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Abstract. Probabilistic automata are finite-state automata where thetransitions
are chosen according to fixed probability distributions. Weconsider a semantics
where on an input word the automaton produces a sequence of probability distri-
butions over states. An infinite word is accepted if the produced sequence is syn-
chronizing, i.e. the sequence of the highest probability inthe distributions tends
to 1. We show that this semantics generalizes the classical notion of synchroniz-
ing words for deterministic automata. We consider the emptiness problem, which
asks whether some word is accepted by a given probabilistic automaton, and the
universality problem, which asks whether all words are accepted. We provide
reductions to establish the PSPACE-completeness of the twoproblems.

1 Introduction

Probabilistic automata (PA) are finite-state automata where the transitions are chosen
according to fixed probability distributions. In the traditional semantics, a run of a prob-
abilistic automaton over an input word is a path (i.e., a sequence of states and transi-
tions), and theclassical acceptance conditionsover runs (such as in finite automata,
Büchi automata, etc.) are used to define the probability to accept a word as the mea-
sure of its accepting runs [11, 2]. Over finite and infinite words, several undecidability
results are known about probabilistic automata in the traditional semantics [10, 1].

Recently, an alternative semantics for probabilistic automata has been proposed,
with applications in sensor networks, queuing theory, and dynamical systems [9, 8, 5].
In this new semantics, a run over an input word is the sequenceof probability distribu-
tions produced by the automaton. For an example, consider the probabilistic automaton
with alphabetΣ = {a, b} on Fig. 1 and the sequence of probability distributions pro-
duced by the input worda(aba)ω.

Previous works have consideredqualitativeconditions on this semantics. The space
of probability distributions (which is a subset of[0, 1]n) is partitioned into regions de-
fined by linear predicates, and classical acceptance conditions are used to define ac-
cepting sequences of regions. It is known that reachabilityof a region is undecidable

⋆ This work has been partly supported by the MoVES project (P6/39) which is part of the IAP-
Phase VI Interuniversity Attraction Poles Programme funded by the Belgian State, Belgian
Science Policy.



for linear predicates, and that it becomes decidable for a class of qualitative predicates
which essentially constrain only the support of the probability distributions [8].

In this paper, we consider aquantitativesemantics which has decidable properties,
defined as follows [5]. A sequencēX = X0X1 . . . of probability distributions over a
set of statesQ is synchronizingif in the long run, the probability mass tends to accu-
mulate in a single state. More precisely, we consider two definitions: the sequencēX
is strongly synchronizingif lim infi→∞‖Xi‖ = 1 where‖Xi‖ = maxq∈Q Xi(q) is
the highest probability inXi; it is weakly synchronizingif lim supi→∞‖Xi‖ = 1. In-
tuitively, strongly synchronizing means that the probabilistic automaton behaves in the
long run like a deterministic system: eventually, at every step i (or at infinitely many
steps for weakly synchronizing) there is a stateq̂i which accumulates almost all the
probability, and therefore the sequenceq̂iq̂i+1 . . . is almost deterministic. Note that the
stateq̂i needs not be the same at every stepi. For instance, in the sequence in Fig. 1,
the maximal probability in a state tends to1, but it alternates between the three states
q2, q3, andq4. We define the synchronizing languageL(A) of a probabilistic automaton
A as the set of words3 which induce a synchronizing sequence of probability distribu-
tions. In this paper, we consider the decision problems of emptiness and universality
for synchronizing language, i.e. deciding whetherL(A) = ∅, andL(A) = D(Σ)ω

respectively.

Synchronizing words have applications in planning, control of discrete event sys-
tems, biocomputing, and robotics [3, 15]. For deterministic finite automata (DFA), a
(finite) wordw is synchronizing if readingw from any state of the automaton always
leads to the same state. Note that DFA are a special case of probabilistic automata. A
previous generalization of synchronizing words to probabilistic automata was proposed
by Kfoury, but the associated decision problem is undecidable [7]. By contrast, the re-
sults of this paper show that the definition of strongly and weakly synchronizing words
is a decidable generalization of synchronized words for DFA. More precisely, we show
that there exists a (finite) synchronizing word for a DFAA if and only if there exists an
(infinite) synchronizing word forA viewed as a probabilistic automaton with uniform
initial distribution over all states.

We show that the emptiness and universality problems for synchronizing lan-
guages is PSPACE-complete, for both strongly and weakly synchronizing semantics.
For emptiness, the PSPACE upper bound follows from a reduction to the emptiness
problem of an exponential-size Büchi automaton. The construction relies on an exten-
sion of the classical subset construction. The PSPACE lowerbound is obtained by a
reduction from the universality problem for nondeterministic finite automata.

For universality, the upper bound follows from a reduction to the emptiness prob-
lem of an exponential-size coBüchi automaton, and the lower bound is obtained by a
reduction from the emptiness problem of traditional probabilistic coBüchi automata in
positive semantics [4, 14].

3 Words can be randomized, i.e. their letters can be probability distributions over the alphabet
Σ. We denote byD(Σ) the set of all probability distributions overΣ.
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Fig. 1. The worda(aba)ω is strongly synchronizing.

The PSPACE-completeness bounds improve the results of [5] where it is shown that
the emptiness and universality problems for synchronizinglanguages are decidable4

using a characterization which yields doubly exponential algorithms.
Due to lack of space, the details of some proofs are omitted and can be found in [6].

2 Automata and Synchronizing Words

A probability distributionover a finite setS is a functiond : S → [0, 1] such that∑
s∈S d(s) = 1. Thesupportof d is the setSupp(d) = {s ∈ S | d(s) > 0}. We denote

byD(S) the set of all probability distributions overS.
Given a finite alphabetΣ, we denote byΣ∗ the set of all finite words overΣ, and

by Σω the set of all infinite words overΣ. The length of a wordw is denoted by|w|
(where|w| = ∞ for infinite words). An infiniterandomized wordoverΣ is a sequence
w = d0d1 . . . of probability distributions overΣ. We denote byD(Σ)ω the set of all
infinite randomized words overΣ. A word w ∈ Σω can be viewed as a randomized
wordd0d1 . . . in which the support of all probability distributionsdi is a singleton. We
sometimes callw ∈ Σω a pure wordto emphasize this.

Finite Automata. A nondeterministic finite automaton (NFA)A = 〈L, ℓ0, Σ, δ,F〉
consists of a finite setL of states, an initial stateℓ0 ∈ L, a finite alphabetΣ, a transition
relationδ : L × Σ → 2L, and an acceptance conditionF which can be either finite,
Büchi, or coBüchi (and thenF ⊆ L), or generalized Büchi (and thenF ⊆ 2L).

4 Probabilistic automata are equivalent to Markov decision processes with blind strategies.
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Finite acceptance conditions define languages of finite words, other acceptance con-
ditions define languages of infinite words. Automata with Büchi, coBüchi, and gener-
alized Büchi condition are calledω-automata. Arun over a (finite or infinite) word
w = σ0σ1 . . . is a sequenceρ = r0r1 . . . such thatr0 = ℓ0 andri+1 ∈ δ(ri, σi) for all
0 ≤ i < |w|. A finite runr0 . . . rk is acceptingif rk ∈ F , and an infinite runr0r1 . . . is
acceptingfor a Büchi condition ifrj ∈ F for infinitely manyj, for a coBüchi condition
if rj 6∈ F for finitely manyj, for a generalized Büchi condition if for alls ∈ F , we
haverj ∈ s for infinitely manyj.

Thelanguageof a (finite- orω-) automaton is the setLf(A) (resp.,Lω(A)) of finite
(resp., infinite) words over which there exists an acceptingrun. Theemptiness problem
for (finite- or ω-) automata is to decide, given an automatonA, whetherLf(A) = ∅
(resp.,Lω(A) = ∅), and theuniversality problemis to decide whetherLf(A) = Σ∗

(resp.,Lω(A) = Σω). For both finite and Büchi automata, the emptiness problemis
NLOGSPACE-complete, and the universality problem is PSPACE-complete [13, 12].

A deterministicfinite automaton (DFA) is a special case of NFA where the transition
relation is such thatδ(ℓ, σ) is a singleton for allℓ ∈ L andσ ∈ Σ, which can be viewed
as a functionδ : L × Σ → L, and can be extended to a functionδ : L × Σ∗ → L

defined inductively as follows:δ(ℓ, ǫ) = ℓ with ǫ the empty word andδ(ℓ, σ · w) =
δ(δ(ℓ, σ), w) for all w ∈ Σ∗. A synchronizingword for a DFA is a wordw ∈ Σ∗

such thatδ(ℓ, w) = δ(ℓ′, w) for all ℓ, ℓ′ ∈ L, i.e. such that from all states, a unique
state is reached after readingw. Synchronizing words have applications in several areas
from planning to robotics and system biology, and they gave rise to the famoušCerný’s
conjecture [3, 15].

Probabilistic Automata. A probabilistic automaton(PA) A = 〈Q, µ0, Σ, δ〉 consists
of a finite setQ of states, an initial probability distributionµ0 ∈ D(Q), a finite alphabet
Σ, and a probabilistic transition functionδ : Q × Σ → D(Q). In a stateq ∈ Q, the
probability to go to a stateq′ ∈ Q after reading a letterσ ∈ Σ is δ(q, σ)(q′). Define
Post(q, σ) = Supp(δ(q, σ)), and for a sets ⊆ Q andΣ′ ⊆ Σ, let Post(s, Σ′) =⋃

q∈s

⋃
σ∈Σ′ Post(q, σ).

Theoutcomeof an infinite randomized wordw = d0d1 . . . is the infinite sequence
X0X1 . . . of probability distributionsXi ∈ D(Q) such thatX0 = µ0 is the initial
distribution, and for alln > 0 andq ∈ Q,

Xn(q) =
∑

σ∈Σ

∑
q′∈Q Xn−1(q

′) · dn−1(σ) · δ(q′, σ)(q)

Thenormof a probability distributionX overQ is ‖X‖ = maxq∈Q X(q). We say
thatw is astrongly synchronizingword if

lim inf
n→∞

‖Xn‖ = 1, (1)

and that it is aweakly synchronizingword if

lim sup
n→∞

‖Xn‖ = 1. (2)

Intuitively, a word is synchronizing if in the outcome the probability mass tends
to concentrate in a single state, either at every step from some point on (for strongly
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synchronizing), or at infinitely many steps (for weakly synchronizing). Note that equiv-
alently, the randomized wordw is strongly synchronizing if the limitlimn→∞‖Xn‖
exists and equals1. We denote byLS(A) (resp.,LW (A)) the set of strongly (resp.,
weakly) synchronizing words ofA.

In this paper, we are interested in theemptiness problemfor strongly (resp., weakly)
synchronizing languages which is to decide, given a probabilistic automatonA, whether
LS(A) = ∅ (resp.,LW (A) = ∅), and in theuniversality problemwhich is to decide,
whetherLS(A) = D(Σ)ω (resp.,LW (A) = D(Σ)ω).

Synchronizing sequences of probability distributions have been first introduced for
Markov decision processes (MDP) [5]. A probabilistic automaton can be viewed as an
MDP where a word corresponds to a blind strategy (in the terminology of [5]) which
chooses letters (or actions) independently of the sequenceof states visited by the au-
tomaton and it only depends on the number of rounds that have been played so far. It is
known that the problem of deciding the existence of a blind synchronizing strategy for
MDPs is decidable5 [5, Theorem 5]. In Section 3 we provide a solution in PSPACE to
this problem, as well as a matching PSPACE lower bound.

Remark 1.From the results of [5], it follows that if there exists a (strongly or weakly)
synchronizing word, then there exists a pure one.

A deterministic finite automaton is also a special case of probabilistic automaton
where the probabilistic transition function is such thatPost(q, σ) is a singleton for all
q ∈ Q andσ ∈ Σ (and disregarding the initial distributionµ0). We show that the defini-
tion of strongly (and weakly) synchronizing word generalizes to probabilistic automata
the notion of synchronizing words for DFA, in the following sense.

Theorem 1. Given a deterministic finite automatonA, the following statements are
equivalent:

1. There exists a (finite) synchronizing word forA.
2. There exists an (infinite) strongly (or weakly) synchronizing word forA (viewed as

a probabilistic automaton) with uniform initial distribution.

Proof. First, if w ∈ Σ∗ is a synchronizing word for the DFAA, there is a stateq which
is reached from all states ofA by readingw. This implies thatX|w|(q) = 1 in the PAA
(no matter the initial distribution) and since the transition function ofA is deterministic,
any infinite word with prefixw is both strongly (and thus also weakly) synchronizing
for A.

Second, assume thatw is a strongly (or weakly) synchronizing word for the PAA
with initial distributionµ0 such thatµ0(q) = 1

m
wherem = |Q| is the number of states

of A. By Remark 1, we assume thatw = σ0σ1 · · · ∈ Σω is pure. LetX0X1 . . . be
the outcome ofw in A. Since the transitions inA are deterministic, all probabilities
Xi(q) for i ≥ 0 andq ∈ Q are multiples of1

m
, i.e.Xi(q) = c

m
for some0 ≤ c ≤ m.

Therefore, the fact thatlim infn→∞ ‖Xn‖ = 1 (or lim supn→∞ ‖Xn‖ = 1) implies
that Xi(q) = 1 for somei ≥ 0 andq ∈ Q. Then, the finite wordσ0σ1 . . . σi−1 is
synchronizing forA. ⊓⊔

5 The results in [5] suggest a doubly exponential algorithm for solving this problem.
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Note that the problem of deciding whether there exists a synchronizing word for a
given DFA can be solved in polynomial time, while the emptiness problem for synchro-
nizing languages (for probabilistic automata) is PSPACE-complete (see Theorem 2).

End-Components. A setC ⊆ Q is closedif for every stateq ∈ C, there existsσ ∈ Σ

such thatPost(q, σ) ⊆ C. For eachq ∈ C, let DC(q) = {σ ∈ Σ | Post(q, σ) ⊆ C}.
The graph induced byC isA ↾ C = (C, E) whereE is the set of edges(q, q′) ∈ C×C

such thatδ(q, σ)(q′) > 0 for someσ ∈ DC(q). An end-componentis a closed setU
such that the graphA ↾ C is strongly connected.

3 The Emptiness Problem is PSPACE-complete

In this section, we present constructions to reduce the emptiness problem for synchro-
nizing languages of probabilistic automata to the emptiness problem forω-automata,
with Büchi condition for strongly synchronizing language, and with generalized Büchi
condition for weakly synchronizing language. The constructions are exponential and
therefore provide a PSPACE upper bound for the problems. We also prove a matching
lower bound.

Lemma 1. The emptiness problem for strongly synchronizing languageof probabilistic
automata is decidable in PSPACE.

We give the main idea of the proof of Lemma 1. The details can befound in [6].
Given a PA A = 〈Q, µ0, Σ, δ〉, we construct a Büchi automatonB =

〈L, ℓ0, Σ, δB,FB〉 such thatLS(A) = ∅ iff L(B) = ∅. The automatonB is expo-
nential in the size ofA, and thus the PSPACE bound follows from the NLOGSPACE-
completeness of the emptiness problem for Büchi automata.

The construction ofB relies on the following intuition. A strongly synchronizing
word induces a sequence of probability distributionsXi in which the probability mass
tends to accumulate in a single stateq̂i at stepi. It can be shown that for all sufficiently
large i, there exists a deterministic transition from̂qi to q̂i+1, i.e. there existsσi ∈
Σ such thatPost(q̂i, σi) = {q̂i+1}. The Büchi automatonB will guess thewitness
sequencêqiq̂i+1 . . . and check that the probability mass is ‘injected’ into this sequence.
The state ofB keeps track of the supportsi = Supp(Xi) of the outcome sequence on
the input word, and at some point guesses that the witness sequenceq̂iq̂i+1 . . . starts.
Then, using anobligationsetoi ⊆ si, it checks that every state insi eventually ‘injects’
some probability mass in the witness sequence.

The construction ofB = 〈L, ℓ0, Σ, δB,FB〉 is as follows:

– L = 2Q ∪ (2Q × 2Q × Q) is the set of states. A states ⊆ Q is the support of the
current probability distribution. A state(s, o, q̂) ∈ 2Q × 2Q × Q consists of the
supports, the obligation seto ⊆ s, and a statêq ∈ s of the witness sequence.

– ℓ0 = Supp(µ0) is the initial state.
– δB : L × Σ → 2L is defined as follows. For alls ∈ 2Q andσ ∈ Σ, let s′ =

Post(s, σ), and defineδB(s, σ) = {s′} ∪ {(s′, s′, q̂) | q̂ ∈ s′}. For all (s, o, q̂) ∈

2Q × 2Q × Q andσ ∈ Σ, let s′ = Post(s, σ). If Post(q̂, σ) is not a singleton, then
δB((s, o, q̂), σ) = ∅, otherwise let{q̂′} = Post(q̂, σ), and
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Fig. 2. Sketch of the reduction for PSPACE-hardness of the emptiness problem.

• if o 6= ∅, thenδB((s, o, q̂), σ) = {(s′, o′ \ {q̂′}, q̂′) | ∀q ∈ o : o′ ∩Post(q, σ) 6=
∅},

• if o = ∅, thenδB((s, o, q̂), σ) = {(s′, s′, q̂′)}.

– FB = {(s, o, q̂) ∈ 2Q × 2Q × Q | o = ∅} is the set of accepting states.

Lemma 2. The emptiness problem for weakly synchronizing language ofprobabilistic
automata is decidable in PSPACE.

The proof of Lemma 2 is by a reduction to the emptiness problemof an exponential-size
ω-automaton with generalized Büchi condition. It can be found in [6].

Lemma 3. The emptiness problem for strongly synchronizing languageand for weakly
synchronizing language of probabilistic automata is PSPACE-hard.

Proof. We present a proof for strongly synchronizing words using a reduction from the
universality problem for nondeterministic finite automata. The proof and the reduction
for weakly synchronizing words is analogous.

Given a NFAN , we construct a PAA, such thatL(N ) = Σ∗ iff LS(A) = ∅.
The reduction is illustrated in Fig. 2. The nondeterministic transitions ofN become
probabilistic inA with uniform probability. The initial probability distribution assigns
probability 1

2 to the absorbing stateqsync. Therefore, a synchronizing word needs to
inject all that probability intoqsync. This can be done with the special symbol# from
the non-accepting states of the NFA. From the accepting states, the# symbol leads to
a sink stateqend from which there is no way to synchronize the automaton.

LetN = 〈L, ℓ0, Σ, δN ,FN 〉 be a NFA, we construct the PAA = 〈Q, µ0, Σ
′, δ,F〉

as follows:

– Q = L ∪ {qsync, qend}.
– µ0(ℓ0) = µ0(qsync) = 1

2 , andµ0(q) = 0 for all q ∈ Q \ {ℓ0, qsync}.
– Σ′ = Σ ∪ {#}.
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– δ : Q × Σ → D(Q) is the probabilistic transition function defined as follows.
For all σ ∈ Σ′, δ(qsync, σ)(qsync) = 1 andδ(qend, σ)(qend) = 1. For all q ∈
FN , δ(q, #)(qend) = 1, and for allq 6∈ FN , δ(q, #)(qsync) = 1. Finally, for all
q, q′ ∈ L andσ ∈ Σ, δ(q, σ)(q′) = 1

|δN (q,σ)| if q′ ∈ δN (q, σ), andδ(q, σ)(q′) = 0

otherwise.

We show thatL(N ) 6= Σ∗ iff LS(A) 6= ∅. First, assume thatL(N ) 6= Σ∗. Let
w ∈ Σ∗ such thatw 6∈ L(N ). Then all runs ofN overw end in a non-accepting state,
and inA the stateqsync is reached with probability1 on the wordw · #. Therefore,
w · (#)ω is a strongly synchronizing word forA andLS(A) 6= ∅.

Second, assume thatLS(A) 6= ∅. Let w′ ∈ LS(A) be a strongly synchronizing
word for A, and letX0X1 . . . be the outcome ofw′ in A. Sinceµ0(qsync) = 1

2 and
qsync is a sink state, we haveXk(qsync) ≥ 1

2 for all k ≥ 0 and sincew′ is strongly
synchronizing, it implies thatlimk→∞ Xk(qsync) = 1. Thenw′ has to contain#, as
this is the only letter on a transition from a state inL to qsync. Let w ∈ Σ∗ be the
prefix of w′ before the first occurrence of#. We claim thatw is not accepted byN .
By contradiction, if there is an accepting runr of N overw, then positive probability
is injected inqend by the finite wordw ·# and stays there forever, in contradiction with
the fact thatlimk→∞ Xk(qsync) = 1. Thereforew 6∈ L(N ) andL(N ) 6= Σ∗. ⊓⊔

The following result follows from Lemma 1, Lemma 2, and Lemma3.

Theorem 2. The emptiness problem for strongly synchronizing languageand for
weakly synchronizing language of probabilistic automata is PSPACE-complete.

4 The Universality Problem is PSPACE-complete

In this section, we present necessary and sufficient conditions for probabilistic automata
to have a universal strongly (resp., weakly) synchronizinglanguage. We show that the
construction can be checked in PSPACE. Unlike for the emptiness problem, it is not suf-
ficient to consider only pure words for universality of strongly (resp., weakly) synchro-
nizing languages. For instance, all infinite pure words for the probabilistic automaton
in Fig. 3 are strongly (and weakly) synchronizing, but the uniformly randomized word
over{a, b} is not strongly (nor weakly) synchronizing. Formally, we say an infinite ran-
domized word is a uniformly randomized word overΣ denoted bywu, if di(σ) = 1

|Σ|

for all σ ∈ Σ andi ∈ N.

Lemma 4. There is a probabilistic automaton for which all pure words are strongly
synchronizing, but not all randomized words .

The reason is that there are two sets ({q1} and {q2}) for which the probability
can not go out. For a given PAA = 〈Q, µ0, Σ, δ,F〉, a maximal end-component
U ⊆ Q is terminal, if Post(U, Σ) ⊆ U . It is easy to see that a terminal end-component
keeps probability inside. To have a universal strongly/weakly synchronizing language,
the PAA needs to have only a unique terminal end-component. Otherwise, the uni-
formly randomized wordwu would reach all terminal end-components and would not

8
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be strongly synchronizing. Though having only a terminal end-component is necessary,
it is not sufficient. For example, the infinite word(ab)ω 6∈ LS(A) for the PAA in Fig. 5
which contains only one terminal end-component. The probabilistic automaton needs
to ensure that for all randomized words, all of the probability mass tends to accumulate
in the unique terminal end-component. We express this property for a terminal end-
component as being absorbing. We say that a terminal end-componentU is absorbing,
if limn→∞

∑
q∈U Xn(q) = 1 for the outcomeX0X1 . . . of all infinite randomized

wordsw ∈ D(Σ)ω . Fig. 6 shows an automaton where the unique end competent is
absorbing and the strongly synchronizing language is universal.

Lemma 5. For a given PAA, deciding whether a given terminal end-componentU is
absorbing is decidable in PSPACE.

We give the main idea of the proof of Lemma 5. The details are provided in [6].
Given a terminal end-componentU ⊆ Q of the PAA = 〈Q, µ0, Σ, δ,F〉, we

construct a coBüchi automatonC = 〈L, ℓ0, 2
Σ, δC ,FC〉 such thatU is absorbing iff

L(C) = ∅. The coBüchi automatonC is exponential in the size ofA, and as a conse-
quence of NLOGSPACE-completeness of the emptiness problemfor coBüchi automata,
the PSPACE bound follows.

The automatonC is constructed to guess an infinite wordw as a witness, to
prove that the terminal end-componentU is not absorbing. This word induces an in-
finite sequence of supportss0s1s2 . . . produced by its outcomeX0X1X2 . . . (i.e.,
si = Supp(Xi) for all i ∈ N). At some pointn, there is a subsets ⊆ sn form whichU

cannot be reached. Therefore, the states ofC keeps track of the supportsi = Supp(Xi)
of the outcome, and at some point guesses the sets and checks thatU is never reached
from states ins. Then the acceptance condition requires that eventually all the reached
states are outside of the end-componentU . Since, by Lemma 4, the pure words are not
sufficient, the alphabet ofC is 2Σ. A word over this alphabet is a sequence of subsets
of letters which can be viewed as the sequence of supports of the distributions of a
randomized word.

The construction ofC = 〈L, ℓ0, 2
Σ , δC,FC〉 is as follows:

– L = 2Q × {0, 1}.
– ℓ0 = (Supp(µ0), 0) is the initial state.
– 2Σ \ {∅} is the alphabet.
– δC : L × 2Σ → 2L is the transition function defined as follows. For alls ⊆ Q and

Σ′ ⊆ Σ, let s′ = Post(s, Σ′) and defineδC((s, 0)) = {(s′, 0)} ∪ {(s′′, 1) | s′′ 6=
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∅∧s′′ ⊆ s′ \U} and defineδC((s, 1)) = {(s′, 1)} if s′∩U = ∅, andδC((s, 1)) = ∅
otherwise.

– andFC = 2Q × {1} is the coBüchi acceptance condition.

Another necessary condition to have a universal strongly (resp., weakly) synchro-
nizing language for a probabilistic automaton is that the uniformly randomized word is
synchronizing as well. For instance, the automaton presented in Fig. 4 has an absorbing
end-component, but since the uniformly randomized word is not strongly synchroniz-
ing, the strongly synchronizing language is not universal.

Lemma 6. The universality problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is decidable in PSPACE.

We state the main idea of the proof of Lemma 6 for strongly synchronizing lan-
guages. The detailed proof can be found in [6]. The proof for weakly synchronizing
languages follows an analogous discussion which is left to the reader.

We establish the following characterization. The synchronizing language of a given
PA A is universal iff (I) there is a (then necessarily unique) absorbing end-component
in A, and (II) the uniformly randomized wordwu is strongly (resp., weakly) synchro-
nizing. The above arguments show that these conditions are necessary and we now
briefly explain why they are also sufficient. Since the uniformly randomized wordwu

is strongly synchronizing, it can be shown that the unique terminal end-componentU
of A consists of a simple cycle, in the sense that|Post(q, Σ)| = 1 for all statesq ∈ U .
It follows that if wordw is not strongly synchronizing, then two different states ofU

would be reached after the same number of steps. But since allstates reachable byw
are also reachable bywu, it would mean thatwu is not strongly synchronizing, a con-
tradiction.

Condition (I) can be checked in PSPACE by Lemma 5, and Condition (II) reduces
to check that a Markov chain is synchronizing, which can be done in polynomial time
by steady state analysis. The PSPACE bound follows.

Lemma 7. The universality problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is PSPACE-hard.
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Proof. We present a proof using a reduction from a PSPACE-complete problem
so called initial state problem. Given a nondeterministic finite automatonN =
〈Q, q0, Σ, δ,F〉 and a stateq ∈ Q, we denote byNq the automatonN in which the
initial state isq, i.e.Nq = 〈Q, q, Σ, δ,F〉. Theinitial state problemis to decide, given
N , whether the exists a stateq ∈ Q and a wordw ∈ Σω such that all runsr of Nq over
w avoidF , i.e.ri 6∈ F for all i ≥ 0. From the results of [4, 14], it follows that the initial
state problem is PSPACE-complete. We present a polynomial-time reduction from the
the initial state problem to the universality problem, establishing the PSPACE hardness
of the universality problem.

Given an NFAN = 〈L, ℓ0, Σ, δN ,FN 〉 with FN 6= ∅, we construct a PAA =
〈Q, µ0, Σ, δ〉 as follows:

– Q = L ∪ {qend}.
– µ0(ℓ0) = 1, andµ0(q) = 0 for all q ∈ Q \ {ℓ0}.
– δ : Q × Σ → D(Q) is the probabilistic transition function defined as follows.

For all q ∈ Q and σ ∈ Σ, if q 6∈ F , thenδ(q, σ) is the uniform distribution
overδN (q, σ), and if q ∈ FN , δ(q, σ)(q′) = 1

2|δN (q,σ)| for all q′ ∈ δN (q, σ) and

δ(q, σ)(qend) = 1
2 .

We show that the answer to the initial state problem forN is YES if and only ifA is
not universal. We assume w.l.o.g that all states inN are reachable. First, if the answer
to the initial state problem forN is YES, then letq̂ be an initial state andw ∈ Σω

be a word satisfying the problem. We construct a word that is not (strongly neither
weakly) synchronizing forA. First, consider the|Q|-times repetition of the uniform
distributiondu overΣ. Then, with positive probability the stateqend is reached, and
also with positive probability the statêq is reached, say afterk steps. Letw′ ∈ Σω such
thatw = v · w′ and|v| = |Q| − k. Note that from statêq the finite wordv is played
with positive probability by the repetition of uniform distributiondu. Therefore, on the
word(du)|Q| ·w′, with some positive probability the setqend is never reached, and thus
it is not synchronizing, andA is not universal. Second, ifA is not universal, then the
terminal end-component{qend} is not absorbing and by the construction in Lemma 5,
there exists a statêq and a pure wordw ∈ Σω such that all runs from̂q on w avoid
qend, and therefore also avoidFN . Hence, the answer to the initial state problem forN
is YES. ⊓⊔

The following result follows from Lemma 6, and Lemma 7.

Theorem 3. The universality problem for strongly synchronizing language and for
weakly synchronizing language of probabilistic automata is PSPACE-complete.

5 Discussion

The complexity results of this paper show that both the emptiness and the universal-
ity problems for synchronizing languages are PSPACE-complete. The results in this
paper apply also to a more general definition of synchronizing sequence of probabil-
ity distribution, where groups of equivalent states are clustered together. A labeling
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function assigns a color to each group of equivalent states.The definition of synchro-
nizing sequences then corresponds to the requirement that the automaton essentially
behaves deterministically according to the sequence of colors produced in the long
run. A labeled probabilistic automaton is a PAA〈Q, µ0, Σ, δ〉 with a labeling func-
tion L : Q → Γ whereΓ is a finite set of colors. TheL-norm of a probability dis-
tribution X ∈ D(Q) is ‖X‖L = maxγ∈Γ

∑
q:L(q)=γ X(q), and a sequenceX0X1 . . .

is strongly synchronizing (resp., weakly synchronizing) if lim infn→∞ ‖Xn‖L = 1,

(resp.,lim supn→∞ ‖Xn‖L = 1). The constructions ofω-automata in Lemma 1 and
Lemma 2 can be adapted to show that the emptiness problem remains in PSPACE for
labeled probabilistic automata. Roughly, theω-automaton will guess the witness se-
quencêγiγ̂i+1 . . . of colors rather than a witness sequence of states. The solution of the
universality problem is adapted analogously.
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