Skip to main content

An Elementary Proof of a 3n − o(n) Lower Bound on the Circuit Complexity of Affine Dispersers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6907))

Abstract

A Boolean function \(f \colon \mathbb{F}^n_2 \rightarrow \mathbb{F}_2\) is called an affine disperser of dimension d, if f is not constant on any affine subspace of \(\mathbb{F}^n_2\) of dimension at least d. Recently Ben-Sasson and Kopparty gave an explicit construction of an affine disperser for sublinear d. The main motivation for studying such functions comes from extracting randomness from structured sources of imperfect randomness. In this paper, we show another application: we give a very simple proof of a 3n − o(n) lower bound on the circuit complexity (over the full binary basis) of affine dispersers for sublinear dimension. The same lower bound 3n − o(n) (but for a completely different function) was given by Blum in 1984 and is still the best known.

The main technique is to substitute variables by linear functions. This way the function is restricted to an affine subspace of \(\mathbb{F}^n_2\). An affine disperser for sublinear dimension then guarantees that one can make n − o(n) such substitutions before the function degenerates. It remains to show that each such substitution eliminates at least 3 gates from a circuit.

Research is partially supported by Federal Target Program “Scientific and scientific-pedagogical personnel of the innovative Russia” 2009–2013, Russian Foundation for Basic Research, RAS Program for Fundamental Research, Grant of the President of Russian Federation (NSh-5282.2010.1), and PDMI Computer Science Club scholarship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Technical Journal 28, 59–98 (1949)

    MathSciNet  Google Scholar 

  2. Blum, N.: A Boolean function requiring 3n network size. Theoretical Computer Science 28, 337–345 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Iwama, K., Lachish, O., Morizumi, H., Raz, R.: An explicit lower bound of 5n − o(n) for boolean circuits (2005) (unpublished manuscript), http://www.wisdom.weizmann.ac.il/~ranraz/publications/Podedl.ps

  4. Ben-Sasson, E., Kopparty, S.: Affine dispersers from subspace polynomials. In: Proceedings of the Annual Symposium on Theory of Computing (STOC), vol. 679, pp. 65–74. ACM Press, New York (2009)

    Chapter  Google Scholar 

  5. Boyar, J., Peralta, R.: Tight bounds for the multiplicative complexity of symmetric functions. Theoretical Computer Science 396, 223–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyar, J., Peralta, R., Pochuev, D.: On The Multiplicative Complexity of Boolean Functions over the Basis \((\land,\oplus,1)\). Theoretical Computer Science 235(1), 1–16 (2000)

    Article  MathSciNet  Google Scholar 

  7. Schnorr, C.P.: Zwei lineare untere Schranken für die Komplexität Boolescher Funktionen. Computing 13, 155–171 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Paul, W.J.: A 2.5n-lower bound on the combinational complexity of Boolean functions. SIAM Journal of Computing 6(3), 427–433 (1977)

    Article  MATH  Google Scholar 

  9. Stockmeyer, L.J.: On the combinational complexity of certain symmetric Boolean functions. Mathematical Systems Theory 10, 323–336 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kojevnikov, A., Kulikov, A.S.: Circuit Complexity and Multiplicative Complexity of Boolean Functions. In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 239–245. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Zwick, U.: A 4n lower bound on the combinational complexity of certain symmetric boolean functions over the basis of unate dyadic Boolean functions. SIAM Journal on Computing 20, 499–505 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Savicky, P., Zak, S.: A large lower bound for 1-branching programs. Technical Report TR96-036, ECCC (1996)

    Google Scholar 

  13. Amano, K., Tarui, J.: A well-mixed function with circuit complexity 5n ±o(n): Tightness of the lachish-raz-type bounds. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 342–350. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Demenkov, E., Kojevnikov, A., Kulikov, A.S., Yaroslavtsev, G.: New upper bounds on the Boolean circuit complexity of symmetric functions. Information Processing Letters 110(7), 264–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Demenkov, E., Kulikov, A.S. (2011). An Elementary Proof of a 3n − o(n) Lower Bound on the Circuit Complexity of Affine Dispersers. In: Murlak, F., Sankowski, P. (eds) Mathematical Foundations of Computer Science 2011. MFCS 2011. Lecture Notes in Computer Science, vol 6907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22993-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22993-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22992-3

  • Online ISBN: 978-3-642-22993-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics