nen be a sequence of real numbers with no zero partial sum
such thaty" .~ |c;| = oo (the sum is divergent) and there exists a constasich that

|ei] < cforall i > 0 (the sequence is bounded). The weighted average payadftfaric
defined by ¢, )»en induces optimal memoryless strategies foRatllayer game graphs

if and only if ¢ coincides with the mean-payoff function over regular words

Remark.From Theorem 4.1, it follows that all mean-payoff functiehever bounded
sequences that induce optimal memoryless strategies anakmt to the mean-payoff
function, in the sense that the optimal value and optimateagjies fok are the same as
for the mean-payoff function. This is because memorylessesiies induce a play that
is a regular word. We also point out that it is not necessaaytthe sequence:,),>o
consists of a constant value to define the mean-payoff fomdtor example, the payoff
function defined by the sequencg = 1 + 1/(n + 1)? also defines the mean-payoff
function.

We prove Theorem 4.1 through a sequence of lemmas. In thenfiol lemma we
prove the existence of the limit of the sequerﬁ%‘g}nzo.

Lemma 4.1. If liminf,,_,o =~ = 0, thenlimsup,,_,,, = = 0.



Proof. Sincel = liminf, . i = 0, there is a subsequengd,,, } which either
diverges to+oco or —co.

1. If the subsequendgl,,, } diverges to+-oo, assume without loss of generality that
eachd,,, > 0. Consider the one-player game graghshown in Figure 1. We consider
the run corresponding to taking the edge with weightfor the firstn, steps followed
by taking thed edge forever. The payoff for this run is given by

_dnk

1
lim inf = —d,,, -limsup — = —d,, - L.
n—00 n n— o0 n

Since we assume existence of memoryless optimal stratéggsayoff should lie be-
tween—1 and0. This implies thatd,, - L < 1 for all k. SinceL > [ > 0 and the
sequencd,,, is unbounded, we must have= 0.

2. If the subsequencgl,,, } diverges to—oco, assume that eaat),, < 0. Consider
the one-player game graghy shown in Figure 1. We consider the run corresponding
to taking the edge with weight for the firstn,; steps followed by taking the edge
forever. The payoff for this run is given by

1
iminf —% — _ limsup — = — .
hnrggf a, |dn, hgg;p T |dn,| - L.
This payoff should lie betweelhand1 (optimal strategies being memoryless), and this
impliesL = 0 as above. a

Sincelimsup,, .., d,, = 0o, Lemma 4.1 concludes that the sequelflgg} con-

verges td) i.e. lim,, .o di = 0. It also gives us the following corollaries which are a
simple consequence of the fact thiat inf,,_,(ay, + b,) = a + liminf, - by, if ay,
converges ta.

Corollary 4.1. If [ = 0, then the payoff functioph does not depend upon any finite
prefix of the run, i.e¢(ajas . .. apu) = ¢(0Fu) = ¢(b1by ... byu) for all a;'s andb;’s.

Corollary 4.2. If I = 0, then the payoff functiog does not change by modifying finitely
many values in the sequengs, },>o.

By Corollary 4.1, we have(za®”) = a forall a € R. For0 < i < k — 1, consider
the payoffSy; = ¢ ((0°10*~*=1)«) for the infinite repetition of the finite sequence of
k rewards in which all rewards afieexcept thg: + 1)th which is1. We show thafSy, ;
is independent of.

Lemma 4.2. We haveSy o = Sk,1 = -+ = Ske—1 < 3.

Proof. If S0 < Si,1 then by prefixing by the single letter wobdind using Lemma 2.1
we conclude tha$, 1 < Sj 2. We continue this process until we g8t o < S r—1.
After applying this step again we get

Skp—1 < ¢ (0(0F11)%) = ¢ (1(0F'1)%) = ¢ ((10*~1)*) = Sp.o.

Hence, we havé} o < Sk.1 < -+ < Skx—1 < Sko. Thus we havesy, ; is a constant
irrespective of the value af A similar argument works in the other case whgn, >
Sk1.
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Fig. 2. The game& (k, 7).

Using the fact thalim inf,, oo (a1, + a2, + -+ + apn) > liminf, o0 a1, +

-+ liminf, o0 akn, We getthatS, ; < £ for0 <i <k -—1. O
Let T, = —¢ ((0°(—1)0*~"~1)~). By similar argument as in the proof of
Lemma 4.2, we show thdt, o = Tr1 = - = Thp—1 > 7.

We now show thatd,,) must eventually have always the same sign, i.e., theresexist
no such thasign(d,,) = sign(d,,) for all m,n > ny. Note that by the assumption of
non-zero partial sums, we hawg # 0 for all n.

Lemma 4.3. Thed,,’s eventually have the same sign.

Proof. Let ¢ > 0 be such thatc,| < ¢ for all n. Since(d,,) is unbounded, there
existsng such thatd,| > ¢ for all n > ng and then if there exists: > n( such
thatd,, > 0 andd,,+1 < 0, we must havel,, > c andd,,+1 < —c. Thus we have
Cm+1 = dm+y1—dm < —2¢, and hencée,, 1] > 2¢ which contradicts the boundedness
assumption offic,, ). O

If the d,,’s are eventually negative then we use the sequdrfe= —c,} to ob-
tain the same payoff and in this cadg = — >, ¢; will be eventually positive.
Therefore we assume that there is somesuch thatd,, > 0 for all n > ng. Let
B8 = maz{|co|, |c1], - - -, |cne | }- We replace by 1 and alle;'s with 8 for 1 < i < ny.
By corollary 4.2 we observe that the payoff function willllstiot change. Hence, we
can also assume thét > 0 for all n > 0.

Lemma 4.4. We haveS;,; = 1 = Ty forall 0 < i <k — 1.

Proof. Consider the game graph(k, i) which consists of statg, in which the player
can choose amonigcycles of lengtht where in theith cycle, all rewards aré except
on the(i + 1)th edge which has rewaid(see Fig. 2).

Consider the strategy in staig where the player after evety- r steps { > 0)
chooses the cycle which maximizes the contribution for thet& edges. Let, be

the index such thatr < i, < kr + k — 1 andc¢;, = max{cgp,...,Crrsk—1} fOr
r > 0. The payoff for this strategy im inf,,_, . t,, wheret,, = w for

Tr—1 <N <.

kr4+k—1 i i
Note thatc;, > Z:k% (the maximum is greater than the average), and we get
the following (where: is a bound or{|c,,|)n>0):

—1
£ > Z?:o ¢ C
- k-d, d,’
1 1
henceliminf¢,, > — — liminf £ —.
n—00 n—oo d, k



By Lemma 4.2, the payoff of all memoryless strategie&:it, 7) is Si o, and the fact
that memoryless optimal strategies exist entails that= liminf,, o ¢, > % and
thusSyo = + = Sy, forall 0 <i <k — 1.

Using a similar argument on the graghk, ) with reward—1 instead ofl, we
obtainT}, g = ¢+ = Ty, forall0 <i < k — 1. O

From Lemma 4.4, it follows that

n

[#]
o i lwy _ je Dm0 Chri 1
and hence,
[ ] k=1 (]
) r ockr+z - . ZTZO Ckr+i
¢ ((apar ... ar—1) —hnniloréfZ( —Z i lim i
_Yia
T

We show that the payoff of a regular word = b1bs...b;(a0a; ... ak—1)%
matches the mean-payoff value.

Lemma4.5. If u := bibs...by(a0a: ...ax—1)¥ andv = (apa; ...ax—1)* are two
k
regular sequences of weights théfu) = ¢(v) = ETU"

Proof. Let r € N be such thaktr > m. If ¢(v) < ¢(0v) then using Lemma 2.1
we obtaing(0v) < ¢(0%v). Applying the lemma again and again, we gety) <
#(0™v) < ¢(0¥™v). From Corollary 4.1 we obtaip(0™v) = ¢(biby . ..b,v) = é(u)
k—1
andg(0°7v) = ¢ ((a1as ... a)"v) = ¢(v). Thereforeg(u) = ¢(v) = Z==0% The
same argument goes through for the cagg > ¢(0v). O

Proof (of Theorem 4.1)n Lemma 4.5 we have shown that the payoff functiomust
match the mean-payoff function for regular words, if thewsstee{ ¢, } >0 is bounded.
Since memoryless strategies in game graphs result in reguolas over weights, it
follows that the only payoff function that induces memosg®ptimal strategies is the
mean-payoff function which concludes the proof. a

Observe that every regular sequence is bounded, and thetbfresult of Theo-
rem 4.1 holds for all weighted average objectives with djeeit sum defined by regular
sequence of weights.

Corollary 4.3. Let(c,)nen be a regular sequence of real numbers with no zero partial
sum such thad~;~|c;| = oo (the sum is divergent). The weighted average payoff
function¢ defined by(¢,, ) e induces optimal memoryless strategies for all two-player
game graphs if and only & is the mean-payoff function.
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4.2 Unbounded sequence

The results of Section 3 and Section 4.1 can be summarizedlawd: (1) if the sum
of ¢;’s is convergent, then the sequerCé };>o, with A < 1 (discounted sum), is the
only class of payoff functions that induce memoryless optistrategies; and (2) if the
sum is divergent but the sequer{eg) is bounded, then the mean-payoff function is the
only payoff function with memoryless optimal strategiesddhe mean-payoff function
is defined by the sequen¢a’},;~o, with A = 1). The remaining natural question is that
if the sum is divergent and unbounded, then is the sequgkide-o, with A > 1, the
only class that has memoryless optimal strategies. Beloghow with an example that
the class{\'}, with A\ > 1, need not necessarily have memoryless optimal strategies.
We consider the payoff function given by the sequenge= 2". It is easy to
verify that the sequence satisfies the partial non-zerongsson. We show that the
payoff function does not result into memoryless optimatsigies. To see this, we ob-
serve that the payoff for a regular wotd = bgb; ... b (agas . . .ak—1)* is given by

. . . k—1 . . .
ming<i<k—1 (a7'+2a71++12++---+f2k,1‘“*’“) i.e., the payoff for a regular word is the least

possible weighted average payoff for its cycle consideaithgossible cyclic permuta-
tions of its indices (note that the addition in indices isfpamed modulck).

0 2

Fig. 3. The gamé&jio24.

Now, consider the game gragh 24 shown in figure 3. The payoffs for both
the memoryless strategies (choosing the left or the righedd the start state) are
min (2, 4) andmin (2, #) which are both equal t¢. Although, if we consider the
strategy which alternates between the two edges in thémgtaitte then the payoff ob-
tained ismin (22,28 28 11) — 1 which is less than payoff for both the memoryless
strategies. Hence, the player who minimizes the payoff doebhave a memoryless op-
timal strategy in the gam@o24. The example establishes that the sequgréd,, >
does not induce optimal strategies.

Open questionThough weighted average objectives such that the sequsrdieeir-
gent and unbounded may not be of the greatest practicabrateyit is an interesting
theoretical question to characterize the subclass thatathemoryless strategies. Our
counter-example shows thfx" },,> with A > 1 is not in this subclass.
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