Polynomial kernels for Proper Interval Completion and related problems *

Stéphane Bessy Anthony Perez
bessy@lirmm.fr perez@lirmm.fr
LIRMM - Université Montpellier II - FRANCE

September 18, 2021

Abstract

Given a graph $G=(V, E)$ and a positive integer k, the Proper Interval Completion problem asks whether there exists a set F of at most k pairs of $(V \times V) \backslash E$ such that the graph $H=(V, E \cup F)$ is a proper interval graph. The Proper Interval Completion problem finds applications in molecular biology and genomic research [14, 22. First announced by Kaplan, Tarjan and Shamir in FOCS '94, this problem is known to be FPT [14], but no polynomial kernel was known to exist. We settle this question by proving that Proper Interval Completion admits a kernel with at most $O\left(k^{5}\right)$ vertices. Moreover, we prove that a related problem, the so-called Bipartite Chain Deletion problem, admits a kernel with at most $O\left(k^{2}\right)$ vertices, completing a previous result of Guo [12].

Introduction

The aim of a graph modification problem is to transform a given graph in order to get a certain property Π satisfied. Several types of transformations can be considered: for instance, in vertex deletion problems, we are only allowed to delete vertices from the input graph, while in edge modification problems the only allowed operation is to modify the edge set of the input graph. The optimization version of such problems consists in finding a minimum set of edges (or vertices) whose modification makes the graph satisfy the given property Π. Graph modification problems cover a broad range of NP-Complete problems and have been extensively studied in the literature [18, [21, 22]. Well-known examples include the Vertex Cover 8], Feedback Vertex Set [24], or Cluster Editing [5 problems. These problems find applications in various domains, such as computational biology [14, 22], image processing [21] or relational databases [23].

Due to these applications, one may be interested in computing an exact solution for such problems. Parameterized complexity provides a useful theoretical framework to that aim [9, 19]. A problem parameterized by some integer k is said to be fixed-parameter tractable (FPT for short) whenever it can be solved in time $f(k) \cdot n^{c}$ for any constant $c>0$. A natural parameterization for graph modification problems thereby consists in the number of allowed transformations. As one of the most powerful technique to design fixed-parameter algorithms, kernelization algorithms have been extensively studied in the last decade (see [2] for a survey). A kernelization algorithm is a

[^0]polynomial-time algorithm (called reduction rules) that given an instance (I, k) of a parameterized problem P computes an instance $\left(I^{\prime}, k^{\prime}\right)$ of P such that $(i)(I, k)$ is a Yes-instance if and only if $\left(I^{\prime}, k^{\prime}\right)$ is a Yes-instance and (ii) $\left|I^{\prime}\right| \leq h(k)$ for some computable function $h()$ and $k^{\prime} \leq k$. The instance $\left(I^{\prime}, k^{\prime}\right)$ is called the kernel of P. We say that $\left(I^{\prime}, k^{\prime}\right)$ is a polynomial kernel if the function $h()$ is a polynomial. It is well-known that a parameterized problem is FPT if and only if it has a kernelization algorithm [19]. But this equivalence only yields kernels of super-polynomial size. To design efficient fixed-parameter algorithms, a kernel of small size - polynomial (or even linear) in k is highly desirable [20]. However, recent results give evidence that not every parameterized problem admits a polynomial kernel, unless $N P \subseteq \operatorname{coNP/poly}$ [3]. On the positive side, notable kernelization results include a less-than- $2 k$ kernel for Vertex Cover [8], a $4 k^{2}$ kernel for Feedback Vertex Set [24] and a $2 k$ kernel for Cluster Editing [5].

We follow this line of research with respect to graph modification problems. It has been shown that a graph modification problem is FPT whenever Π is hereditary and can be characterized by a finite set of forbidden induced subgraphs [4. However, recent results proved that several graph modification problems do not admit a polynomial kernel even for such properties Π [11, 16]. In this paper, we are in particular interested in completion problems, where the only allowed operation is to add edges to the input graph. We consider the property Π as being the class of proper interval graphs. This class is a well-studied class of graphs, and several characterizations are known to exist [17, 28]. In particular, there exists an infinite set of forbidden induced subgraphs that characterizes proper interval graphs [28] (see Figure 11). More formally, we consider the following problem:

Proper Interval Completion:
Input: A graph $G=(V, E)$ and a positive integer k.
Parameter: k.
Output: A set F of at most k pairs of $(V \times V) \backslash E$ such that the graph $H=(V, E \cup F)$ is a proper interval graph.

Interval completion problems find applications in molecular biology and genomic research [13, 14, and in particular in physical mapping of DNA. In this case, one is given a set of long contiguous intervals (called clones) together with experimental information on their pairwise overlaps, and the goal is to reconstruct the relative position of the clones along the target DNA molecule. We focus here on the particular case where all intervals have equal length, which is a biologically important case (e.g. for cosmid clones [13]). In the presence of (a small number of) unidentified overlaps, the problem becomes equivalent to the Proper Interval Completion problem. It is known to be NP-Complete for a long time [10, but fixed-parameter tractable due to a result of Kaplan, Tarjan and Shamir in FOCS '94 [14, 15]. 1 The fixed-parameter tractability of the Proper Interval Completion can also be seen as a corollary of a characterization of Wegner [28] combined with Cai's result [4]. Nevertheless, it was not known whether this problem admit a polynomial kernel or not.

Our results We prove that the Proper Interval Completion problem admits a kernel with at most $O\left(k^{5}\right)$ vertices. To that aim, we identify nice parts of the graph that induce proper interval graphs and can hence be safely reduced. Moreover, we apply our techniques to the so-called Bipartite Chain Deletion problem, closely related to the Proper Interval Completion

[^1]problem where one is given a graph $G=(V, E)$ and seeks a set of at most k edges whose deletion from E result in a bipartite chain graph (a graph that can be partitioned into two independent sets connected by a join). We obtain a kernel with $O\left(k^{2}\right)$ vertices for this problem. This result completes a previous result of Guo [12] who proved that the Bipartite Chain Deletion With Fixed Bipartition problem admits a kernel with $O\left(k^{2}\right)$ vertices.

Outline We begin with some definitions and notations regarding proper interval graphs. Next, we give the reduction rules the application of which leads to a kernelization algorithm for the Proper Interval Completion problem. These reduction rules allow us to obtain a kernel with at most $O\left(k^{5}\right)$ vertices. Finally, we prove that our techniques can be applied to Bipartite Chain Deletion to obtain a quadratic-vertex kernel, completing a previous result of Guo [12].

1 Preliminaries

1.1 Proper interval graphs

We consider simple, loopless, undirected graphs $G=(V, E)$ where $V(G)$ denotes the vertex set of G and $E(G)$ its edge set ${ }^{2}$. Given a vertex $v \in V$, we use $N_{G}(v)$ to denote the open neighborhood of v and $N_{G}[v]=N_{G}(v) \cup\{v\}$ for its closed neighborhood. Two vertices u and v are true twins if $N[u]=N[v]$. If u and v are not true twins but $u v \in E$, we say that a vertex of $N[u] \triangle N[v]$ distinguishes u and v. Given a subset of vertices $S \subseteq V, N_{S}(v)$ denotes the set $N_{G}(v) \cap S$ and $N_{G}(S)$ denotes the set $\left\{N_{G}(s) \backslash S: s \in S\right\}$. Moreover, $G[S]$ denotes the subgraph induced by S, i.e. $G[S]=\left(S, E_{S}\right)$ where $E_{S}=\{u v \in E: u, v \in S\}$. A join in a graph $G=(V, E)$ is a bipartition (X, Y) of G and an order $x_{1}, \ldots, x_{|X|}$ on X such that for all $i=1, \ldots,|X|-1, N_{Y}\left(x_{i}\right) \subseteq N_{Y}\left(x_{i+1}\right)$. The edges between X and Y are called the edges of the join, and a subset $F \subseteq E$ is said to form a join if F corresponds to the edges of a join of G. Finally, a graph is an interval graph if it admits a representation on the real line such that: (i) the vertices of G are in bijection with intervals of the real line and (ii) uv $\in E$ if and only if $I_{u} \cap I_{v} \neq \emptyset$, where I_{u} and I_{v} denote the intervals associated to u and v, respectively. Such a graph is said to admit an interval representation. A graph is a proper interval graph if it admits an interval representation such that $I_{u} \not \subset I_{v}$ for every $u, v \in V$. In other words, no interval strictly contains another interval.
We will make use of the two following characterizations of proper interval graphs to design our kernelization algorithm.

Theorem 1.1 (Forbidden subgraphs [28]). A graph is a proper interval graph if and only if it does not contain any $\{$ hole, claw, net, 3 -sun\} as an induced subgraph (see Figure 1).

The claw graph is the bipartite graph $K_{1,3}$. Denoting the bipartition by $\left(\{c\},\left\{l_{1}, l_{2}, l_{3}\right\}\right)$, we call c the center and $\left\{l_{1}, l_{2}, l_{3}\right\}$ the leaves of the claw.

Theorem 1.2 (Umbrella property [17]). A graph is a proper interval graph if and only if its vertices admit an ordering σ (called umbrella ordering) satisfying the following property: given $v_{i} v_{j} \in E$ with $i<j$ then $v_{i} v_{l}, v_{l} v_{j} \in E$ for every $i<l<j$ (see Figure 2).

In the following, we associate an umbrella ordering σ_{G} to any proper interval graph $G=(V, E)$. There are several things to remark. First, note that in an umbrella ordering σ_{G} of a graph G, every

[^2]
claw

3-sun

net

hole

Figure 1: The forbidden induced subgraphs of proper interval graphs. A hole is an induced cycle of length at least 4.

Figure 2: Illustration of the umbrella property. The edge $v_{i} v_{j}$ is extremal. 3_{3}
maximal set of true twins of G is consecutive, and that σ_{G} is unique up to permutation of true twins of G. Remark also that for any edge $u v$ with $u<_{\sigma_{G}} v$, the set $\left\{w \in V: u \leq_{\sigma_{G}} w \leq_{\sigma_{G}} v\right\}$ is a clique of G, and for every i with $1 \leq i<l,\left(\left\{v_{1}, \ldots, v_{i}\right\},\left\{v_{i+1}, \ldots, v_{n}\right\}\right)$ is a join of G.
According to this ordering, we say that an edge $u v$ is extremal if there does not exist any edge $u^{\prime} v^{\prime}$ different of $u v$ such that $u^{\prime} \leq_{\sigma_{G}} u$ and $v \leq_{\sigma_{G}} v^{\prime}$ (see Figure 2).

Let $G=(V, E)$ be an instance of Proper Interval Completion. A completion of G is a set $F \subseteq(V \times V) \backslash E$ such that the graph $H=(V, E \cup F)$ is a proper interval graph. In a slight abuse of notation, we use $G+F$ to denote the graph H. A k-completion of G is a completion such that $|F| \leq k$, and an optimal completion F is such that $|F|$ is minimum. We say that $G=(V, E)$ is a positive instance of Proper Interval Completion whenever it admits a k-completion. We state a simple observation that will be very useful for our kernelization algorithm.

Observation 1.3. Let $G=(V, E)$ be a graph and F be an optimal completion of G. Given an umbrella ordering σ of $G+F$, any extremal edge of σ is an edge of G.

Proof. Assume that there exists an extremal edge e in σ that belongs to F. By definition, σ is still an umbrella ordering if we remove the edge e from F, contradicting the optimality of F.

1.2 Branches

We now give the main definitions of this Section. The branches that we will define correspond to some parts of the graph that already behave like proper interval graphs. They are the parts of the graph that we will reduce in order to obtain a kernelization algorithm.

[^3]Definition 1.4 (1-branch). Let $B \subseteq V$. We say that B is a 1-branch if the following properties hold (see Figure 3):
(i) The graph $G[B]$ is a connected proper interval graph admitting an umbrella ordering $\sigma_{B}=$ $b_{1}, \ldots, b_{|B|}$ and,
(ii) The vertex set $V \backslash B$ can be partitioned into two sets R and C with: no edges between B and C, every vertex in R has a neighbor in B, no edges between $\left\{b_{1}, \ldots, b_{l-1}\right\}$ and R where b_{l} is the neighbor of $b_{|B|}$ with minimal index in σ_{B}, and for every $l \leq i<|B|$, we have $N_{R}\left(b_{i}\right) \subseteq N_{R}\left(b_{i+1}\right)$.

We denote by B_{1} the set of vertices $\left\{v \in V: b_{l} \leq_{\sigma_{B}} v \leq_{\sigma_{B}} b_{|B|}\right\}$, which is a clique (because b_{l} is a neighbor of $\left.b_{|B|}\right)$. We call B_{1} the attachment clique of B, and use B^{R} to denote $B \backslash B_{1}$.

Figure 3: A 1-branch of a graph $G=(V, E)$. The vertices of B are ordered according to the umbrella ordering σ_{B}.

Definition 1.5 (2-branch). Let $B \subseteq V$. We say that B is a 2 -branch if the following properties hold (see Figure 4):
(i) The graph $G[B]$ is a connected proper interval graph admitting an umbrella ordering $\sigma_{B}=$ $b_{1}, \ldots, b_{|B|}$ and,
(ii) The vertex set $V \backslash B$ can be partitioned into sets L, R and C with:

- no edges between B and C,
- every vertex in L (resp. R) has a neighbor in B,
- no edges between $\left\{b_{1}, \ldots, b_{l-1}\right\}$ and R where b_{l} is the neighbor of $b_{|B|}$ with minimal index in σ_{B},
- no edges between $\left\{b_{l^{\prime}+1}, \ldots, b_{|B|}\right\}$ and L where $b_{l^{\prime}}$ is the neighbor of b_{1} with maximal index in σ_{B} and,
- $N_{R}\left(b_{i}\right) \subseteq N_{R}\left(b_{i+1}\right)$ for every $l \leq i<|B|$ and $N_{L}\left(b_{i+1}\right) \subseteq N_{L}\left(b_{i}\right)$ for every $1 \leq i<l^{\prime}$.

Again, we denote by B_{1} (resp. B_{2}) the set of vertices $\left\{v \in V: b_{1} \leq_{\sigma_{B}} v \leq_{\sigma_{B}} b_{l^{\prime}}\right\}$ (resp. $\left.\left\{v \in V: b_{l} \leq_{\sigma_{B}} v \leq_{\sigma_{B}} b_{|B|}\right\}\right)$. We call B_{1} and B_{2} the attachment cliques of B, and use B^{R} to denote $B \backslash\left(B_{1} \cup B_{2}\right)$. Observe that the cases where $L=\emptyset$ or $R=\emptyset$ are possible, and correspond to the definition of a 1-branch. Finally, when $B^{R}=\emptyset$, it is possible that a vertex of L or R is adjacent to all the vertices of B. In this case, we will denote by N the set of vertices that are adjacent to every vertex of B, remove them from R and L and abusively still denote by L (resp. R) the set $L \backslash N($ resp. $R \backslash N)$. We will precise when we need to use the set N.

Figure 4: A 2-branch of a graph $G=(V, E)$. The vertices of B are ordered according to the umbrella ordering σ_{B}.

In both cases, in a 1- or 2-branch, whenever the proper interval graph $G[B]$ is a clique, we say that B is a K-join. Observe that, in a 1 - or 2 -branch B, for any extremal edge $u v$ in σ_{B}, the set of vertices $\left\{w \in V: u \leq_{\sigma_{B}} w \leq_{\sigma_{B}} v\right\}$ defines a K-join. In particular, this means that a branch can be decomposed into a sequence of K-joins. Observe however that the decomposition is not unique: for instance, the K-joins corresponding to all the extremal edges of σ_{B} are not disjoint. We will precise in Section 2.1.5, when we will reduce the size of 2 -branches, how to fix a decomposition. Finally, we say that a K-join is clean whenever its vertices are not contained in any claw or 4 -cycle. Remark that a subset of a K-join (resp. clean K-join) is also a K-join (resp. clean K-join).

2 Kernel for Proper Interval Completion

The basic idea of our kernelization algorithm is to detect the large enough branches and then to reduce them. This section details the rules we use for that.

2.1 Reduction rules

2.1.1 Basic rules

We say that a rule is safe if when it is applied to an instance (G, k) of the problem, (G, k) admits a k-completion iff the instance $\left(G^{\prime}, k^{\prime}\right)$ reduced by the rule admits a k^{\prime}-completion.

The first reduction rule gets rid of connected components that are already proper interval graphs. This rule is trivially safe and can be applied in $O(n+m)$ time using any recognition algorithm for proper interval graphs [6].

Rule 2.1 (Connected components). Remove any connected component of G that is a proper interval graph.

The following reduction rule can be applied since proper interval graphs are closed under true twin addition and induced subgraphs. For a class of graphs satisfying these two properties, we know that this rule is safe [1] (roughly speaking, we edit all the large set of true twins in the same way).

Rule 2.2 (True twins [1]). Let T be a set of true twins in G such that $|T|>k$. Remove $|T|-(k+1)$ arbitrary vertices from T.

We also use the classical sunflower rule, allowing to identify a set of edges that must be added in any optimal completion.

Rule 2.3 (Sunflower). Let $\mathcal{S}=\left\{C_{1}, \ldots, C_{m}\right\}, m>k$ be a set of claws having two leaves u, v in common but distinct third leaves. Add uv to F and decrease k by 1 .
Let $\mathcal{S}=\left\{C_{1}, \ldots, C_{m}\right\}, m>k$ be a set of distinct 4-cycles having a non-edge uv in common. Add uv to F and decrease k by 1 .

Lemma 2.1. Rule 2.3 is safe and can be carried out in polynomial time.
Proof. We only prove the first rule. The second rule can be proved similarly. Let F be a k completion of G and assume that F does not contain (u, v). Since any two claws in \mathcal{S} only share (u, v) as a common non-edge, F must contain one edge for every $C_{i}, 1 \leq i \leq m$. Since $m>k$, we have $|F|>k$, which cannot be. Observe that a sunflower can be found in polynomial time once we have enumerated all the claws and 4-cycles of a graph, which can clearly be done in $O\left(n^{4}\right)$.

2.1.2 Extracting a clean K-join from a K-join

Now, we want to reduce the size of the 'simplest' branches, namely the K-joins. More precisely, in the next subsection we will bound the number of vertices in a clean K-join (whose vertices are not contain in any claw or 4 -cycle), and so, we first indicate how to extract a clean K-join from a K-join.

Lemma 2.2. Let $G=(V, E)$ be a positive instance of Proper Interval Completion on which Rule 2.3 has been applied. There are at most k^{2} claws with distinct sets of leaves, and at most $k^{2}+2 k$ vertices of G are leaves of claw. Furthermore, there are at most $2 k^{2}+2 k$ vertices of G that are vertices of a 4-cycle.

Proof. As G is a positive instance of Proper Interval Completion, every claw or 4-cycle of G has a non-edge that will be completed and then is an edge of F. Let $x y$ be an edge of F. As we have applied Rule 2.3 on G, there are at most k vertices in G that form the three leaves of a claw with x and y. So, at most $(k+2) k$ vertices of G are leaves of claws. Similarly, there are at most k non-edges of G, implying at most $2 k$ vertices, that form a 4 -cycle with x and y. So, at most $(2 k+2) k$ vertices of G are in a 4 -cycle.

Lemma 2.3. Let $G=(V, E)$ be a positive instance of Proper Interval Completion on which Rule 2.2 and Rule 2.3 have been applied and B be a K-join of G. There are at most $k^{3}+4 k^{2}+5 k+1$ vertices of B that belong to a claw or a 4-cycle.

Proof. By Lemma 2.2, there are at most $3 k^{2}+4 k$ vertices of B that are leaves of a claw or in 4cycles. We remove these vertices from B and denote B^{\prime} the set of remaining vertices, which forms a K-join. Now, we remove from B^{\prime} all the vertices that do not belong to any claw and contract all the true twins in the remaining vertices. As Rule 2.2 has been applied on B, every contracted set has size at most $k+1$. We denote by $B^{\prime \prime}$ the obtained set which can be seen as a subset of B and then, $B^{\prime \prime}$ is also a K-join of G. Remark that every vertex of $B^{\prime \prime}$ is the center of a claw. We consider an umbrella ordering b_{1}, \ldots, b_{l} of $B^{\prime \prime}$. We will find a set of $l-1$ claws with distinct sets of leaves, which will bound l by $k^{2}+1$, by Lemma 2.2. As, for all $i=1, \ldots, l-1, b_{i}$ and b_{i+1} are not true twins, there exists c_{i} such that $b_{i} c_{i} \in E$ and $b_{i+1} c_{i} \notin E$ or $b_{i} c_{i} \notin E$ and $b_{i+1} c_{i} \in E$. As $B^{\prime \prime}$ is K-join, by definition, all the c_{i} 's are distinct. Now, for every $i=1, \ldots, l-1$, we will find a claw containing c_{i} as leaf. Assume that $b_{i} c_{i} \notin E$ and $b_{i+1} c_{i} \in E$. As b_{i+1} is the center of a claw, there exists a set $\{x, y, z\}$ which is an independent set and is fully adjacent to b_{i+1}. If $c_{i} \in\{x, y, z\}$, we
are done. Assume this is not the case. This means that b_{i} is adjacent to any vertex of $\{x, y, z\}$ (otherwise one of this vertex would be adjacent to b_{i+1} and not to b_{i}, and we choose it to be c_{i}). Now, if two elements of this set, say x and y, are adjacent to c_{i}, then $\left\{x, c_{i}, y, b_{i}\right\}$ forms a 4 -cycle that contains b_{i}, which is not possible. So, at least two elements among $\{x, y, z\}$, say x and y, are not adjacent to c_{i} and then, we find the claw $\left\{b_{i+1}, x, y, c_{i}\right\}$ of center b_{i+1} that contains c_{i}. In the case where $b_{i} c_{i} \in E$ and $b_{i+1} c_{i} \notin E$, we proceed similarly by exchanging the role of b_{i} and b_{i+1} and find also a claw containing c_{i}. Finally, all the considered claws have distinct sets of leaves and there are at most k^{2} such claws by Lemma 2.2. What means that $B^{\prime \prime}$ has size at most $k^{2}+1$ and B^{\prime} at most $(k+1)\left(k^{2}+1\right)$. As we removed at most $3 k^{2}+4 k$ vertices of B that could be leaves of claws or contain in 4 -cycles, we obtain $k^{3}+4 k^{2}+5 k+1$ vertices of B that are possibly in claws or 4 -cycles.

Since any subset of a K-join forms a K-join, Lemma 2.3 implies that it is possible to remove a set of at most $k^{3}+4 k^{2}+5 k+1$ vertices from any K-join to obtain a clean K-join.

2.1.3 Bounding the size of the K-joins

Now, we set a rule that will bound the number of vertices in a clean K-join, once applied. Although quite technical to prove, this rule is the core tool of our process of kernelization.

Rule 2.4 (K-join). Let B be a clean K-join of size at least $2 k+2$. Let B_{L} be the $k+1$ first vertices of B, B_{R} be its $k+1$ last vertices and $M=B \backslash\left(B_{R} \cup B_{L}\right)$. Remove the set of vertices M from G.

Lemma 2.4. Rule 2.4 is safe.
Proof. Let $G^{\prime}=G \backslash M$. Observe that the restriction to G^{\prime} of any k-completion of G is a k-completion of G^{\prime}, since proper interval graphs are closed under induced subgraphs. So, let F be a k-completion for G^{\prime}. We denote by $H=G^{\prime}+F$ the resulting proper interval graph and by $\sigma_{H}=b_{1}, \ldots, b_{|H|}$ an umbrella ordering of H. We prove that we can insert the vertices of M into σ_{H} and modify it if necessary, to obtain an umbrella ordering for G without adding any edge (in fact, some edges of F might even be deleted during the process). This will imply that G admits a k-completion as well. To see this, we need the following structural description of G. As explained before, we denote by N the set $\cap_{b \in B} N_{G}(b) \backslash B$, and abusively still denote by L (resp. R) the set $L \backslash N($ resp. $R \backslash N)$ (see Figure 5).

Claim 2.5. The sets L and R are cliques of G.
Proof. We prove that R is a clique in G. The proof for L uses similar arguments. No vertex of R is a neighbor of b_{1}, otherwise such a vertex must be adjacent to every vertex of B and then stand in N. So, if R contains two vertices u, v such that $u v \notin E$, we form the claw $\left\{b_{|B|}, b_{1}, u, v\right\}$ of center $b_{|B|}$, contradicting the fact that B is clean.

The following observation comes from the definition of a K-join.
Observation 2.6. Given any vertex $r \in R$, if $N_{B}(r) \cap B_{L} \neq \emptyset$ holds then $M \subseteq N_{B}(r)$. Similarly, given any vertex $l \in L$, if $N_{B}(l) \cap B_{R} \neq \emptyset$ holds then $M \subseteq N_{B}(l)$.

We use these facts to prove that an umbrella ordering can be obtained for G by inserting the vertices of M into σ_{H}. Let b_{f} and b_{l} be respectively the first and last vertex of $B \backslash M$ appearing in σ_{H}. We let B_{H} denote the set $\left\{u \in V(H): b_{f} \leq_{\sigma_{H}} u \leq_{\sigma_{H}} b_{l}\right\}$. Observe that B_{H} is a clique in

Figure 5: The structure of the K-join B.
H since $b_{f} b_{l} \in E(G)$ and that $B \backslash M \subseteq B_{H}$. Now, we modify σ_{H} by ordering the true twins in H according to their neighborhood in M : if x and y are true twins in H, are consecutive in σ_{H}, verify $x<_{\sigma_{H}} y<_{\sigma_{H}} b_{f}$ and $N_{M}(y) \subset N_{M}(x)$, then we exchange x and y in σ_{H}. This process stops when the considered true twins are ordered following the join between $\left\{u \in V(H): u<_{\sigma_{H}} b_{f}\right\}$ and M. We proceed similarly on the right of B_{H}, i.e. for x and y consecutive twins with $b_{l}<_{\sigma_{H}} x<_{\sigma_{H}} y$ and $N_{M}(x) \subset N_{M}(y)$. The obtained order is clearly an umbrella ordering too (in fact, we just re-labeled some vertices in σ_{H}), and we abusively still denote it by σ_{H}.

Claim 2.7. The set $B_{H} \cup\{m\}$ is a clique of G for any $m \in M$, and consequently $B_{H} \cup M$ is a clique of G.

Proof. Let u be any vertex of B_{H}. We claim that $u m \in E(G)$. Observe that if $u \in B$ then the claim trivially holds. So assume $u \notin B$. Recall that B_{H} is a clique in H. It follows that u is adjacent to every vertex of $B \backslash M$ in H. Since B_{L} and B_{R} both contain $k+1$ vertices, we have $N_{G}(u) \cap B_{L} \neq \emptyset$ and $N_{G}(u) \cap B_{R} \neq \emptyset$. Hence, u belongs to $L \cup N \cup R$ and $u m \in E(G)$ by Observation 2.6.

Claim 2.8. Let m be any vertex of M and σ_{H}^{\prime} be the ordering obtained from σ_{H} by removing B_{H} and inserting m to the position of B_{H}. The ordering σ_{H}^{\prime} respects the umbrella property.

Proof. Assume that σ_{H}^{\prime} does not respect the umbrella property, i.e. that there exist (w.l.o.g.) two vertices u and v of $H \backslash B_{H}$ such that either (1) $u<_{\sigma_{H}^{\prime}} v<_{\sigma_{H}^{\prime}} m, u m \in E(H)$ and $u v \notin E(H)$ or (2) $u<_{\sigma_{H}^{\prime}} m<_{\sigma_{H}^{\prime}} v, u m \notin E(H)$ and $u v \in E(H)$ or (3) $u<_{\sigma_{H}^{\prime}} v<_{\sigma_{H}^{\prime}} m, u m \in E(H)$ and $v m \notin E(H)$. First, assume that (1) holds. Since $u v \notin E(H)$ and σ_{H} is an umbrella ordering, $u w \notin E(H)$ for any $w \in B_{H}$, and hence $u w \notin E(G)$. This means that $B_{L} \cap N_{G}(u)=\emptyset$ and $B_{R} \cap N_{G}(u)=\emptyset$, which is impossible since $u m \in E(G)$. Then, assume that (2) holds. Since $u v \in E(H)$ and σ_{H} is an umbrella ordering, $B_{H} \subseteq N_{H}(u)$, and in particular B_{L} and B_{R} are included in $N_{H}(u)$. As $\left|B_{L}\right|=\left|B_{R}\right|=k+1$, we know that $N_{G}(u) \cap B_{L} \neq \emptyset$ and $N_{G}(u) \cap B_{R} \neq \emptyset$, but then, Observation 2.6 implies that $u m \in E(G)$. So, (3) holds, and we choose the first u satisfying this property according to the order given by σ_{H}^{\prime}. So we have $w m \notin E(G)$ for any $w<_{\sigma_{H}^{\prime}} u$. Similarly, we choose v to be the first vertex after u satisfying $v m \notin E(G)$. Since $u m \in E(G)$, we know that u belongs to $L \cup N \cup R$. Moreover, since $v m \notin E(G), v \in C \cup L \cup R$. There are several cases to consider:
(i) $u \in N$: in this case we know that $B \subseteq N_{G}(u)$, and in particular that $u b_{l} \in E(G)$. Since σ_{H} is an umbrella ordering for H, it follows that $v b_{l} \in E(H)$ and $B_{H} \subseteq N_{H}(v)$. Since
$\left|B_{L}\right|=\left|B_{R}\right|=k+1$, we know that $N_{G}(v) \cap B_{L} \neq \emptyset$ and $N_{G}(v) \cap B_{R} \neq \emptyset$. But, then Observation 2.6 implies that $v m \in E(G)$.
(ii) $u \in R, v \notin R$: since $u m \in E(G), B_{R} \subseteq N_{G}(u)$. Let $b \in B_{R}$ be the vertex such that $B_{R} \subseteq\left\{w \in V: u<_{\sigma_{H}} w \leq_{\sigma_{H}} b\right\}$. Since $u b \in E(G)$, this means that $B_{R} \subseteq N_{H}(v)$. Now, since $\left|B_{R}\right|=k+1$, it follows that $N_{G}(v) \cap B_{R} \neq \emptyset$. Observation 2.6 allows us to conclude that $v m \in E(G)$.
(iii) $u, v \in R$: in this case, $u v \in E(G)$ by Claim 2.7 but u and v are not true twins in H (otherwise v would be placed before u in σ_{H} due to the modification we have applied to σ_{H}). This means that there exists a vertex $w \in V(H)$ that distinguishes u from v in H.
Assume first that $w<_{\sigma_{H}} u$ and $u w \in E(H), v w \notin E(H)$. We choose the first w satisfying this according to the order given by σ_{H}. There are two cases to consider. First, if $u w \in E(G)$, then since $w m \notin E(G)$ for any $w<_{\sigma_{H}} u$ by the choice of $u,\{u, v, w, m\}$ is a claw in G containing a vertex of B (see Figure 6 (a) ignoring the vertex u^{\prime}), which cannot be. So assume $u w \in F$. By Observation 1.3. $u w$ is not an extremal edge of σ_{H}. By the choice of w and since $v w \notin E(H)$, there exists u^{\prime} with $u<_{\sigma_{H}} u^{\prime}<_{\sigma_{H}} v$ such that $u^{\prime} w$ is an extremal edge of σ_{H} (and hence belongs to $E(G)$, see Figure $6(a))$. Now, by the choice of v we have $u^{\prime} m \in E(G)$ and hence $u^{\prime} \in N \cup R \cup L$. Observe that $u^{\prime} v \notin E(G)$: otherwise $\left\{u^{\prime}, v, w, m\right\}$ would form a claw in G. Since R is a clique of G, it follows that $u^{\prime} \in L \cup N$. Moreover, since $u^{\prime} m \in E(G), B_{L} \subseteq N_{G}\left(u^{\prime}\right)$. We conclude like in configuration (ii) that v should be adjacent to a vertex of B_{L} and hence to m.
Hence we can assume that all the vertices that distinguish u and v are after u in σ_{H} and that $u w^{\prime \prime} \in E(H)$ implies $v w^{\prime \prime} \in E(H)$ for any $w^{\prime \prime}<_{\sigma_{H}} u$. Now, suppose that there exists $w \in H$ such that $b_{l}<_{\sigma_{H}} w$ and $u w \notin E(H), v w \in E(H)$. In particular, this means that $B_{L} \subseteq N_{H}(v)$. Since $\left|B_{L}\right|=k+1$ we have $N_{G}(v) \cap B_{L} \neq \emptyset$, implying $v m \in E(G)$ by Observation 2.6. Assume now that there exists a vertex w which distinguishes u and v with $v<_{\sigma_{H}} w<_{\sigma_{H}} b_{f}$. In this case, since $u w \notin E(H), B \cap N_{H}(u)=\emptyset$ holds and hence $B \cap N_{G}(u)=\emptyset$, which cannot be since $u \in R$. Finally, assume that there is $w \in B_{H}$ with $w u \notin E(H)$ and $w v \in E(H)$. Recall that $w m \in E(G)$ as $B_{H} \cup\{m\}$ is a clique by Claim 2.7. We choose w in B_{H} distinguishing u and v to be the last according to the order given by σ_{H} (i.e. $v w^{\prime} \notin E(H)$ for any $w<_{\sigma_{H}} w^{\prime}$, see Figure 6 (b), ignoring the vertex u^{\prime}).

(a)

(b)

Figure 6: (a) u and v are distinguished by some vertex $w<_{\sigma_{H}} u$; (b) u and v are distinguished by a vertex $w \in B_{H}$.

If $v w \in E(G)$ then $\{u, m, w, v\}$ is a 4 -cycle in G containing a vertex of B, which cannot be.

Hence $v w \in F$ and by the choice of w, there exists $u^{\prime} \in V(H)$ such that $u<_{\sigma_{H}} u^{\prime}<_{\sigma_{H}} v$ and $u^{\prime} w$ is an extremal edge (and then belongs to $E(G)$). By the choice of v we know that $u^{\prime} m \in E(G)$. Moreover, by the choice of w, observe that u^{\prime} and v are true twins in H (if a vertex s distinguishes u^{\prime} and v in H, s cannot be before u, since otherwise s would distinguishes u and v, not between u and w because it would be adjacent to u^{\prime} and v, and not after w, by choice of w). This leads to a contradiction since we assumed that $N_{M}(x) \subseteq N_{M}(y)$ for any true twins x and y with $x<_{\sigma_{H}} y<_{\sigma_{H}} b_{f}$.
The cases where $u \in L$ are similar, what concludes the proof of Claim 2.8

Claim 2.9. Let $m \in M$. Then m can be added to the graph H while preserving an umbrella ordering.

Proof. Let $m \in M$ and v_{i} (resp. v_{j}) be the vertex with minimal (resp. maximal) index in σ_{H} such that $v_{i} m \in E(G)$ (resp. $v_{j} m \in E(G)$). By definition, we have $v_{i-1} m, v_{j+1} m \notin E(G)$ and through Claim 2.8, we know that $N_{H}(m)=\left\{w \in V: v_{i} \leq_{\sigma_{H}} w \leq_{\sigma_{H}} v_{j}\right\}$. Moreover, since $B_{H} \cup M$ is a clique by Claim 2.7, it follows that $v_{i-1}<_{\sigma_{H}} b_{f}$ and $b_{l}<_{\sigma_{H}} v_{j+1}$. Hence, by Claim 2.8, we know that $v_{i-1} v_{j+1} \notin E(G)$, otherwise the ordering σ_{H}^{\prime} defined in Claim 2.8 would not be an umbrella ordering. The situation is depicted in Figure $7(a)$. For any vertex $v \in N_{H}(m)$, let $N^{-}(v)$ (resp. $\left.N^{+}(v)\right)$ denote the set of vertices $\left\{w \leq_{\sigma_{H}} v_{i-1}: w v \in E(H)\right\}$ (resp. $\left\{w \geq_{\sigma_{H}} v_{j+1}: w v \in E(H)\right\}$). Observe that for any vertex $v \in N_{H}(m)$, if there exist two vertices $x \in N^{-}(v)$ and $y \in N^{+}(v)$ such that $x v, y v \in E(G)$, then the set $\{v, x, y, m\}$ defines a claw containing m in G, which cannot be. We now consider $b_{v_{i-1}}$ the neighbor of v_{i-1} with maximal index in σ_{H}. Similarly we let $b_{v_{j+1}}$ be the neighbor of v_{j+1} with minimal index in σ_{H}. Since $v_{i-1} v_{j+1} \notin E(G)$, we have $b_{v_{i-1}}, b_{v_{j+1}} \in N_{H}(m)$. We study the behavior of $b_{v_{i-1}}$ and $b_{v_{j+1}}$ in order to conclude.

Assume first that $b_{v_{j+1}}<_{\sigma_{H}} b_{v_{i-1}}$. Let X be the set of vertices $\left\{w \in V: b_{v_{j+1}} \leq \sigma_{\sigma_{H}} w \leq_{\sigma_{H}}\right.$ $\left.b_{v_{i-1}}\right\}$. Remark that we have $b_{v_{i-1}} \leq_{\sigma_{H}} b_{l}$ and $b_{f} \leq_{\sigma_{H}} b_{v_{j+1}}$, otherwise for instance, if we have $b_{v_{i-1}}>_{\sigma_{H}} b_{l}$, then $B_{H} \subseteq N_{H}\left(v_{i-1}\right)$ implying, as usual, that $v_{i-1} m \in E(G)$ which is not. So, we know that $X \subseteq B_{H}$. Then, let $X_{1} \subseteq X$ be the set of vertices $x \in X$ such that there exists $w \in N^{+}(x)$ with $x w \in E(G)$ and $X_{2}=X \backslash X_{1}$. Let $x \in X_{1}$: observe that by construction $x w^{\prime} \in F$ for any $w^{\prime} \in N^{-}(x)$. Similarly, given $x \in X_{2}, x w^{\prime \prime} \in F$ for any $w^{\prime \prime} \in N^{+}(x)$. We now reorder the vertices of X as follows: we first put the vertices from X_{2} and then the vertices from X_{1}, preserving the order induced by σ_{H} for both sets. Moreover, we remove from $E(H)$ all edges between X_{1} and $N^{-}\left(X_{1}\right)$ and between X_{2} and $N^{+}\left(X_{2}\right)$. Recall that such edges have to belong to F. We claim that inserting m between X_{2} and X_{1} yields an umbrella ordering (see Figure $7 b$). Indeed, by Claim 2.8, we know that the umbrella ordering is preserved between m and the vertices of $H \backslash B_{H}$.

Now, remark that there is no edge between X_{1} and $\left\{w \in V: w \leq_{\sigma_{H}} v_{i-1}\right\}$, that there is no edge between X_{2} and $\left\{w \in V: w \geq_{\sigma_{H}} v_{j+1}\right\}$), that there are still all the edges between $N_{H}(m)$ and $X_{1} \cup X_{2}$ and that the edges between X_{1} and $\left\{w \in V: w \geq_{\sigma_{H}} v_{j+1}\right\}$ and the edges between X_{2} and $\left\{w \in V: w \leq_{\sigma_{H}} v_{i-1}\right\}$ are unchanged. So, it follows that the new ordering respects the umbrella property, and we are done.

Next, assume that $b_{v_{i-1}}<_{\sigma_{H}} b_{v_{j+1}}$. We let $b_{v_{i}}$ (resp. $b_{v_{j}}$) be the neighbor of v_{i} (resp. v_{j}) with maximal (resp. minimal) index in $N_{H}(m)$. Notice that $b_{v_{i-1}} \leq_{\sigma_{H}} b_{v_{i}}$ and $b_{v_{j}} \leq \sigma_{H} b_{v_{j+1}}$ (see Figure 80. Two cases may occur:
(i) First, assume that $b_{v_{i}}<_{\sigma_{H}} b_{v_{j}}$, case depicted in Figure 8 (a). In particular, this means that $v_{i} v_{j} \notin E(G)$. If $b_{v_{i}}$ and $b_{v_{j}}$ are consecutive in σ_{H}, then inserting m between $b_{v_{i}}$ and $b_{v_{j}}$ yields

(a)

(b)

Figure 7: Illustration of the reordering applied to σ_{H}. The thin edges stand for edges of G. On the left, the gray vertices represent vertices of X_{1} while the white vertex is a vertex of X_{2}.
an umbrella ordering (since $b_{v_{j}}$ (resp. $b_{v_{i}}$) does not have any neighbor before (resp. after) v_{i} (resp. v_{j}) in σ_{H}). Now, if there exists $w \in V$ such that $b_{v_{i}}<_{\sigma_{H}} w<_{\sigma_{H}} b_{v_{j}}$, then one can see that the set $\left\{m, v_{i}, w, v_{j}\right\}$ forms a claw containing m in G, which is impossible.
(ii) The second case to consider is when $b_{v_{j}} \leq_{\sigma_{H}} b_{v_{i}}$. In such a case, one can see that m and the vertices of $\left\{w \in V: b_{v_{j}} \leq_{\sigma_{H}} w \leq_{\sigma_{H}} b_{v_{i}}\right\}$ are true twins in $H \cup\{m\}$, because their common neighborhood is exactly $\left\{w \in V: v_{i} \leq_{\sigma_{H}} w \leq_{\sigma_{H}} v_{j}\right\}$. Hence, inserting m just before $b_{v_{i}}$ (or anywhere between $b_{v_{i}}$ and $b_{v_{j}}$ or just after $b_{v_{j}}$) yields an umbrella ordering.

Figure 8: The possible cases for $b_{v_{i-1}}<_{\sigma_{H}} b_{v_{j+1}}$.

Since the proof of Claim 2.9 does not use the fact that the vertices of H do not belong to M, it follows that we can iteratively insert the vertices of M into σ_{H}, preserving an umbrella ordering at each step. This concludes the proof of Lemma 2.4 .

The complexity needed to compute Rule 2.4 will be discussed in the next section. The following observation results from the application of Rule 2.4 and from Section 2.1.2.

Observation 2.10. Let $G=(V, E)$ be a positive instance of Proper Interval Completion reduced under Rules 2.2 to 2.4. Any K-join of G has size at most $k^{3}+4 k^{2}+7 k+3$.

Proof. Let B be any K-join of G, and assume $|B|>k^{3}+4 k^{2}+7 k+3$. By Lemma 2.2 we know that it is possible to extract a clean K-join from B of size at least $|B|-\left(k^{3}+4 k^{2}+5 k+1\right)>2(k+1)$ what is impossible after having applied Rule 2.4 .

2.1.4 Cutting the 1-branches

We now turn our attention to branches of a graph $G=(V, E)$, proving how they can be reduced.
Lemma 2.11. Let $G=(V, E)$ be a connected graph and B be a 1-branch of G associated with the umbrella ordering σ_{B}. Assume that $\left|B^{R}\right| \geq 2 k+1$ and let B_{f} be the $2 k+1$ last vertices of B^{R} according to σ_{B}. For any k-completion F of G into a proper interval graph, there exists a k-completion F^{\prime} of G with $F^{\prime} \subseteq F$ and a vertex $b \in B_{f}$ such that the umbrella ordering of $G+F^{\prime}$ preserves the order of the set $B_{b}=\left\{v \in V: b_{1} \leq_{\sigma_{B}} v \leq_{\sigma_{B}} b_{l^{\prime}}\right\}$, where l^{\prime} is the maximal index such that $b b_{l^{\prime}} \in E(G)$. Moreover, the vertices of B_{b} are the first in an umbrella ordering of $G+F^{\prime}$.

Proof. Let F be any k-completion of $G, H=G+F$ and σ_{H} be the umbrella ordering of H. Since $\left|B_{f}\right|=2 k+1$ and $|F| \leq k$, there exists a vertex $b \in B_{f}$ not incident to any added edge of F. We let N_{D} be the set of neighbors of b that are after b in σ_{B}, B^{\prime} the set of vertices that are before $N_{G}[b]$ in $\sigma_{B}, B_{b}=B^{\prime} \cup N_{G}[b]$ and $C=V \backslash B_{b}$ (see Figure 9).
Claim 2.12. (i) $G[C]$ is a connected graph and
(ii) Either $\forall u \in C b<_{\sigma_{H}} u$ holds or $\forall u \in C u<_{\sigma_{H}} b$ holds.

Proof. The first point follows from the fact that G is connected and that, by construction, $B_{1} \subseteq C$ and B_{1} is connected. To see the second point, assume that there exist $u, v \in C$ such that w.l.o.g. $u<_{\sigma_{H}} b<_{\sigma_{H}} v$. Since $G[C]$ is a connected graph, there exists a path between u and v in G that avoids $N_{G}[b]$, which is equal to $N_{H}[b]$ since b is not incident to any edge of F. Hence there exist $u^{\prime}, v^{\prime} \in C$ such that $u^{\prime}<_{\sigma_{H}} b<_{\sigma_{H}} v^{\prime}$ and $u^{\prime} v^{\prime} \in E(G)$. Then, we have $u^{\prime} b, v^{\prime} b \notin E(H)$, contradicting the fact that σ_{H} is an umbrella ordering for H.

In the following, we assume w.l.o.g. that $b<_{\sigma_{H}} u$ holds for any $u \in C$. We now consider the following ordering σ of H : we first put the set B_{b} according to the order of B and then put the remaining vertices C according to σ_{H} (see Figure 9). We construct a completion F^{\prime} from F as follows: we remove from F the edges with both extremities in B_{b}, and remove all edges between $B_{b} \backslash N_{D}$ and C. In other words, we set:

$$
F^{\prime}=F \backslash\left(F[B] \cup F\left[\left(B_{b} \backslash N_{D}\right) \times C\right]\right)
$$

Finally, we inductively remove from F^{\prime} any extremal edge of σ that belongs to F, and abusively still call F^{\prime} the obtained edge set.

Claim 2.13. The set F^{\prime} is a k-completion of G.
Proof. We prove that σ is an umbrella ordering of $H^{\prime}=G+F^{\prime}$. Since $\left|F^{\prime}\right| \leq|F|$ by construction, the result will follow. Assume this is not the case. By definition of $F^{\prime}, H^{\prime}\left[B_{b}\right]$ and $H^{\prime}[C]$ induce proper interval graphs. This means that there exists a set of vertices $S=\{u, v, w\}, u<_{\sigma} v<_{\sigma} w$, intersecting both B_{b} and C and violating the umbrella property. We either have (1) $u w \in E, u v \notin E$ or (2) $u w \in E, v w \notin E$. Since neither F^{\prime} nor G contain an edge between $B_{b} \backslash N_{D}$ and C, it follows that S intersects N_{D} and C. We study the different cases:

Figure 9: The construction of the ordering σ according to σ_{H}.
(i) (1) holds and $u \in N_{D}, v, w \in C$: since the edge set between N_{D} and C is the same in H and H^{\prime}, it follows that $u v \notin E(H)$. Since σ_{H} is an umbrella ordering of H, we either have $v<_{\sigma_{H}} u<_{\sigma_{H}} w$ or $v<_{\sigma_{H}} w<_{\sigma_{H}} u$ (recall that C is in the same order in both σ and σ_{H}). Now, recall that $b<_{\sigma_{H}}\{v, w\}$ by assumption. In particular, since $b u \in E(G)$, this implies in both cases that σ_{H} is not an umbrella ordering, what leads to a contradiction.
(ii) (1) holds and $u, v \in N_{D}, w \in C$: this case cannot happen since N_{D} is a clique of H^{\prime}.
(iii) (2) holds and $u \in N_{D}, v, w \in C$: this case is similar to (i). Observe that we may assume $u v \in E(H)$ (otherwise (i) holds). By construction $v w \notin E(H)$ and hence $v<_{\sigma_{H}} w<_{\sigma_{H}} u$ or $v<_{\sigma_{H}} u<_{\sigma_{H}} w$. The former case contradicts the fact that σ_{H} is an umbrella ordering since $b u \in E(H)$. In the latter case, since σ_{H} is an umbrella ordering this means that $b v \in E(H)$. Since b is non affected vertex and $b v \notin E(G)$, this leads to a contradiction.
(iv) (2) holds and $u, v \in N_{D}, w \in C$: first, if $u w \in E(G)$, then we have a contradiction since $N_{C}(u) \subseteq N_{C}(v)$. So, we have $u w \in F^{\prime}$. By construction of F^{\prime}, we know that $u w$ is not an extremal edge. Hence there exists an extremal edge (of G) containing $u w$, which is either $u w^{\prime}$ with $w<_{\sigma} w^{\prime}, u^{\prime} w$ with $u^{\prime}<_{\sigma} u$ or $u^{\prime} w^{\prime}$ with $u^{\prime}<_{\sigma} u<_{\sigma} w<_{\sigma} w^{\prime}$. The three situation are depicted in Figure 10. In the first case, $v w^{\prime} \in E(G)$ (since $N_{C}(u) \subseteq N_{C}(v)$ in G) and hence we are in configuration (ii) with vertex set $\left\{v, w, w^{\prime}\right\}$. In the second case, since $u^{\prime} w \in E(G)$, we have a contradiction since $N_{C}\left(u^{\prime}\right) \subseteq N_{C}(v)$ in G (observe that $u^{\prime} \in B$ by construction). Finally, in the third case, $u w^{\prime}, v w^{\prime} \in E(G)$ since $N_{C}\left(u^{\prime}\right) \subseteq N_{C}(u) \subseteq N_{C}(v)$ in G, and we are in configuration (i) with vertex set $\left\{v, w, w^{\prime}\right\}$.

Figure 10: Illustration of the different cases of configuration (iv) (the bold edges belong to F^{\prime}).

Altogether, we proved that for any k-completion F, there exists an umbrella ordering where the vertices of B_{b} are ordered in the same way than in the ordering of B and stand at the beginning of this ordering, what concludes the proof.

Rule 2.5 (1-branches). Let B be a 1-branch such that $\left|B^{R}\right| \geq 2 k+1$. Remove $B^{R} \backslash B_{f}$ from G, where B_{f} denotes the $2 k+1$ last vertices of B^{R}.

Lemma 2.14. Rule 2.5 is safe.
Proof. Let $G^{\prime}=G \backslash\left(B^{R} \backslash B_{f}\right)$ denote the reduced graph. Observe that any k-completion of G is a k-completion of G^{\prime} since proper interval graphs are closed under induced subgraphs. So let F be a k-completion of G^{\prime}. We denote by $H=G^{\prime}+F$ the resulting proper interval graph and let σ_{H} be the corresponding umbrella ordering. By Lemma 2.11 we know that there exists a vertex $b \in B_{f}$ such that the order of $B_{b}=N_{G}[b] \cup\left\{v \in B_{f}: v{\sigma_{\sigma_{B}}} N_{G}[b]\right\}$ is the same than in B and the vertices of B_{b} are the first of σ_{H}. Since $N_{G}\left(B^{R} \backslash B_{f}\right) \subseteq N_{G}[b]$, it follows that the vertices of $B^{R} \backslash B_{f}$ can be inserted into σ_{H} while respecting the umbrella property. Hence F is a k-completion for G, implying the result.

Here again, the time complexity needed to compute Rule 2.5 will be discussed in the next section. The following property of a reduced graph will be used to bound the size of our kernel.

Observation 2.15. Let $G=(V, E)$ be a positive instance of Proper Interval Completion reduced under Rules 2.2 to 2.5. The 1 -branches of G contain at most $k^{3}+4 k^{2}+9 k+4$ vertices.

Proof. Let B be a 1-branch of a graph $G=(V, E)$ reduced under Rules 2.2 to 2.5. Assume $|B|>k^{3}+4 k^{2}+9 k+4$. Since G is reduced under Rule 2.4, we know by Observation 2.10 that the attachment clique B_{1} of B, which is a K-join, contains at most $k^{3}+4 k^{2}+7 k+3$ vertices. This implies that $\left|B^{R}\right|>2 k+1$, which cannot be since G is reduced under Rule 2.5.

2.1.5 Cutting the 2-branches

To obtain a rule reducing the 2-branches, we need to introduce a particular decomposition of 2branches into K-joins. Let B be a 2 -branch with an umbrella ordering $\sigma_{B}=b_{1}, \ldots, b_{|B|}$. As usual, we denote by $B_{1}=b_{1}, \ldots, b_{l^{\prime}}$ its first attachment clique and by $B_{2}=b_{l}, \ldots, b_{|B|}$ its second. The reversal of the permutation σ_{B} gives a second possibility to fix B_{1} and B_{2}. We fix one of these possibilities and define \mathcal{B}, the K-join decomposition of B. The K-joins of \mathcal{B} are defined by $B_{i}^{\prime}=b_{l_{i-1}+1}, \ldots, b_{l_{i}}$ where $b_{l_{i}}$ is the neighbor of $b_{l_{i-1}+1}$ with maximal index. The first K-join of \mathcal{B} is B_{1} (so, $l_{0}=0$ and $l_{1}=l^{\prime}$), and once B_{i-1}^{\prime} is defined, we set B_{i}^{\prime} : if $b_{l_{i-1}+1} \in B_{2}$, then we set $B_{i}^{\prime}=b_{l_{i-1}+1}, \ldots, b_{|B|}$, otherwise, we choose $B_{i}^{\prime}=b_{l_{i-1}+1}, \ldots, b_{l_{i}}$ (see Figure 11).

Figure 11: The K-join decomposition.
Now, we can prove the next lemma, which bounds the number of K-joins in the K-join decomposition of a 2 -branch providing that some connectivity assumption holds.

Lemma 2.16. Let $G=(V, E)$ be an instance of Proper Interval Completion and B be a 2 -branch containing $p \geq(k+4) K$-joins in its K-join decomposition. Assume the attachment
cliques B_{1} and B_{2} of B belong to the same connected component of $G\left[V \backslash B^{R}\right]$. Then there is no k-completion for G.

Proof. Let B be a 2-branch of an instance $G=(V, E)$ of Proper Interval Completion respecting the conditions of Lemma 2.16. Since B_{1} and B_{2} belong to the same connected component in $G\left[V \backslash B^{R}\right]$, let π be a shortest path between B_{1} and B_{2} in $G\left[V \backslash B^{R}\right]$. As B has $p \geq k+4 \geq 3$ K-joins in its decomposition, no vertex of B_{1} is adjacent to a vertex f B_{2} and π has length at least two. We denote by $u \in B_{1}$ and $v \in B_{2}$ the extremities of such a path. We now construct an induced path $P_{u v}$ of length at least $p-1$ between u and v within B. To do so, considering the K-join decomposition $\mathcal{B}=\left\{B_{1}^{\prime}, \ldots, B_{p}^{\prime}\right\}$ of B, we know that $u \in B_{1}^{\prime}$ and that $v \in B_{p-1}^{\prime} \cup B_{p}^{\prime}$. We define $u_{1}=u$ and while $v \notin N\left[u_{i}\right]$, we choose u_{i+1} the neighbor of u_{i} with maximum index in the umbrella ordering of B. In this case, we have $u_{i} \in \cup_{j=1}^{i} B_{j}^{\prime}$ for every $1 \leq i \leq p$. Indeed, the neighbor of a vertex of $\cup_{j=1}^{i-1} B_{j}^{\prime}$ with maximum index in the umbrella ordering of B is in $\cup_{j=1}^{i} B_{j}^{\prime}$. Finally, when $v \in N\left[u_{i}\right]$, we just choose $u_{i+1}=v$. So, the path $P_{u v}=u_{1}, \ldots, u_{l}$ is an induced path of length at least $p-1$, with $u_{1}=u, u_{l}=v$ and the only vertices that could have neighbors in $G \backslash B$ are u_{1}, u_{l-1} and $u_{l}\left(u_{1} \in B_{1}, u_{l} \in B_{2}\right.$ and u_{l-1} is possibly in $\left.B_{2}\right)$. Using π, we can form an induced cycle of length at least $p \geq k+4$ in G. Since at least $q-3$ completions are needed to triangulate any induced cycle of length q [14], it follows that there is no k-completion for G.

The following observation is a straightforward implication of Lemma 2.16 .
Observation 2.17. Let $G=(V, E)$ be a connected positive instance of Proper Interval Completion, reduced by Rule 2.4 and B be a 2 -branch such that $G\left[V \backslash B^{R}\right]$ is connected. Then B contains at most $k+3 K$-joins in its K-join decomposition and hence at most $(k+3)\left(k^{3}+4 k^{2}+5 k+1\right)$ vertices.
Rule 2.6 (2-branches). Let G be a connected graph and B be a 2-branch such that $G\left[V \backslash B^{R}\right]$ is not connected. Assume that $\left|B^{R}\right| \geq 4(k+1)$ and let B_{1}^{\prime} be the $2 k+1$ vertices after B_{1} and B_{2}^{\prime} the $2 k+1$ vertices before B_{2}. Remove $B \backslash\left(B_{1} \cup B_{1}^{\prime} \cup B_{2}^{\prime} \cup B_{2}\right)$ from G.
Lemma 2.18. Rule 2.6 is safe.
Proof. As usual, we denote by $\sigma_{b}=b_{1}, \ldots, b_{|B|}$ the umbrella ordering defined on B, with $B_{1}=$ $\left\{b_{1}, \ldots, b_{l^{\prime}}\right\}$ and $B_{2}=\left\{b_{l}, \ldots, b_{|B|}\right\}$. We partition B^{R} into two sets $B^{\prime}=\left\{b_{l^{\prime}+1}, \ldots, b_{i}\right\}$ and $B^{\prime \prime}=\left\{b_{i+1}, \ldots, b_{l-1}\right\}$ such that $\left|B^{\prime}\right| \geq\left|B^{\prime \prime}\right| \geq 2 k+1$. We now remove the edges $E\left(B^{\prime}, B^{\prime \prime}\right)$ between B^{\prime} and $B^{\prime \prime}$, obtaining two connected components of G, G_{1} and G_{2}. Observe that B^{\prime} defines a 1branch of G_{1} with attachment clique B_{1} such that $B^{\prime} \backslash B_{1}$ contains at least $2 k+1$ vertices. Similarly $B^{\prime \prime}$ defines a 1-branch of G_{2} with attachment clique B_{2} such that $B^{\prime \prime} \backslash B_{2}$ contains at least $2 k+1$ vertices. Hence Lemma 2.11 can be applied to both G_{1} and G_{2} and we continue as if Rule 2.5 has been applied to G_{1} and G_{2}, preserving exactly $2 k+1$ vertices B_{f}^{\prime} and $B_{f}^{\prime \prime}$, respectively. We denote by G^{\prime} the reduced graph. Let F be a k-completion of G. Let F_{1} and F_{2} be the completions of G_{1} and G_{2} such that $\left|F_{1}\right|+\left|F_{2}\right| \leq k$. Moreover, let $H_{1}=G_{1}+F_{1}$ and $H_{2}=G_{2}+F_{2}$. By Lemma 2.11, we know that the vertices of $B^{\prime} \backslash B_{f}^{\prime}$ (resp. $B^{\prime \prime} \backslash B_{f}^{\prime \prime}$) can be inserted into the umbrella ordering $\sigma_{H_{1}}$ of H_{1} (resp. $\sigma_{H_{2}}$) in the same order than in B^{\prime} (resp. $B^{\prime \prime}$). We thus obtain two proper interval graphs H_{1}^{\prime} and H_{2}^{\prime} whose respective umbrella ordering preserve the order of B^{\prime} and $B^{\prime \prime}$. We now connect H_{1}^{\prime} and H_{2}^{\prime} by putting back the edges contained in $E\left(B^{\prime}, B^{\prime \prime}\right)$, obtaining a graph H with ordering σ_{H}. Since $G[B]$ is a proper interval graph and B^{\prime} and $B^{\prime \prime}$ are ordered according to B in H_{1}^{\prime} and H_{2}^{\prime}, it follows that H is a proper interval graph, and hence $F=F_{1} \cup F_{2}$ is a k-completion of G.

Observation 2.19. Let $G=(V, E)$ be a positive instance of Proper Interval Completion reduced under Rules 2.2 to 2.6. The 2 -branches of G contain at most $(k+3)\left(k^{3}+4 k^{2}+5 k+1\right)$ vertices.

Proof. Let B be a 2-branch of a graph $G=(V, E)$ and C be the connected component containing B. If $G\left[C \backslash B^{R}\right]$ is connected, then Observation 2.17 implies the result. Otherwise, as G has been reduced under Rules 2.2 to 2.6 , we know that $\left|B^{R}\right| \leq 4 k+4$ and then that $|B| \leq 2\left(k^{3}+4 k^{2}+5 k+\right.$ $1)+(4 k+4)$ which is less than $(k+3)\left(k^{3}+4 k^{2}+5 k+1\right)$, provided that $k \geq 1$.

2.2 Detecting the branches

We now turn our attention to the complexity needed to compute reduction rules 2.4 to 2.6. Mainly, we indicate how to obtain the maximum branches in order to reduce them. The detection of a branch is straightforward except for the attachment cliques, where several choices are possible.
So, first, we detect the maximum 1-branches of G. Remark that for every vertex x of G, the set $\{x\}$ is a 1 -branch of G. The next lemma indicates how to compute a maximum 1-branch that contains a fixed vertex x as first vertex.
Lemma 2.20. Let $G=(V, E)$ be a graph and x a vertex of G. In time $O\left(n^{2}\right)$, it is possible to detect a maximum 1-branch of G containing x as first vertex.

Proof. To detect such a 1-branch, we design an algorithm which has two parts. Roughly speaking, we first try to detect the set B^{R} of a 1-branch B containing x. We set $B_{0}^{R}=\{x\}$ and $\sigma_{0}=x$. Once B_{i-1}^{R} has been defined, we construct the set C_{i} of vertices of $G \backslash\left(\cup_{l=1}^{i-1} B_{l}^{R}\right)$ that are adjacent to at least one vertex of B_{i-1}^{R}. Two cases can appear. First, assume that C_{i} is a clique and that it is possible to order the vertices of C_{i} such that for every $1 \leqslant j<\left|C_{i}\right|$, we have $N_{B_{i-1}^{R}}\left(c_{j+1}\right) \subseteq N_{B_{i-1}^{R}}\left(c_{j}\right)$ and $\left(N_{G}\left(c_{j}\right) \backslash B_{i-1}^{R}\right) \subseteq\left(N_{G}\left(c_{j+1}\right) \backslash B_{i-1}^{R}\right)$. In this case, the vertices of C_{i} correspond to a new K-join of the searched 1-branch (remark that, along this inductive construction, there is no edge between C_{i} and $\left.\cup_{l=1}^{i-2} B_{l}^{R}\right)$. So, we let $B_{i}^{R}=C_{i}$ and σ_{i} be the concatenation of σ_{i-1} and the ordering defined on C_{i}. In the other case, such an ordering of C_{i} can not be found, meaning that while detecting a 1-branch B, we have already detected the vertices of B^{R} and at least one (possibly more) vertex of the attachment clique B_{1} with neighbors in B^{R}. Assume that the process stops at step p and let C be the set of vertices of $G \backslash \cup_{l=1}^{p} B_{l}^{R}$ which have neighbors in $\cup_{l=1}^{p} B_{l}^{R}$ and $B_{1}^{\prime} \subseteq B_{p}^{R}$ be the set of vertices that are adjacent to all the vertices of C. Remark that $B_{1}^{\prime} \neq \emptyset$, as B_{1}^{\prime} contains at least the last vertex of σ_{p}. We denote by B^{R} the set $\left(\cup_{l=1}^{p} B_{l}^{R}\right) \backslash B_{1}^{\prime}$ and we will construct the largest K-join containing B_{1}^{\prime} in $G \backslash B^{R}$ which is compatible with σ_{p}, in order to define the attachment clique B_{1} of the desired 1-branch. The vertices of C are the candidates to complete the attachment clique. On C, we define the following oriented graph: there is an arc from x to y if: $x y$ is an edge of G, $N_{B^{R}}(y) \subseteq N_{B^{R}}(x)$ and $N_{G \backslash B^{R}}[x] \subseteq N_{G \backslash B^{R}}[y]$. This graph can be computed in time $O\left(n^{2}\right)$. Now, it is easy to check that the obtained oriented graph is a transitive graph, in which the equivalent classes are made of true twins in G. A path in this oriented graph corresponds, by definition, to a K-join containing B_{1}^{\prime} and compatible with σ_{p}. As it is possible to compute a longest path in linear time in this oriented graph, we obtain a maximum 1-branch of G that contains x as first vertex.

Now, to detect the 2 -branches, we first detect for all pairs of vertices a maximum K-join with these vertices as ends. More precisely, if $\{x, y\}$ are two vertices of G linked by an edge, then $\{x, y\}$ is a K-join of G, with $N=N_{G}(x) \cap N_{G}(y), L=N_{G}(x) \backslash N_{G}[y]$ and $R=N_{G}(y) \backslash N_{G}[x]$. So, there exist K-joins with x and y as ends, and we will compute such a K-join with maximum cardinality.

Lemma 2.21. Let $G=(V, E)$ be a graph and x and y two adjacent vertices of G. It is possible to compute in cubic time a maximum (in cardinality) K-join that admits x and y as ends.

Proof. We denote $N_{G}[x] \cap N_{G}[y]$ by $N, N_{G}(x) \backslash N_{G}[y]$ by L and $N_{G}(y) \backslash N_{G}[x]$ by R. Let us denote by N^{\prime} the set of vertices of N that contains N in their closed neighborhood. The vertices of N^{\prime} are the candidates to belong to the desired K-join. Now, we construct on N^{\prime} an oriented graph, putting, for every vertices u and v of N^{\prime}, an arc from u to v if: $N_{G}(v) \cap L \subseteq N_{G}(u) \cap L$ and $N_{G}(u) \cap R \subseteq N_{G}(v) \cap R$. Basically, it could take a $O(n)$ time to decide if there is an arc from u to v or not, and so the whole oriented graph could be computed in time $O\left(n^{3}\right)$. Now, it is easy to check that the obtained oriented graph is a transitive graph in which the equivalent classes are made of true twins in G. In this oriented graph, it is possible to compute a longest path from x to y in linear time. Such a path corresponds to a maximal K-join that admits x and y as ends. It follows that the desired K-join can be identified in $O\left(n^{3}\right)$ time.

Now, for every edge $x y$ of G, we compute a maximum K-join that contains x and y as ends and a reference to all the vertices that this K-join contains. This computation takes a $O\left(n^{3} m\right)$ time and gives, for every vertex, some maximum K-joins that contain this vertex. These K-joins will be useful to compute the 2-branches of G, in particular through the next lemma.

Lemma 2.22. Let B be a 2-branch of G with $B^{R} \neq \emptyset$, and x a vertex of B^{R}. Then, for every maximal (by inclusion) K-join B^{\prime} that contains x there exists an extremal edge uv of σ_{B} such that $B^{\prime}=\left\{w \in B: u \leq_{\sigma_{B}} w \leq_{\sigma_{B}} v\right\}$.

Proof. As usually, we denote by L, R and C the partition of $G \backslash B$ associated with B and by σ_{B} the umbrella ordering associated with B. Let B^{\prime} be a maximal K-join that contains x and define by b_{f} (resp. b_{l}) the first (resp. last) vertex of B^{\prime} according to σ_{B}. As there is no edge between $\left\{u \in B: u<_{\sigma_{B}} b_{f}\right\} \cup L \cup C$ and b_{l} and no edge between $\left\{u \in B: b_{l}<_{\sigma_{B}} u\right\} \cup R \cup C$ and b_{f}, we have $B^{\prime} \subseteq\left\{u \in B: b_{f} \leq_{\sigma_{B}} u \leq b_{l}\right\}$. Furthermore, as $\left\{u \in B: b_{f} \leq_{\sigma_{B}} u \leq b_{l}\right\}$ is a K-join and B^{\prime} is maximal, we have $B^{\prime}=\left\{u \in B: b_{f} \leq \sigma_{B} u \leq b_{l}\right\}$. Now, if $b_{f} b_{l}$ was not an extremal edge of σ_{B}, it would be possible to extend B^{\prime}, contradicting the maximality of B^{\prime}.

Now, we can detect the 2 -branches B with a set B^{R} non empty. Observe that this is enough for our purpose since we want to detect 2 -branches of size at least $(k+3)\left(k^{3}+4 k^{2}+5 k+1\right)$ and the attachment cliques contain at most $2\left(k^{3}+4 k^{2}+7 k+3\right)$ vertices.

Lemma 2.23. Let $G=(V, E)$ be a graph, x a vertex of G and B^{\prime} a given maximal K-join that contains x. There is a quadratic time algorithm to decide if there exists a 2-branch B of G which contains x as a vertex of B^{R}, and if it exists, to find a maximum 2-branch with this property.

Proof. By Lemma 2.22, if there exists a 2-branch B of G which contains x as a vertex of B^{R}, then B^{\prime} corresponds to a set $\left\{u \in B: b_{f} \leq_{\sigma_{B}} u \leq_{\sigma_{B}} b_{l}\right\}$ where $b_{f} b_{l}$ is an extremal edge of B. We denote by L^{\prime}, R^{\prime} and C^{\prime} the usual partition of $G \backslash B^{\prime}$ associated with B^{\prime}, and by $\sigma_{B^{\prime}}$ the umbrella ordering of B^{\prime}. In G, we remove the set of vertices $\left\{u \in B^{\prime}: u<_{\sigma_{B^{\prime}}} x\right\}$ and the edges between L^{\prime} and $\left\{u \in B^{\prime}: x \leq_{\sigma_{B^{\prime}}} u\right\}$ and denote by H_{1} the resulting graph. From the definition of the 2-branch $B,\left\{u \in B: x \leq_{\sigma_{B}} u\right\}$ is a 1-branch of H_{1} that contains x as first vertex. So, using Lemma 2.20, we find a maximal 1-branch B_{1} that contains x as first vertex. Remark that B_{1} has to contain $\left\{u \in B: x \leq_{\sigma_{B}} u\right\} \cap B^{R}$ at its beginning. Similarly, we define H_{2} from G by removing the vertex set $\left\{u \in B^{\prime}: x<_{\sigma_{B^{\prime}}} u\right\}$ and the edges between R^{\prime} and $\left\{u \in B^{\prime}: u \leq_{\sigma_{B^{\prime}}} x\right\}$. We detect
in H_{2} a maximum 1-branch B_{2} that contains x as last vertex, and as previously, B_{2} has to contain $\left\{u \in B: u \leq_{\sigma_{B}} x\right\} \cap B^{R}$ at its end. So, $B_{1} \cup B_{2}$ forms a maximum 2-branch of G containing x.

We would like to mention that it could be possible to improve the execution time of our detecting branches algorithm, using possibly more involved techniques (as for instance, inspired from [7]). However, this is not our main objective here.
Anyway, using a $O\left(n^{4}\right)$ brute force detection to localize all the 4-cycles and the claws, we obtain the following result.

Lemma 2.24. Given a graph $G=(V, E)$, the reduction rules 2.4 to 2.6 can be carried out in polynomial time, namely in time $O\left(n^{3} m\right)$.

2.3 Kernelization algorithm

We are now ready to the state the main result of this Section. The kernelization algorithm consists of an exhaustive application of Rules 2.1 to 2.6 .
Theorem 2.25. The Proper Interval Completion problem admits a kernel with $O\left(k^{5}\right)$ vertices.

Proof. Let $G=(V, E)$ be a positive instance of Proper Interval Completion reduced under Rules 2.1 to 2.6. Let F be a k-completion of $G, H=G+F$ and σ_{H} be the umbrella ordering of H. Since $|F| \leq k, G$ contains at most $2 k$ affected vertices (i.e. incident to an added edge). Let $A=\left\{a_{1}<_{\sigma_{H}} \ldots<_{\sigma_{H}} a_{i}<_{\sigma_{H}} \ldots<_{\sigma_{H}} a_{p}\right\}$ be the set of such vertices, with $p \leq 2 k$. The size of the kernel is due to the following observations (see Figure 12):

- Let $L_{0}=\left\{l \in V: l<_{\sigma_{H}} a_{1}\right\}$ and $R_{p+1}=\left\{r \in V: a_{p}<_{\sigma_{H}} r\right\}$. Since the vertices of L_{0} and R_{p+1} are not affected, it follows that $G\left[L_{0}\right]$ and $G\left[R_{p+1}\right]$ induce a proper interval graph. As Rule 2.1 has been applied, $G\left[L_{0}\right]$ and $G\left[R_{p+1}\right]$ both contain one connected component, and L_{0} and R_{p+1} are 1 -branches of G. So, by Observation 2.15, L_{0} and R_{p+1} both contain at most $k^{3}+4 k^{2}+9 k+4$ vertices.
- Let $S_{i}=\left\{s \in V: a_{i}<_{\sigma_{H}} s<_{\sigma_{H}} a_{i+1}\right\}$ for every $1 \leq i<p$. Again, since the vertices of S_{i} are not affected, it follows that $G\left[S_{i}\right]$ is a proper interval graph. As Rule 2.1 as been applied, there are at most two connected components in $G\left[S_{i}\right]$. If $G\left[S_{i}\right]$ is connected, then, S_{i} is a 2-branch of G and, by Observation 2.19, S_{i} contains at most $(k+3)\left(k^{3}+4 k^{2}+5 k+1\right)$ vertices. Otherwise, if $G\left[S_{i}\right]$ contains two connected components, they correspond to two 1-branches of G, and by Observation 2.15, S_{i} contain at most $2\left(k^{3}+4 k^{2}+9 k+4\right)$ vertices. In both cases, we bound the number of vertices of S_{i} by $(k+3)\left(k^{3}+4 k^{2}+5 k+1\right)$, provided that $k \geq 1$.

Altogether, the proper interval graph H (and hence G) contains at most:

$$
2\left(k^{3}+4 k^{2}+9 k+4\right)+(2 k-1)\left((k+3)\left(k^{3}+4 k^{2}+5 k+1\right)\right)
$$

vertices, which implies the claimed $O\left(k^{5}\right)$ bound. The complexity directly follows from Lemma 2.24 .

Figure 12: Illustration of the size of the kernel. The figure represents the graph $H=G+F$, the square vertices stand for the affected vertices, L_{0} and R_{p+1} are 1-branches of G, and, on the figure, S_{i} defines a 2-branch.

3 A special case: Bi-Clique Chain Completion

Bipartite chain graphs are defined as bipartite graphs whose parts are connected by a join. Equivalently, they are known to be the graphs that do not admit any $\left\{2 K_{2}, C_{5}, K_{3}\right\}$ as an induced subgraph [29] (see Figure 13). In [12], Guo proved that the so-called Bipartite Chain Deletion With Fixed Bipartition problem, where one is given a bipartite graph $G=(V, E)$ and seeks a subset of E of size at most k whose deletion from E leads to a bipartite chain graph, admits a kernel with $O\left(k^{2}\right)$ vertices. We define bi-clique chain graph to be the graphs formed by two disjoint cliques linked by a join. They correspond to interval graphs that can be covered by two cliques. Since the complement of a bipartite chain graph is a bi-clique chain graph, this result also holds for the Bi-clique Chain Completion With Fixed Bi-clique Partition problem. Using similar techniques than in Section 2, we prove that when the bipartition is not fixed, both problems admit a quadratic-vertex kernel. For the sake of simplicity, we consider the completion version of the problem, defined as follows.

Bi-clique Chain Completion:

Input: A graph $G=(V, E)$ and a positive integer k.
Parameter: k.
Output: A set $F \subseteq(V \times V) \backslash E$ of size at most k such that the graph $H=(V, E \cup F)$ is a bi-clique chain graph.

It follows from definition that bi-clique chain graphs do not admit any $\left\{C_{4}, C_{5}, 3 K_{1}\right\}$ as an induced subgraph, where a $3 K_{1}$ is an independent set of size 3 (see Figure 13). Observe in particular that bi-clique chain graphs are proper interval graphs, and hence admit an umbrella ordering.

Figure 13: The forbidden induced subgraphs for bipartite and bi-clique chain graphs.
We provide a kernelization algorithm for the Bi-clique Chain Completion problem which follows the same lines that the one in Section 2,

Rule 3.1 (Sunflower). Let $\mathcal{S}=\left\{C_{1}, \ldots, C_{m}\right\}, m>k$ be a set of $3 K_{1}$ having two vertices u, v in common but distinct third vertex. Add uv to F and decrease k by 1.

Let $\mathcal{S}=\left\{C_{1}, \ldots, C_{m}\right\}, m>k$ be a set of distinct 4-cycles having a non-edge uv in common. Add uv to F and decrease k by 1 .

The following result is similar to Lemma 2.2.
Lemma 3.1. Let $G=(V, E)$ be a positive instance of Bi-clique Chain Completion on which Rule 3.1 has been applied. There are at most $k^{2}+2 k$ vertices of G contained in $3 K_{1}$'s. Furthermore, there at most $2 k^{2}+2 k$ vertices of G that are vertices of a 4 -cycle.

We say that a K-join is simple whenever $L=\emptyset$ or $R=\emptyset$. In other words, a simple K-join consists in a clique connected to the rest of the graph by a join. We will see it as a 1-branch which is a clique and use for it the classical notation devoted to the 1-branch. Moreover, we (re)define a clean K-join as a K-join whose vertices do not belong to any $3 K_{1}$ or 4 -cycle. The following reduction rule is similar to Rule 2.4 , the main ideas are identical, only some technical arguments change. Anyway, to be clear, we give the proof in all details.

Rule 3.2 (K-join). Let B be a simple clean K-join of size at least $2(k+1)$ associated with an umbrella ordering σ_{B}. Let B_{L} (resp. B_{R}) be the $k+1$ first (resp. last) vertices of B according to σ_{B}, and $M=B \backslash\left(B_{L} \cup B_{R}\right)$. Remove the set of vertices M from G.

Lemma 3.2. Rule 3.2 is safe and can be computed in polynomial time.
Proof. Let $G^{\prime}=G \backslash M$. Observe that any k-completion of G is a k-completion of G^{\prime} since bi-clique chain graphs are closed under induced subgraphs. So, let F be a k-completion for G^{\prime}. We denote by $H=G^{\prime}+F$ the resulting bi-clique chain graph and by σ_{H} an umbrella ordering of H. We prove that we can always insert the vertices of M into σ_{H} and modify it if necessary, to obtain an umbrella ordering of a bi-clique chain graph for G without adding any edge. This will imply that F is a k-completion for G. To see this, we need the following structural property of G. As usual, we denote by R the neighbors in $G \backslash B$ of the vertices of B, and by C the vertices of $G \backslash(R \cup B)$. For the sake of simplicity, we let $N=\cap_{b \in B} N_{G}(b) \backslash B$, and remove the vertices of N from R. We abusively still denote by R the set $R \backslash N$, see Figure 14 .

Figure 14: The K-join decomposition for the Bi-clique Chain Completion problem.
Claim 3.3. The set $R \cup C$ is a clique of G.
Proof. Observe that no vertex of R is a neighbor of b_{1}, since otherwise such a vertex must be adjacent to all the vertices of B and then must stand in N. So, if $R \cup C$ contains two vertices u, v such that $u v \notin E$, we form the $3 K_{1}\left\{b_{1}, u, v\right\}$, contradicting the fact that B is clean.

The following observation comes from the definition of a simple K-join.
Observation 3.4. Given any vertex $r \in R$, if $N_{B}(r) \cap B_{L} \neq \emptyset$ holds then $M \subseteq N_{B}(r)$.

We use these facts to prove that an umbrella ordering of a bi-clique chain graph can be obtained for G by inserting the vertices of M into σ_{H}. Let b_{f}, b_{l} be the first and last vertex of $B \backslash M$ appearing in σ_{H}, respectively. We let B_{H} denote the set $\left\{u \in V(H): b_{f}<_{\sigma_{H}} u<_{\sigma_{H}} b_{l}\right\}$. Now, we modify σ_{H} by ordering the twins in H according to their neighborhood in M : if x and y are twins in H, are consecutive in σ_{H}, verify $x<_{\sigma_{H}} y<_{\sigma_{H}} b_{f}$ and $N_{M}(y) \subset N_{M}(x)$, then we exchange x and y in σ_{H}. This process stops when the considered twins are ordered following the join between $\left\{u \in V(H): u<_{\sigma_{H}} b_{f}\right\}$ and M. We proceed similarly on the right of B_{H}, i.e. for x and y consecutive twins with $b_{l}<_{\sigma_{H}} x<_{\sigma_{H}} y$ and $N_{M}(x) \subset N_{M}(y)$. The obtained order is clearly an umbrella ordering of a bi-clique chain graph too (in fact, we just re-labeled some vertices in σ_{H}, and we abusively still denote it by σ_{H}).

Claim 3.5. The set $B_{H} \cup\{m\}$ is a clique of G for any $m \in M$, and consequently $B_{H} \cup M$ is a clique of G.

Proof. Let u be any vertex of B_{H}. We claim that $u m \in E(G)$. Observe that if $u \in B$ then the claim trivially holds. So, assume that $u \notin B$. By definition of σ_{H}, B_{H} is a clique in H since $b_{f} b_{l} \in E(G)$. It follows that u is incident to every vertex of $B \backslash H$ in H. Since B_{L} contains $k+1$ vertices, it follows that $N_{G}(u) \cap B_{L} \neq \emptyset$. Hence, u belongs to $N \cup R$ and $u m \in E$ by Observation 2.6 . \diamond

Claim 3.6. Let m be any vertex of M and σ_{H}^{\prime} be the ordering obtained from σ_{H} by removing B_{H} and inserting m to the position of B_{H}. The ordering σ_{H}^{\prime} respects the umbrella property.

Proof. Assume that σ_{H}^{\prime} does not respect the umbrella property, i.e. that there exist (w.l.o.g.) two vertices $u, v \in H \backslash B_{H}$ such that either (1) $u<_{\sigma_{H}^{\prime}} v<_{\sigma_{H}^{\prime}} m, u m \in E(H)$ and $u v \notin E(H)$ or (2) $u<_{\sigma_{H}^{\prime}} m<_{\sigma_{H}^{\prime}} v, u m \notin E(H)$ and $u v \in E(H)$ or $(3) u<_{\sigma_{H}^{\prime}} v<_{\sigma_{H}^{\prime}} m, u m \in E(H)$ and $v m \notin E(H)$. First, assume that (1) holds. Since $u v \notin E$ and σ_{H} is an umbrella ordering, $u w \notin E(H)$ for any $w \in B_{H}$, and hence $u w \notin E(G)$. This means that $B_{R} \cap N_{G}(u)=\emptyset$, which is impossible since $u m \in E(G)$. If (2) holds, since $u v \in E(H)$ and σ_{H} is an umbrella ordering of H, we have $B_{H} \subseteq N_{H}(u)$. In particular, $B_{L} \subseteq N_{H}(u)$ holds, and as $\left|B_{L}\right|=k+1$, we have $B_{L} \cap N_{G}(u) \neq \emptyset$ and $u m$ should be an edge of G, what contradicts the assumption $u m \notin E(H)$. So, (3) holds, and we choose the first u satisfying this property according to the order given by σ_{H}^{\prime}. So we have $w m \notin E(G)$ for any $w<_{\sigma_{H}^{\prime}} u$. Similarly, we choose v to be the first vertex satisfying $v m \notin E(G)$. Since $u m \in E(G)$, we know that u belongs to $N \cup R$. Moreover, since $v m \notin E(G), v \in R \cup C$. There are several cases to consider:
(i) $u \in N$: in this case we know that $B \subseteq N_{G}(u)$, and in particular that $u b_{l} \in E(G)$. Since σ_{H} is an umbrella ordering for H, it follows that $v b_{l} \in E(H)$ and that $B_{L} \subseteq N_{H}(v)$. Since $\left|B_{L}\right|=k+1$ we know that $N_{G}(v) \cap B_{L} \neq \emptyset$ and hence $v \in R$. It follows from Observation 2.6 that $v m \in E(G)$.
(ii) $u \in R, v \in R \cup C$: in this case $u v \in E(G)$, by Claim 3.3, but u and v are not true twins in H (otherwise v would be placed before u in σ_{H} due to the modification we have applied to σ_{H}). This means that there exists a vertex $w \in V(H)$ that distinguishes u from v in H.
Assume first that $w<_{\sigma_{H}} u$ and that $u w \in E(H)$ and $v w \notin E(H)$. We choose the first w satisfying this according to the order given by σ_{H}^{\prime}. Since $v m, w m, v w \notin E(H)$, it follows that $\{v, w, m\}$ defines a $3 K_{1}$ of G, which cannot be since B is clean. Hence we can assume that
for any $w^{\prime \prime}<_{\sigma_{H}} u$, uw ${ }^{\prime \prime} \in E(H)$ implies that $v w^{\prime \prime} \in E(H)$. Now, suppose that $b_{l}<_{\sigma_{H}} w$ and $u w \notin E(H), v w \in E(H)$. In particular, this means that $B_{L} \subseteq N_{H}(v)$. Since $\left|B_{L}\right|=k+1$ we have $N_{G}(v) \cap B_{L} \neq \emptyset$, implying $v m \in E(G)$ (Observation 2.6). Assume now that $v<_{\sigma_{H}}$ $w<_{\sigma_{H}} b_{f}$. In this case, since $u w \notin E(H), B \cap N_{H}(u)=\emptyset$ holds and hence $B \cap N_{G}(u)=\emptyset$, which cannot be since $u \in R$. Finally, assume that $w \in B_{H}$ and choose the last vertex w satisfying this according to the order given by σ_{H}^{\prime} (i.e. $v w^{\prime} \notin E(H)$ for any $w<_{\sigma_{H}} w^{\prime}$ and $\left.w^{\prime} \in B_{H}\right)$. If $v w \in E(G)$ then $\{u, m, w, v\}$ is a 4 -cycle in G containing a vertex of B, which cannot be (recall that $B_{H} \cup\{m\}$ is a clique of G by Claim 2.7). Hence $v w \in F$ and there exists an extremal edge above $v w$. The only possibility is that this edge is some edge $u^{\prime} w$ for some u^{\prime} with $u^{\prime} \in V(H), u<_{\sigma_{H}} u^{\prime}<_{\sigma_{H}} v$ and $u^{\prime} w \in E(G)$. By the choice of v we know that $u^{\prime} m \in E(G)$. Moreover, by the choice of w, observe that u^{\prime} and v are true twins in H (if a vertex s distinguishes u^{\prime} and v in H, s cannot be before u, since otherwise s would distinguish u and v, and not before w, by choice of w). This leads to a contradiction because v should have been placed before u through the modification we have applied to σ_{H}.

Claim 3.7. Every vertex $m \in M$ can be added to the graph H while preserving an umbrella ordering.
Proof. Let m be any vertex of M. The graph H is a bi-clique chain graph. So, we know that in its associated umbrella ordering $\sigma_{H}=b_{1}, \ldots, b_{|H|}$, there exists a vertex b_{i} such that $H_{1}=\left\{b_{1}, \ldots, b_{i}\right\}$ and $H_{2}=\left\{b_{i+1}, \ldots, b_{|H|}\right\}$ are two cliques of H linked by a join. We study the behavior of B_{H} according to the partition $\left(H_{1}, H_{2}\right)$.
(i) Assume first that $B_{H} \subseteq H_{1}$ (the case $B_{H} \subseteq H_{2}$ is similar). We claim that the set $H_{1} \cup\{m\}$ is a clique. Indeed, let $v \in H_{1} \backslash B_{H}$: since H_{1} is a clique, $B_{H} \subseteq N_{H}(v)$ and hence $N_{G}(v) \cap B_{L} \neq \emptyset$. In particular, this means that $v m \in E(G)$ by Observation 3.4. Since $B_{H} \cup\{m\}$ is a clique by Claim 3.5, the result follows. Now, let u be the neighbor of m with maximal index in σ_{H}, and b_{u} the neighbor of u with minimal index in σ_{H}. Observe that we may assume $u \in H_{2}$ since otherwise $N_{H}(m) \cap H_{2}=\emptyset$ and hence we insert m at the beginning of σ_{H}. First, if $b_{u} \in H_{1}$, we prove that the order σ_{m} obtained by inserting m directly before b_{u} in σ_{H} yields an umbrella ordering of a bi-clique chain graph. Since $H_{1} \cup\{m\}$ is a clique, we only need to show that $N_{H_{2}}(v) \subseteq N_{H_{2}}(m)$ for any $v \leq_{\sigma_{m}} b_{u}$ and $N_{H_{2}}(m) \subseteq N_{H_{2}}(w)$ for any $w \in H_{2}$ with $w \geq_{\sigma_{m}} b_{u}$. Observe that by Claim 3.6 the set $\left\{w \in V: m \leq_{\sigma_{m}} w \leq_{\sigma_{m}} u\right\}$ is a clique. Hence the former case holds since $v u^{\prime} \notin E(G)$ for any $v \leq_{\sigma_{m}} b_{u}$ and $u^{\prime} \geq_{\sigma_{m}} u$. The latter case also holds since $N_{H}(m) \subseteq N_{H}\left(b_{u}\right)$ by construction. Finally, if $b_{u} \in H_{2}$, then $b_{u}=b_{\left|H_{1}\right|+1}$ since H_{2} is a clique. Hence, using similar arguments one can see that inserting m directly after $b_{\left|H_{1}\right|}$ in σ_{H} yields an umbrella ordering of a bi-clique chain graph.
(ii) Assume now that $B_{H} \cap H_{1} \neq \emptyset$ and $B_{H} \cap H_{2} \neq \emptyset$. In this case, we claim that $H_{1} \cup\{m\}$ or $H_{2} \cup\{m\}$ is a clique in H. Let u and u^{\prime} be the neighbors of m with minimal and maximal index in σ_{H}, respectively. If $u=b_{1}$ or $u^{\prime}=b_{|H|}$ then Claims 3.5 and 3.6 imply that $H_{1} \cup\{m\}$ or $H_{2} \cup\{m\}$ is a clique and we are done. So, none of these two conditions hold and $m b_{1} \notin E(H)$ and $m b_{|H|} \notin E(H)$ Then, by Claim 3.6 , we know that $b_{1} b_{|H|}$ and the set $\left\{b_{1}, b_{|H|}, m\right\}$ defines a $3 K_{1}$ containing m in G, which cannot be. This means that we can assume w.l.o.g. that $H_{1} \cup\{m\}$ is a clique, and we can conclude using similar arguments than in (i).

Since the proof of Claim 3.7 does not use the fact that the vertices of H do not belong to M, it follows that we can iteratively insert the vertices of M into σ_{H}, preserving an umbrella ordering at each step. To conclude, observe that the reduction rule can be computed in polynomial time using Lemma 2.21.

Observation 3.8. Let $G=(V, E)$ be a positive instance of Bi-Clique Chain Completion reduced under Rule 3.2. Any simple K-join B of G has size at most $3 k^{2}+6 k+2$.

Proof. Let B be any simple K-join of G, and assume $|B|>3 k^{2}+6 k+2$. By Lemma 3.1 we know that at most $3 k^{2}+2 k$ vertices of B are contained in a $3 K_{1}$ or a 4 -cycle. Hence B contains a set B^{\prime} of at least $2 k+3$ vertices not contained in any $3 K_{1}$ or a 4 -cycle. Now, since any subset of a K-join is a K-join, it follows that B^{\prime} is a clean simple K-join. Since G is reduced under rule 3.2 , we know that $\left|B^{\prime}\right| \leq 2(k+1)$ what gives a contradiction.

Finally, we can prove that Rules 3.1 and 3.2 form a kernelization algorithm.
Theorem 3.9. The Bi-clique Chain Completion problem admits a kernel with $O\left(k^{2}\right)$ vertices.
Proof. Let $G=(V, E)$ be a positive instance of Bi-Clique Chain Completion reduced under Rules 3.1 and 3.2 , and F be a k-completion for G. We let $H=G+F$ and H_{1}, H_{2} be the two cliques of H. Observe in particular that H_{1} and H_{2} both define simple K-joins. Let A be the set of affected vertices of G. Since $|F| \leq k$, observe that $|A| \leq 2 k$. Let $A_{1}=A \cap H_{1}, A_{2}=A \cap H_{2}, A_{1}^{\prime}=H_{1} \backslash A_{1}$ and $A_{2}^{\prime}=H_{2} \backslash A_{2}$ (see Figure 15 . Observe that since H_{1} is a simple K-join in $H, A_{1}^{\prime} \subseteq H_{1}$ is a simple K-join of G (recall that the vertices of A_{1}^{\prime} are not affected). By Observation 3.8, it follows that $\left|A_{1}^{\prime}\right| \leq 3 k^{2}+6 k+2$. The same holds for A_{2}^{\prime} and H contains at most $2\left(3 k^{2}+6 k+2\right)+2 k$ vertices.

Figure 15: Illustration of the bi-clique chain graph H. The square vertices stand for affected vertices, and the sets $A_{1}^{\prime}=H_{1} \backslash A_{1}$ and $A_{2}^{\prime}=H_{2} \backslash A_{2}$ are simple K-joins of G, respectively.

Corollary 3.10. The Bipartite Chain Deletion problem admits a kernel with $O\left(k^{2}\right)$ vertices.

4 Conclusion

In this paper we prove that the Proper Interval Completion problem admits a kernel with $O\left(k^{5}\right)$ vertices. Two natural questions arise from our results: firstly, does the Interval ComPLETION problem admit a polynomial kernel? Observe that this problem is known to be FPT not for long [27]. The techniques we developed here intensively use the fact that there are few claws in the graph, what help us to reconstruct parts of the umbrella ordering. Of course, these
considerations no more hold in general interval graphs. The second question is: does the Proper Interval Edge-Deletion problem admit a polynomial kernel? Again, this problem admits a fixed-parameter algorithm [25], and we believe that our techniques could be applied to this problem as well. Finally, we proved that the Bi-clique Chain Completion problem admits a kernel with $O\left(k^{2}\right)$ vertices, which completes a result of Guo [12]. In all cases, a natural question is thus whether these bounds can be improved?

References

[1] S. Bessy, C. Paul, and A. Perez. Polynomial kernels for 3-leaf power graph modification problems. Discrete Applied Mathematics, 158(16):1732-1744, 2010.
[2] H. L. Bodlaender. Kernelization: New upper and lower bound techniques. In IWPEC, pages 17-37, 2009.
[3] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels. J. Comput. Syst. Sci, 75(8):423-434, 2009.
[4] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett, 58(4):171-176, 1996.
[5] J. Chen and J. Meng. A $2 k$ kernel for the cluster editing problem. In COCOON, volume 6196 of $L N C S$, pages 459-468, 2010.
[6] Derek G. Corneil. A simple 3-sweep lbfs algorithm for the recognition of unit interval graphs. Discrete Appl. Math., 138:371-379, April 2004.
[7] Derek G. Corneil, Hiryoung Kim, Sridhar Natarajan, Stephan Olariu, and Alan P. Sprague. Simple linear time recognition of unit interval graphs. Information Processing Letters, 55(2):99 - 104, 1995.
[8] F. K. H. A. Dehne, M. R. Fellows, F. A. Rosamond, and P. Shaw. Greedy localization, iterative compression, modeled crown reductions: New FPT techniques, an improved algorithm for set splitting, and a novel 2 k kernelization for vertex cover. In IWPEC, volume 3162 of LNCS, pages 271-280, 2004.
[9] R.G. Downey and M.R. Fellows. Parameterized complexity. Springer, 1999.
[10] M. C. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA physical mapping. ADVAM: Advances in Applied Mathematics, 15, 1994.
[11] S. Guillemot, C. Paul, and A. Perez. On the (non-)existence of polynomial kernels for p_{l}-free edge modification problems. In IPEC, volume 6478 of $L N C S$, pages 147-157, 2010.
[12] J. Guo. Problem kernels for NP-complete edge deletion problems: Split and related graphs. In ISAAC, volume 4835 of $L N C S$, pages 915-926, 2007.
[13] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM Journal on Computing, 31(1):289-305, 2001.
[14] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping. In FOCS, pages 780-791, 1994.
[15] H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput, 28(5):1906-1922, 1999.
[16] S. Kratsch and M. Wahlström. Two edge modification problems without polynomial kernels. In IWPEC, volume 5917 of LNCS, pages 264-275. Springer, 2009.
[17] P. J. Looges and S. Olariu. Optimal greedy algorithms for indifference graphs. Computers \mathfrak{B} Mathematics with Applications, 25(7):15-25, 1993.
[18] F. Mancini. Graph modification problems related to graph classes. PhD thesis, University of Bergen, Norway, 2008.
[19] R. Niedermeier. Invitation to fixed parameter algorithms, volume 31 of Oxford Lectures Series in Mathematics and its Applications. Oxford University Press, 2006.
[20] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-tractable algorithms. Inf. Process. Lett, 73(3-4):125-129, 2000.
[21] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete Applied Mathematics, 144(1-2):173-182, 2004.
[22] R. Sharan. Graph modification problems and their applications to genomic research. PhD thesis, Tel-Aviv University, 2002.
[23] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput, 13(3):566-579, 1984.
[24] S. Thomassé. A $4 k^{2}$ kernel for feedback vertex set. ACM Transactions on Algorithms, 6(2), 2010.
[25] Y. Villanger. www.lirmm.fr/~paul/ANR/CIRM-TALKS-2010/Villanger-cirm-2010.pdf, 2010.
[26] Y. Villanger. Proper interval vertex deletion. In IPEC, volume 6478 of $L N C S$, pages 228-238, 2010.
[27] Y. Villanger, P. Heggernes, C. Paul, and J. A. Telle. Interval completion is fixed parameter tractable. SIAM J. Comput, 38(5):2007-2020, 2009.
[28] G. Wegner. Eigenschaften der nerven homologische-einfactor familien in R^{n}. PhD thesis, Universität Gottigen, Gottingen, Germany, 1967.
[29] M. Yannakakis. Computing the minimum fill-in is NP-Complete. SIAM J. Alg. and Discr. Meth., 2(1):77-79, 1981.

[^0]: *Research supported by the AGAPE project (ANR-09-BLAN-0159).

[^1]: ${ }^{1}$ Notice also that the vertex deletion of the problem is fixed-parameter tractable [26].

[^2]: ${ }^{2}$ In all our notations, we forget the mention to the graph G whenever the context is clear.

[^3]: ${ }^{3}$ In all the figures, (non-)edges between blocks stand for all the possible (non-)edges between the vertices that lie in these blocks, and the vertices within a gray box form a clique of the graph.

