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Abstract. Probabilistic automata are finite-state automata wherérémsitions
are chosen according to fixed probability distributions. &asider a semantics
where on an input word the automaton produces a sequencelatplity distri-
butions over states. An infinite word is accepted if the poedusequence is syn-
chronizing, i.e. the sequence of the highest probabilitthendistributions tends
to 1. We show that this semantics generalizes the classicaimofisynchroniz-
ing words for deterministic automata. We consider the emegt problem, which
asks whether some word is accepted by a given probabilistarrzaton, and the
universality problem, which asks whether all words are pted We provide
reductions to establish the PSPACE-completeness of thetaaems.

1 Introduction

Probabilistic automata (PA) are finite-state automata w/iiee transitions are chosen
according to fixed probability distributions. In the tradital semantics, a run of a prob-
abilistic automaton over an input word is a path (i.e., a seqga of states and transi-
tions), and theclassical acceptance conditiomser runs (such as in finite automata,
Buchi automata, etc.) are used to define the probabilityct®jpt a word as the mea-
sure of its accepting runs [11, 2]. Over finite and infinite dmrseveral undecidability
results are known about probabilistic automata in the ti@thl semantics [10, 1].

Recently, an alternative semantics for probabilistic m#ta has been proposed,
with applications in sensor networks, queuing theory, ayrthdhical systems [9, 8, 5].
In this new semantics, a run over an input word is the sequeinoebability distribu-
tions produced by the automaton. For an example, considgrdbabilistic automaton
with alphabet” = {a, b} on Fig. 1 and the sequence of probability distributions pro-
duced by the input word(aba)®.

Previous works have considergdalitativeconditions on this semantics. The space
of probability distributions (which is a subset [6f 1]™) is partitioned into regions de-
fined by linear predicates, and classical acceptance déonsliare used to define ac-
cepting sequences of regions. It is known that reachalfity region is undecidable

* This work has been partly supported by the MoVES project3®@6ihich is part of the IAP-
Phase VI Interuniversity Attraction Poles Programme fuhdg the Belgian State, Belgian
Science Policy.



for linear predicates, and that it becomes decidable foassabf qualitative predicates
which essentially constrain only the support of the prolitgtaistributions [8].

In this paper, we considerguantitativesemantics which has decidable properties,
defined as follows [5]. A sequencé = X, X; ... of probability distributions over a
set of states) is synchronizingf in the long run, the probability mass tends to accu-
mulate in a single state. More precisely, we consider twanitifis: the sequenc®
is strongly synchronizingf liminf; .|| X;|| = 1 where[|.X;|| = max.eq Xi(q) is
the highest probability in¥;; it is weakly synchronizing lim sup,_, || X;|| = 1. In-
tuitively, strongly synchronizing means that the probiabd automaton behaves in the
long run like a deterministic system: eventually, at evegp$ (or at infinitely many
steps for weakly synchronizing) there is a statevhich accumulates almost all the
probability, and therefore the sequefigg ;1 . .. is almost deterministic. Note that the
stateg; needs not be the same at every stepor instance, in the sequence in Fig. 1,
the maximal probability in a state tendstpbut it alternates between the three states
42, g3, andgy. We define the synchronizing languajeA) of a probabilistic automaton
A as the set of wordswhich induce a synchronizing sequence of probability tigtr
tions. In this paper, we consider the decision problems gfterass and universality
for synchronizing language, i.e. deciding whetligrd) = 0, and L(A) = D(X)¥
respectively.

Synchronizing words have applications in planning, cdrafaliscrete event sys-
tems, biocomputing, and robotics [3,15]. For determinifitiite automata (DFA), a
(finite) word w is synchronizing if reading from any state of the automaton always
leads to the same state. Note that DFA are a special caseludhglistic automata. A
previous generalization of synchronizing words to prolistii automata was proposed
by Kfoury, but the associated decision problem is unded&@). By contrast, the re-
sults of this paper show that the definition of strongly andkle synchronizing words
is a decidable generalization of synchronized words for D#Are precisely, we show
that there exists a (finite) synchronizing word for a DBAf and only if there exists an
(infinite) synchronizing word for4 viewed as a probabilistic automaton with uniform
initial distribution over all states.

We show that the emptiness and universality problems fochygmizing lan-
guages is PSPACE-complete, for both strongly and weaklgtaymizing semantics.
For emptiness, the PSPACE upper bound follows from a redludt the emptiness
problem of an exponential-size Blichi automaton. The caogbn relies on an exten-
sion of the classical subset construction. The PSPACE Idwend is obtained by a
reduction from the universality problem for nondeternticifinite automata.

For universality, the upper bound follows from a reductiorilte emptiness prob-
lem of an exponential-size coBuichi automaton, and the idwend is obtained by a
reduction from the emptiness problem of traditional praltic coBiichi automata in
positive semantics [4, 14].

3 Words can be randomized, i.e. their letters can be prolgbiistributions over the alphabet
Y. We denote byD(X) the set of all probability distributions over.
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Fig. 1. The worda(aba)® is strongly synchronizing.

The PSPACE-completeness bounds improve the results ot{&ijenit is shown that
the emptiness and universality problems for synchroniramguages are decidable
using a characterization which yields doubly exponentgd@thms.

Due to lack of space, the details of some proofs are omittdadtan be found in [6].

2 Automata and Synchronizing Words

A probability distributionover a finite setS is a functiond : S — [0, 1] such that
> scs d(s) = 1. Thesupportof d is the seSupp(d) = {s € S | d(s) > 0}. We denote
by D(S) the set of all probability distributions ovér.

Given a finite alphabel’, we denote by * the set of all finite words over’, and
by X* the set of all infinite words oveFE. The length of a wordw is denoted byw|
(where|w| = oo for infinite words). An infiniterandomized woraver X is a sequence
w = dod; ... of probability distributions oves’. We denote byD(X')“ the set of all
infinite randomized words over. A word w € X can be viewed as a randomized
word dyd; ... in which the support of all probability distributioms is a singleton. We
sometimes callv € X% apure wordto emphasize this.

Finite Automata. A nondeterministic finite automaton (NFAd = (L, ¢y, X, 6, F)
consists of a finite sdt of states, an initial statg € L, a finite alphabek’, a transition
relationd : L x ¥ — 2%, and an acceptance conditidghwhich can be either finite,
Buichi, or coBuichi (and thes C L), or generalized Biichi (and thef C 27%).

4 Probabilistic automata are equivalent to Markov decisiatesses with blind strategies.



Finite acceptance conditions define languages of finite syatther acceptance con-
ditions define languages of infinite words. Automata wittcBiiicoBuchi, and gener-
alized Bichi condition are called-automata. Arun over a (finite or infinite) word
w = ogo1 ... iIS@sequence = rory ... suchthaty = ¢y andr;y1 € 6(r;, 0;) for all
0 <i < |w|. Afinite runrg ... ry is acceptingf r, € F, and an infinite rumgry ... is
acceptingor a Biichi condition if-; € F for infinitely many;, for a coBiichi condition
if r; ¢ F for finitely manyj, for a generalized Biichi condition if for al € F, we
haver; € s for infinitely many;.

Thelanguageof a (finite- orw-) automaton is the sdt;(A) (resp.,L., (A)) of finite
(resp., infinite) words over which there exists an acceptimg Theemptiness problem
for (finite- or w-) automata is to decide, given an automatbnwhetherZ¢(A) = (
(resp.,L.,(A) = 0), and theuniversality problenis to decide whethef.s(A) = X*
(resp.,L,(A) = X¥). For both finite and Biichi automata, the emptiness probigem
NLOGSPACE-complete, and the universality problem is PSPAGmMplete [13,12].

A deterministidinite automaton (DFA) is a special case of NFA where the itiams
relation is such thai(¢, o) is a singleton for alf € L ando € X, which can be viewed
as a functiony : L x X — L, and can be extended to a function L x ¥* — L
defined inductively as followsi(¢,e) = ¢ with e the empty word and(¢,0 - w) =
0(6(¢,0),w) for all w € X*. A synchronizingword for a DFA is a wordw € X*
such thaty(¢,w) = o(¢',w) for all £,¢' € L, i.e. such that from all states, a unique
state is reached after readitng Synchronizing words have applications in several areas
from planning to robotics and system biology, and they gieeto the famou€erny’s
conjecture [3,15].

Probabilistic Automata. A probabilistic automatorfPA) A = (@, o, X, §) consists
of a finite sety of states, an initial probability distributign, € D(Q), a finite alphabet
X, and a probabilistic transition functioh: @ x X — D(Q). In a stateg € @, the
probability to go to a state’ € @ after reading a lettes € X' is 6(q,0)(¢’). Define
Post(q,0) = Supp(d(gq,0)), and for a ses C Q andX’ C X, let Post(s, X') =
Uyee Uoes Post(q, o).

The outcomeof an infinite randomized word) = dyd; . . . is the infinite sequence
XX ... of probability distributionsX; € D(Q) such thatX, = puo is the initial
distribution, and for alh > 0 andq € @,

Xn(@) =X pex X geq Xn-1(d) - dn-1(0) - 3(¢", 0)(q)

Thenormof a probability distributionX over@ is || X || = max,ecq X (¢). We say
thatw is astrongly synchronizingrord if

liminf || X,| = 1, 1)
and that it is aveakly synchronizingiord if

limsup || X,| = 1. 2

n—oo

Intuitively, a word is synchronizing if in the outcome theopability mass tends
to concentrate in a single state, either at every step framegwoint on (for strongly



synchronizing), or at infinitely many steps (for weakly syranizing). Note that equiv-
alently, the randomized wora is strongly synchronizing if the limitim,, . || X, |
exists and equals. We denote byCs(A) (resp.,Lw (A)) the set of strongly (resp.,
weakly) synchronizing words oA.

In this paper, we are interested in #@ptiness probleffior strongly (resp., weakly)
synchronizing languages which is to decide, given a prdistibiautomaton4, whether
Ls(A) = 0 (resp.,.Lw (A) = (), and in theuniversality problenwhich is to decide,
whetherLg(A) = D(X)¥ (resp.,Lw (A) = D(X)¥).

Synchronizing sequences of probability distributionsenbagen first introduced for
Markov decision processes (MDP) [5]. A probabilistic autdon can be viewed as an
MDP where a word corresponds to a blind strategy (in the teotogy of [5]) which
chooses letters (or actions) independently of the sequeinstates visited by the au-
tomaton and it only depends on the number of rounds that hese played so far. It is
known that the problem of deciding the existence of a blintthyonizing strategy for
MDPs is decidabR[5, Theorem 5]. In Section 3 we provide a solution in PSPACE to
this problem, as well as a matching PSPACE lower bound.

Remark 1.From the results of [5], it follows that if there exists a ¢(stgly or weakly)
synchronizing word, then there exists a pure one.

A deterministic finite automaton is also a special case obaldistic automaton
where the probabilistic transition function is such tRatt(q, o) is a singleton for all
g € Q ando € X (and disregarding the initial distributign,). We show that the defini-
tion of strongly (and weakly) synchronizing word generadizo probabilistic automata
the notion of synchronizing words for DFA, in the followingrsse.

Theorem 1. Given a deterministic finite automato#, the following statements are
equivalent:

1. There exists a (finite) synchronizing word fér
2. There exists an (infinite) strongly (or weakly) synchzarg word forA (viewed as
a probabilistic automaton) with uniform initial distribiain.

Proof. First, if w € X* is a synchronizing word for the DFA, there is a state which

is reached from all states df by readingw. This implies thatX,,,|(¢) = 1inthe PAA
(no matter the initial distribution) and since the tramsitfunction of A is deterministic,
any infinite word with prefixw is both strongly (and thus also weakly) synchronizing
for A.

Second, assume thatis a strongly (or weakly) synchronizing word for the PA
with initial distribution .o such thajuy(¢q) = - wherem = |Q| is the number of states
of A. By Remark 1, we assume that = ogoy--- € X is pure. LetXy X, ... be
the outcome ofw in A. Since the transitions inl are deterministic, all probabilities
Xi(q) fori > 0 andq € @ are multiples of%, i.e. X;(q) = = forsome0 < ¢ < m.

Therefore, the fact thdtm inf,, ., ||X,|| = 1 (orlimsup,, ., [|X.| = 1) implies
that X;(¢q) = 1 for somei > 0 andq € Q. Then, the finite wordbgoy ...0;-1 iS
synchronizing fotA4. O

5 The results in [5] suggest a doubly exponential algorithmsfiving this problem.



Note that the problem of deciding whether there exists alaymizing word for a
given DFA can be solved in polynomial time, while the empsmproblem for synchro-
nizing languages (for probabilistic automata) is PSPAGEwalete (see Theorem 2).

End-Components. A setC C @ is closedif for every state; € C, there existg € X
such thatPost(q, o) C C. For eachy € C, let Do(q) = {0 € X' | Post(¢q,0) C C}.
The graph induced bg' is A | C' = (C, E) whereFE is the set of edgelg, ¢') € C x C
such that(q,0)(¢’) > 0 for someo € D¢ (g). An end-componeris a closed set/
such that the grapH | C'is strongly connected.

3 The Emptiness Problem is PSPACE-complete

In this section, we present constructions to reduce theiaegs problem for synchro-
nizing languages of probabilistic automata to the empsipesblem forw-automata,
with Biichi condition for strongly synchronizing languaged with generalized Bichi
condition for weakly synchronizing language. The congtamns are exponential and
therefore provide a PSPACE upper bound for the problems.I¥depaiove a matching
lower bound.

Lemma 1. The emptiness problem for strongly synchronizing langudigeobabilistic
automata is decidable in PSPACE.

We give the main idea of the proof of Lemma 1. The details cafobed in [6].

Given a PAA = (Q,po,X,d), we construct a Buchi automatoB =
(L, £y, X, 65, Fp) such thatCs(A) = 0 iff L(B) = 0. The automatorB is expo-
nential in the size of4, and thus the PSPACE bound follows from the NLOGSPACE-
completeness of the emptiness problem for Biichi automata.

The construction of3 relies on the following intuition. A strongly synchronizjn
word induces a sequence of probability distributidfisin which the probability mass
tends to accumulate in a single stgtat stepi. It can be shown that for all sufficiently
largei, there exists a deterministic transition frajnto g; 1, i.e. there existe; <
X such thatPost(g;,0;) = {¢i+1}. The Buchi automatot8 will guess thewitness
sequencé;g;+1 - . . and check that the probability mass is ‘injected’ into tl@qsence.
The state of3 keeps track of the suppost = Supp(X;) of the outcome sequence on
the input word, and at some point guesses that the withes®seej;j;+1 . .. starts.
Then, using abligationseto; C s;, it checks that every state i eventually ‘injects’
some probability mass in the witness sequence.

The construction oB = (L, ¢y, X, d5, F) is as follows:

- L =29U(29 x 29 x ) is the set of states. A stateC Q is the support of the
current probability distribution. A statés, o, §) € 29 x 29 x @ consists of the
supports, the obligation seb C s, and a statg € s of the witness sequence.

— lo = Supp(io) is the initial state.

— 05 : L x ¥ — 2l is defined as follows. For ali € 2¢ ando € X, lets’ =
Post(s, o), and definédz(s,0) = {s'} U {(s',¢',¢) | ¢ € §'}. Forall(s,o,q) €
29 x 22 x Q ando € ¥, lets’ = Post(s, o). If Post(g, o) is not a singleton, then
05((s,0,q),0) = 0, otherwise lef ¢’} = Post(g, o), and



Fig. 2. Sketch of the reduction for PSPACE-hardness of the emstipexblem.

o if 0 # 0, thendg((s,0,4),0) = {(s',0'\{d'},q') | Vg € 0: o' NPost(q,0) #
03,
o if 0= 0, thends((s,0,4),0) = {(s',s",d)}.

— F5 ={(s,0,4) € 22 x 29 x Q | 0 = (} is the set of accepting states.

Lemma 2. The emptiness problem for weakly synchronizing languageotsiabilistic
automata is decidable in PSPACE.

The proof of Lemma 2 is by a reduction to the emptiness prolblizan exponential-size
w-automaton with generalized Biichi condition. It can benfdin [6].

Lemma 3. The emptiness problem for strongly synchronizing langwagkfor weakly
synchronizing language of probabilistic automata is PSPA@rd.

Proof. We present a proof for strongly synchronizing words usingdaction from the
universality problem for nondeterministic finite automalthe proof and the reduction
for weakly synchronizing words is analogous.

Given a NFAN, we construct a PA4, such thatL(N) = X* iff Lg(A) = 0.
The reduction is illustrated in Fig. 2. The nondetermigistansitions ofA/ become
probabilistic in.A with uniform probability. The initial probability distriltion assigns
probability% to the absorbing state,,,.. Therefore, a synchronizing word needs to
inject all that probability intay,,.. This can be done with the special symibfrom
the non-accepting states of the NFA. From the acceptingsstite# symbol leads to
a sink statey.,,q from which there is no way to synchronize the automaton.

Let N = (L, £y, X, 0, Far) be a NFA, we construct the PA = (Q, po, X7, 8, F)
as follows:

- Q =LU {QSynca qend}-
- MO(EO) = UO(QSync) = %1 anduo(q) = 0 for all qeq \ {605 qsync}-
— X = DU#).



-0 : Q x X — D(Q) is the probabilistic transition function defined as follows
Forallo € X', 6(qsync 0)(qsync) = 1 andd(gend, 7)(gena) = 1. For allq €
Fny 0(q, #)(gena) = 1, and for allg & Fu, 6(q, #)(gsync) = 1. Finally, for all
q,¢' € Lando € X, 6(q,0)(¢') = m if ¢ € 0n(q,0),anddé(q,0)(¢’) =0
otherwise.

We show thatL(N) # X* iff Ls(A) # 0. First, assume thal(N) # 2*. Let
w € X* such thatw ¢ L(N). Then all runs of\V overw end in a non-accepting state,
and in A the statey,,. is reached with probability on the wordw - #. Therefore,
w - (#)* is a strongly synchronizing word fot and£g(.A) # 0.

Second, assume thdis(A) # (. Letw’ € Ls(.A) be a strongly synchronizing
word for A, and letXyX; ... be the outcome of’ in A. Sincet(gsync) = % and
Gsync 1S @ Sink state, we hav& (gsync) > % for all ¥ > 0 and sincew’ is strongly
synchronizing, it implies thalimy_. X, (gsynec) = 1. Thenw’ has to contair, as
this is the only letter on a transition from a statefirto gsy,.. Letw € X* be the
prefix of w’ before the first occurrence gf. We claim thatw is not accepted byV.
By contradiction, if there is an accepting rurof A/ overw, then positive probability
is injected ing.,,q by the finite wordw - # and stays there forever, in contradiction with
the fact thatimy oo Xy (gsync) = 1. Thereforew ¢ L(N) andL(N) # X*. O

The following result follows from Lemma 1, Lemma 2, and Lem&a

Theorem 2. The emptiness problem for strongly synchronizing languagé for
weakly synchronizing language of probabilistic automat® SPACE-complete.

4 The Universality Problem is PSPACE-complete

In this section, we present necessary and sufficient camgifor probabilistic automata
to have a universal strongly (resp., weakly) synchronitamguage. We show that the
construction can be checked in PSPACE. Unlike for the erapsiproblem, it is not suf-
ficient to consider only pure words for universality of stghn(resp., weakly) synchro-
nizing languages. For instance, all infinite pure words I probabilistic automaton
in Fig. 3 are strongly (and weakly) synchronizing, but th&ammly randomized word
over{a, b} is not strongly (nor weakly) synchronizing. Formally, wg sa infinite ran-
domized word is a uniformly randomized word overdenoted byw,,, if d;(o) = ﬁ

forall o € X and: € N.

Lemma 4. There is a probabilistic automaton for which all pure word &trongly
synchronizing, but not all randomized words .

The reason is that there are two sefs;§ and {¢2}) for which the probability
can not go out. For a given PA = (Q, uo, X, 4, F), @ maximal end-component
U C @ isterminal if Post(U, X) C U. Itis easy to see that a terminal end-component
keeps probability inside. To have a universal stronglykiyegynchronizing language,
the PA A needs to have only a unique terminal end-component. Otkenihe uni-
formly randomized wordo,, would reach all terminal end-components and would not
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Fig. 3. Randomization is necessary. Fig. 4. Randomization is not sufficient.

be strongly synchronizing. Though having only a terminal-enmponent is necessary,

it is not sufficient. For example, the infinite wofdb)“ ¢ Ls(A) for the PAA in Fig. 5
which contains only one terminal end-component. The prilistib automaton needs

to ensure that for all randomized words, all of the probabitiass tends to accumulate

in the unique terminal end-component. We express this ptpper a terminal end-
component as being absorbing. We say that a terminal engr@oent/ is absorbing

if lim,, oo quU X, (q) = 1 for the outcomeX,X; ... of all infinite randomized
wordsw € D(X)“. Fig. 6 shows an automaton where the unique end competent is
absorbing and the strongly synchronizing language is usale

Lemma 5. For a given PAA, deciding whether a given terminal end-comporiéns
absorbing is decidable in PSPACE.

We give the main idea of the proof of Lemma 5. The details aogiged in [6].

Given a terminal end-componebt C @ of the PAA = (Q, uo, X, 0,F), we
construct a coBiichi automateh = (L, ¢y, 2*, §c, Fc) such thatl is absorbing iff
L(C) = 0. The coBuchi automato@ is exponential in the size ofl, and as a conse-
guence of NLOGSPACE-completeness of the emptiness prdblecoBiichi automata,
the PSPACE bound follows.

The automatorC is constructed to guess an infinite wowd as a witness, to
prove that the terminal end-componéntis not absorbing. This word induces an in-
finite sequence of supportgsiss ... produced by its outcom&yX; X5 ... (i.e.,

s; = Supp(X;) for all « € N). At some point, there is a subsetC s,, form whichU
cannot be reached. Therefore, the stateskdeps track of the support = Supp(X;)

of the outcome, and at some point guesses the aptl checks that’ is never reached
from states irs. Then the acceptance condition requires that eventualigeareached
states are outside of the end-comporiénSince, by Lemma 4, the pure words are not
sufficient, the alphabet af is 2. A word over this alphabet is a sequence of subsets
of letters which can be viewed as the sequence of supportseaodiistributions of a
randomized word.

The construction of = (L, (g, 2%, ¢, Fe) is as follows:

- L =2%x{0,1}.

— Lo = (Supp(uo), 0) is the initial state.

— 2%\ {0} is the alphabet.

— 0c : L x 2% — 2% is the transition function defined as follows. ForalC @ and
X' C X, lets’ = Post(s, X') and definei¢((s,0)) = {(s/,0)} U {(s”,1) | 8" #



Fig. 5. Non-absorbing end-component. Fig. 6. Absorbing end-component.

OAs" C s'\U}anddefindc((s,1)) = {(s',1)}if S NU =0, anddc((s,1)) = 0
otherwise.
— andF; = 29 x {1} is the coBuichi acceptance condition.

Another necessary condition to have a universal stronglsp(r weakly) synchro-
nizing language for a probabilistic automaton is that thigoumly randomized word is
synchronizing as well. For instance, the automaton preséntFig. 4 has an absorbing
end-component, but since the uniformly randomized wordisstrongly synchroniz-
ing, the strongly synchronizing language is not universal.

Lemma 6. The universality problem for strongly synchronizing langa and for
weakly synchronizing language of probabilistic automatdeécidable in PSPACE.

We state the main idea of the proof of Lemma 6 for strongly byocizing lan-
guages. The detailed proof can be found in [6]. The proof feakly synchronizing
languages follows an analogous discussion which is lefiea¢ader.

We establish the following characterization. The synclriog language of a given
PA A is universal iff (1) there is a (then necessarily unique)aabsig end-component
in A, and () the uniformly randomized word,, is strongly (resp., weakly) synchro-
nizing. The above arguments show that these conditions ecessary and we now
briefly explain why they are also sufficient. Since the unifty randomized worduv,,
is strongly synchronizing, it can be shown that the uniqueireal end-componeriy
of A consists of a simple cycle, in the sense tRatt(q, X')| = 1 for all statesy € U.

It follows that if wordw is not strongly synchronizing, then two different stateg/of
would be reached after the same number of steps. But sinstatdls reachable hy
are also reachable hy,,, it would mean thatv,, is not strongly synchronizing, a con-
tradiction.

Condition (I) can be checked in PSPACE by Lemma 5, and Cand(ti) reduces
to check that a Markov chain is synchronizing, which can beedo polynomial time
by steady state analysis. The PSPACE bound follows.

Lemma 7. The universality problem for strongly synchronizing langa and for
weakly synchronizing language of probabilistic automat® SPACE-hard.
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Proof. We present a proof using a reduction from a PSPACE-compleiblgm
so calledinitial state problem Given a nondeterministic finite automatod =
(Q,q0,X,0,F) and a statg € @, we denote byV, the automatonV in which the
initial state isq, i.e. NV, = (Q, ¢, X, §, F). Theinitial state problenis to decide, given
N, whether the exists a staje= @ and a wordw € X such that all runs of V, over
w avoidF, i.e.r; ¢ F forall i > 0. From the results of [4, 14], it follows that the initial
state problem is PSPACE-complete. We present a polyndimmal+reduction from the
the initial state problem to the universality problem, bithing the PSPACE hardness
of the universality problem.

Given an NFAN = (L, ly, X, 6xr, Far) With Far # (), we construct a PA4 =
(Q, po, X, 0) as follows:

-Q=LU {qend}'

= po(lo) =1,andug(q) = 0forallg € @\ {¢o}.

-4 :Q x X — D(Q) is the probabilistic transition function defined as follows
Foralgq € Q ando € X, if ¢ ¢ F, thend(q,o) is the uniform distribution
overdn(g,o), and ifq € Fr, 6(q,0)(q) forall ¢ € dpn(g,0) and

6(qa0)(Qend) = %

_ 1
— 2[on(g,0)]

We show that the answer to the initial state problem\fois YEesif and only if A is
not universal. We assume w.l.0.g that all stated/imre reachable. First, if the answer
to the initial state problem fal is YES, then letg be an initial state andh € X«
be a word satisfying the problem. We construct a word thatois(strongly neither
weakly) synchronizing ford. First, consider théQ|-times repetition of the uniform
distributiond,, over Y. Then, with positive probability the statg,,4 is reached, and
also with positive probability the statgis reached, say aftérsteps. Letv’ € X* such
thatw = v - w’ and|v| = |Q| — k. Note that from statg the finite wordv is played
with positive probability by the repetition of uniform digiutiond,,. Therefore, on the
word (d,, )|l - w’, with some positive probability the st is never reached, and thus
it is not synchronizing, and! is not universal. Second, il is not universal, then the
terminal end-componeRy.,q} is not absorbing and by the construction in Lemma 5,
there exists a stat¢ and a pure wordv € X such that all runs frong on w avoid
gend, and therefore also avoiiy. Hence, the answer to the initial state problem/for
is YES. O

The following result follows from Lemma 6, and Lemma 7.

Theorem 3. The universality problem for strongly synchronizing laaga and for
weakly synchronizing language of probabilistic automat® SPACE-complete.

5 Discussion

The complexity results of this paper show that both the emeigs and the universal-
ity problems for synchronizing languages are PSPACE-cetaplThe results in this
paper apply also to a more general definition of synchrogiseguence of probabil-
ity distribution, where groups of equivalent states arestelted together. A labeling
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function assigns a color to each group of equivalent staies.definition of synchro-
nizing sequences then corresponds to the requirementhbautomaton essentially
behaves deterministically according to the sequence afregiroduced in the long
run. A labeled probabilistic automaton is a PKQ, uo, 2, ) with a labeling func-
tionL : @ — I'wherel is a finite set of colors. The-norm of a probability dis-
tribution X' € D(Q) is [ X[ = maxyer 3, (4=, X (¢), and a sequenc¥oX; ...

is strongly synchronizing (resp., weakly synchronizirfgiin inf,, ., || X.|[L = 1,
(resp.,limsup,,_,. || Xn|[L = 1). The constructions af-automata in Lemma 1 and
Lemma 2 can be adapted to show that the emptiness problenmemd@SPACE for
labeled probabilistic automata. Roughly, theautomaton will guess the witness se-
quencey;J;+1 - - - of colors rather than a witness sequence of states. Thewobfithe
universality problem is adapted analogously.
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