
ar
X

iv
:1

10
2.

56
82

v1
 [

cs
.F

L
]

 2
8

Fe
b

20
11

On minimising automata with errors

Pawe l Gawrychowski1,⋆, Artur Jeż1,⋆, and Andreas Maletti2,⋆⋆

1 Institute of Computer Science, University of Wroc law
ul. Joliot-Curie 15, 50-383 Wroc law, Poland

{gawry,aje}@cs.uni.wroc.pl
2 Institute for Natural Language Processing, Universität Stuttgart

Azenbergstraße 12, 70174 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. The problem of k-minimisation for a DFA M is the computa-
tion of a smallest DFA N (where the size |M | of a DFA M is the size of the
domain of the transition function) such that L(M)△L(N) ⊆ Σ<k, which
means that their recognized languages differ only on words of length less
than k. The previously best algorithm, which runs in time O(|M | log2 n)
where n is the number of states, is extended to DFAs with partial transi-
tion functions. Moreover, a faster O(|M | log n) algorithm for DFAs that
recognise finite languages is presented. In comparison to the previous al-
gorithm for total DFAs, the new algorithm is much simpler and allows
the calculation of a k-minimal DFA for each k in parallel. Secondly, it
is demonstrated that calculating the least number of introduced errors
is hard: Given a DFA M and numbers k and m, it is NP-hard to de-
cide whether there exists a k-minimal DFA N with |L(M)△L(N)| ≤ m.
A similar result holds for hyper-minimisation of DFAs in general: Given
a DFA M and numbers s and m, it is NP-hard to decide whether there
exists a DFA N with at most s states such that |L(M)△L(N)| ≤ m.

Keywords: finite automaton, minimisation, lossy compression

1 Introduction

Deterministic finite automata (DFAs) are one of the simplest devices recognising
languages. The study of their properties is motivated by (i) their simplicity,
which yields efficient operations, (ii) their wide-spread applications, (iii) their
connections to various other areas in theoretical computer science, and (iv) the
apparent beauty of their theory. A DFA M is a quintuple 〈Q,Σ, δ, q0, F 〉, where
Q is its finite state-set, Σ is its finite alphabet, δ : Q × Σ → Q is its partial
transition function, q0 ∈ Q is its starting state, and F ⊆ Q is its set of accepting
states. The DFA M is total if δ is total. The transition function δ is extended
to δ : Q × Σ∗ → Q in the standard way. The language L(M) that is recognised
by the DFA M is L(M) = {w | δ(q0, w) ∈ F}.

⋆ Supported by MNiSW grant number N N206 492638, 2010–2012.
⋆⋆ Supported by the Ministerio de Educación y Ciencia (MEC) grant JDCI-2007-760

and the German Research Foundation (DFG) grant MA/4959/1-1.

http://arxiv.org/abs/1102.5682v1

2 P. Gawrychowski, A. Jeż, A. Maletti

Two DFAs M and N are equivalent (written as M ≡ N) if L(M) = L(N).
A DFA M is minimal if all equivalent DFAs are larger. One of the classical
DFA problems is the minimisation problem, which given a DFA M asks for the
(unique) minimal equivalent DFA. The asymptotically fastest DFA minimisa-
tion algorithm runs in time O(|Σ|n logn) and is due to Hopcroft [9,7], where
n = |Q|; its variant for partial DFAs is known to run in time O(|M | log n).

Recently, minimisation was also considered for hyper-equivalence [2,3], which
allows a finite difference in the languages. Two languages L and L′ are hyper-
equivalent if |L△L′| <∞, where△ denotes the symmetric difference of two sets.
The DFAs M and N are hyper-equivalent if their recognised languages are. The
DFA M is hyper-minimal if all hyper-equivalent DFAs are larger. The algorithms
for hyper-minimisation [3,2] were gradually improved over time to the currently
best run-time O(|M | log2 n) [8,6], which can be reduced to O(|M | logn) using
a strong computational model (with randomisation or special memory access).
Since classical DFA minimisation linearly reduces to hyper-minimisation [8], an
algorithm that is faster than O(|M | logn) seems unlikely. Moreover, according
to the authors’ knowledge, randomisation does not help Hopcroft’s [5] or any
other DFA minimisation algorithm. Thus, the randomised hyper-minimisation
algorithm also seems to be hard to improve.

Already [3] introduces a stricter notion of hyper-equivalence. Two languages
L and L′ are k-similar if they only differ on words of length less than k. Anal-
ogously, DFAs are k-similar if their recognised languages are. A DFA M is
k-minimal if all k-similar DFAs are larger, and the k-minimisation problem asks
for a k-minimal DFA that is k-similar to the given DFA M . The known algo-
rithm [6] for k-minimisation of total DFAs runs in time O(|M | log2 n), however
it is quite complicated and fails for non-total DFAs.

In this contribution, we present a simpler k-minimisation algorithm for gen-
eral DFAs, which still runs in time O(|M | log2 n). This represents a significant
improvement compared to the complexity for the corresponding total DFA if
the transition table of M is sparse. Its running time can be reduced if we al-
low a stronger computational model. In addition, the new algorithm runs in
time O(|M | logn) for every DFA M that recognises a finite language. Finally,
the new algorithm can calculate (a compact representation of) a k-minimal DFA
for each possible k in a single run (in the aforementioned run-time). Outputting
all the resulting DFAs might take time Ω(n|M | log2 n).

Although k-minimisation can be efficiently performed, no uniform bound on
the number of introduced errors is provided. In the case of hyper-minimisation,
it is known [10] that the optimal (i.e., the DFA committing the least number
of errors) hyper-minimal DFA and the number of its errors m can be efficiently
computed. However, this approach does not generalise to k-minimisation. We
show that this is for a reason: already the problem of calculating the number m
of errors of an optimal k-minimal automaton is NP-hard.

Finally, for some applications it would be beneficial if we could balance the

number m of errors against the compression rate |N |
|M| . Thus, we also consider the

question whether given a DFA M and two integers s and m there is a DFA N

On minimising automata with errors 3

with at most s states that commits at most m errors (i.e., |L(M)△L(N)| ≤ m).
Unfortunately, we show that this problem is also NP-hard.

2 Preliminaries

We usually use the two DFAs M = 〈Q,Σ, δ, q0, F 〉 and N = 〈P,Σ, µ, p0, F
′〉.

We also write δ(w) for δ(q0, w). The right-language LM (q) of a state q ∈ Q is
the language LM (q) = {w | δ(q, w) ∈ F} recognised by M starting in state q.
Minimisation of DFAs is based on calculating the equivalence ≡ between states,
which is defined by q ≡ p if and only if LM (q) = LN(p). Similarly, the left
language of q is the language δ−1(q) = {w | δ(w) = q} of words leading to q
in M .

For two languages L and L′, we define their distance d(L,L′) as

d(L,L′) = min {ℓ | L ∩Σ≥ℓ = L′ ∩Σ≥ℓ} ,

where min ∅ =∞. Actually, d is an ultrametric. The distance d can be extended
to states: d(q, p) = d(LM (q), LN (p)) for q ∈ Q and p ∈ P . It satisfies the simple
recursive formula:

d(q, p) =

{

0 if q ≡ p,

1 + max {d(δ(q, a), µ(p, a)) | a ∈ Σ} otherwise.
(1)

Since d is an ultrametric on languages, (1) yields that the distance d(q1, q2) be-
tween q1, q2 ∈ Q in the DFA M is either infinite or small. Formally, d(q1, q2) =∞
or d(q1, q2) < |Q|.

The minimal DFAs considered in this paper are obtained mostly by state
merging. We say that the DFA N is the result of merging state q to state p
(assuming q 6= p) in M if N is obtained from M by changing all transitions
ending in q to transitions ending in p and deleting the state q. If q was the starting
state, then p is the new starting state. Formally, P = Q \ {q}, F ′ = F \ {q}, and

µ(r, a) =

{

p if δ(r, a) = q

δ(r, a) otherwise,
p0 =

{

p if q0 = q

q0 otherwise.

The process is illustrated in Fig. 1.
Finally, let in-levelM (q) be the length of the longest word leading to q

in M . If there is no such longest word, then in-levelM (q) = ∞. Formally,
in-levelM (q) = sup {|w| | w ∈ δ−1(q)} for every q ∈ Q. The structural char-
acterisation of hyper-minimal DFAs [3, Sect. 3.2] relies on a state classification
into kernel and preamble states. The set Ker(M) of kernel states consists of all
states q ∈ Q with in-levelM (q) =∞, whereas the remaining states are preamble
states. Roughly speaking, the kernels of two hyper-equivalent and hyper-minimal
automata are isomorphic in the standard sense, and their preambles are also iso-
morphic except for acceptance values.

4 P. Gawrychowski, A. Jeż, A. Maletti

C F I L

B E H J N

A D G Q M

C F I L

B E H J N

A D Q M

Fig. 1. Merging state G into I .

3 Efficient k-minimisation

3.1 k-similarity and k-minimisation

Two languages L and L′ are k-similar if they only differ on words of length
smaller than k, and the two DFAs M and N are k-similar if their recognised
languages are. The DFA M is k-minimal if all k-similar DFAs are larger. In
this section, we first give a general simple algorithm k-Minimise that computes
a k-minimal DFA that is k-similar to the input DFA M . Then we present a data
structure that allows a fast, yet simple implementation of this algorithm.

Definition 1. For two languages L and L′, we let L ∼k L′ ⇐⇒ d(L,L′) ≤ k.

The hyper-equivalence relation [3] can be now defined as ∼ =
⋃

k∼k. Next,
we extend k-similarity to states.

Definition 2. Two states q ∈ Q and p ∈ P are k-similar, denoted by q ∼k p, if

d(q, p) + min(k, in-levelM (q), in-levelN (p)) ≤ k .

While ∼k is an equivalence relation on languages, it is, in general, only a
compatibility relation (i.e., reflexive and symmetric) on states. On states the
hyper-equivalence is not a direct generalisation of k-similarity. Instead, p ∼ q if
and only if LM (q) ∼ LN(p). We use the k-similarity relation to give a simple al-
gorithm k-Minimise(M), which constructs a k-minimal DFA (see Algorithm 1).
In Section 3.2 we show how to implement it efficiently.

Theorem 1. k-Minimise returns a k-minimal DFA that is k-similar to M .

3.2 Distance forests

In this section we define distance forests, which capture the information of the
distance between states of a given minimal DFA M . We show that k-minimisation
can be performed in linear time, when a distance forest for M is supplied. We

On minimising automata with errors 5

Algorithm 1 k-Minimise(M) with minimal M

1: calculate ∼k on Q

2: N ←M

3: while q ∼k p for some q, p ∈ P and q 6= p do

4: if in-levelM (q) ≥ in-levelM (p) then

5: swap q and p

6: N ← Merge(N, q, p)

start with a total DFA M because in this case the construction is fairly easy. In
Section 3.3 we show how to extend the construction to non-total DFAs.

Let F be a forest (i.e., set of trees) whose leaves are enumerated by Q and
whose edges are weighted by elements of N. For convenience, we identify the leaf
vertices with their label. For every q ∈ Q, we let tree(q) ∈ F be the (unique) tree
that contains q. The level level(v) of a vertex v in t ∈ F is the maximal weight
of all paths from v to a leaf, where the weights are added along a path. Finally,
given two vertices v1, v2 of the same tree t ∈ F , the lowest common ancestor of
v1 and v2 is the vertex lca(v1, v2).

Definition 3 (Distance forest). Let F be a forest whose leaves are enumerated
by Q. Then F is a distance forest for M if for every q, p ∈ Q we have

d(q, p) =

{

level(lca(q, p)) if tree(q) = tree(p),

∞ otherwise.

H I G M N J L

4

3

2

1

0

Fig. 2. A distance forest for the left DFA of Fig. 1. Single-node trees are omitted.

In order to construct a distance forest we use (1) to calculate the distance.
Mind that M is minimal, so there are no states with distance 0. In phase ℓ, we
merge all states at distance exactly ℓ into one state. Since we merged all states of
distance at most ℓ− 1 in the previous phases, we only need to identify the states
of distance 1 in the merged DFA. Thus we simply group the states according
to their vectors of transitions by letters from Σ = {a1, . . . , am}. To this end we
store these vectors in a dictionary, organised as a trie of depth m. The leaf of

6 P. Gawrychowski, A. Jeż, A. Maletti

a trie corresponding to a path (q1, . . . , qm) keeps a list of all states q such that
δ(q, ai) = qi for every 1 ≤ i ≤ m. For each node v in the trie we keep a linear
dictionary that maps a state q into a child of v. We demand that this linear
dictionary supports search, insertion, deletion, and enumeration of all elements.

Theorem 2. Given a total DFA M , we can build a distance forest for M using
O(|M | logn) linear-dictionary operations.

We now shortly discuss some possible implementations of the linear dictio-
nary. An implementation using balanced trees would have linear space consump-
tion and the essential operations would run in time O(log n). If we allow ran-
domisation, then we can use dynamic hashing. It has a worst-case constant time
look-up and an amortised expected constant time for updates [11]. Since it is
natural to assume that logn is proportional to the size of a machine word, we
can hash in constant time. We can obtain even better time bounds by turning
to more powerful models. In the RAM model, we can use exponential search

trees [1], whose time per operation is O((log logn)2

log log logn
) in linear space. Finally, if

we allow a quadratic space consumption, which is still possible in sub-quadratic
time, then we can allocate (but not initialise) a table of size |M | × n. Stan-
dard methods can be used to keep track of the actually used table entries, so
that we obtain a constant run-time for each operation, but at the expense of
Θ(|M |n) space; i.e., quadratic memory consumption.

We can now use a distance forest to efficiently implement k-Minimise. For
each state q we locate its highest ancestor vq with level(vq) ≤ k − in-level(q).
Then q can be merged into any state that occurs in the subtree rooted in vq
(assuming it has a smaller in-level). This can be done using a depth-first traversal
on the trees of the distance forest. A more elaborate construction based on this
approach yields the following.

Theorem 3. Given a distance forest for M , we can compute the size of a
k-minimal DFA that is k-similar to M for all k in time O(|M |). For a fixed k,
we can also compute a k-minimal DFA in time O(|M |). Finally, we can run
the algorithm in time O(|M | log n) such that it has a k-minimal DFA stored in
memory in its k-th phase.

3.3 Finite languages and partial transition functions

The construction of a distance forest was based on a total transition function δ,
and the run-time was bounded by the size of δ. We now show a modification for
the non-total case. The main obstacle is the construction of a distance forest for
an acyclic DFA. The remaining changes are relatively straightforward.

Theorem 4. For every acyclic DFA M we can build a distance forest in time
O(|M | logn).

Proof (sketch). Since L(M) is finite, we have that m(p) = max {|w| |w ∈ LM (p)}
is a natural number for every state p. Let Qi = {p |m(p) = i} and Q<∞ =

⋃

i Qi.

On minimising automata with errors 7

Every state has a finite right-language, and thus every distance forest consists of
a single tree. We iteratively construct the fragments of this tree by starting from
a single leaf ⊥, which represents the empty language and “undefinedness” of the
transition function. Before we start to process Qt, we have already constructed
the distance tree for

⋃

i<t Qi. The constructed fragments are connected to a single
path, called the spine, which ends at the leaf ⊥ (see Fig. 3).

Let Qt = {p1, . . . , ps}, and let v ∈ Qt. Moreover, let f(v) be the vector of
states v = (δ(v, a))a∈Σ , where the coordinates are sorted by a fixed order on Σ.
Define the distance between those vectors as

d((pa)a∈Σ , (p
′
a)a∈Σ) = max {d(pi, p

′
i) + 1 | a ∈ Σ} ,

where we know that d(pi,⊥) = m(pi) and d(⊥, p′i) = m(p′i). Similarly to the dis-
tance, we can define the father f(v) of a vector v = (pa)a∈Σ as f(v) = (f(pa))a∈Σ .
Then

fℓ+1(v) = fℓ+1(v′) ⇐⇒ fℓ(v) = fℓ(v′).

We can now use a divide-and-conquer approach: First, for each vector we cal-
culate its 2k-th ancestor, where k = ⌈log s/2⌉. Then all such vectors are sorted
according to their ancestors, in particular they are partitioned into blocks with
the same ancestors. After that we recurse onto those (bottom) blocks that have
more than two entries and onto the upper block, which consists of the different
2k-ancestors. The recursion ends for blocks containing at most two vectors, for
which we calculate the distance tree directly. ⊓⊔

⊥

Fig. 3. Illustration for the construction
of the distance tree. The spine is de-
picted using with a thicker line. Split-
ting one fragment into smaller recursive
calls is shown.

For every state q ∈ Q, its signature sig(q) is {a | LM (δ(q, a)) is infinite}.
If sig(q) 6= sig(p), then d(q, p) = ∞, which allows us to keep a separate dic-
tionary for each signature. Let us fix such a trie. To take into account also
the transitions by letters outside the signature, we introduce a fresh letter $,
whose transitions are represented in the trie as well. We organize them such that
in phase ℓ the $-transitions for the states q and p are the same if and only if
max {d(δ(q, a), δ(p, a))|a /∈ sig(q)} ≤ ℓ−1. This is easily organised if the distance
forest for all states with a finite right-language is supplied.

8 P. Gawrychowski, A. Jeż, A. Maletti

Theorem 5. Given a (non-total) DFA M we can build a distance forest for it
using O(|M | log n) linear-dictionary operations.

4 Hyper-equivalence and hyper-minimisation

When considering minimisation with errors, it is natural that one would like
to impose a bound on the total number of errors introduced by minimisation.
In this section, we investigate whether given m, s ∈ N and a DFA M we can
construct a DFA N such that:

(i) N is hyper-equivalent to M ; i.e., N ∼M ,
(ii) N has at most s states, and

(iii) N commits at most m errors compared to M ; i.e., |L(N)△L(M)| ≤ m.

Let us call the general problem ‘error-bounded hyper-minimisation’. We show
that this problem is intractable (NP-hard). Only having a bound on the number
of errors allows us to return the original DFA, which commits no errors.

To show NP-hardness of the problem we reduce the 3-colouring problem to
it. Roughly speaking, we construct the DFA M from a graph G = 〈V,E〉 as
follows. Each vertex v ∈ V is represented by a state v ∈ Q, and each edge e ∈ E
is represented by a symbol e ∈ Σ. We introduce additional states in a way such
that their isomorphic copies are present in any minimal DFA that is hyper-
equivalent to M . The additional states are needed to ensure that for every edge
e = {v1, v2} ∈ E the languages LM (δ(v1, e)) and LM (δ(v2, e)) differ. Now we
assume that m = |E| · (|V | − 2) and s = 14. We construct the DFA M such
that all vertices of V ⊆ Q are hyper-equivalent to each other and none is hyper-
equivalent to any other state. We can save |V | − 3 states by merging all states
of V into at most 3 states. These merges will cause at least |E| · (|V | − 2) errors.
Additionally, 3 states will become superfluous after the merges, so that we can
save |V | states. There are two cases:

– If the input graph G is 3-colourable by c : V → [3], then we can merge all
states of c−1(i) into a single state for every i ∈ [3]. Since c is proper, we
never merge states v1, v2 ∈ Q with {v1, v2} ∈ E, which avoids further errors.

– On the other hand, if G is not 3-colourable, then we merge at least two
states v1, v2 ∈ Q such that e = {v1, v2} ∈ E. This merge additionally intro-
duces 2 errors caused by the difference L(δ(v1, e))△L(δ(v2, e)).

Consequently, a DFA that (i) is hyper-equivalent to M , (ii) has at most s states,
and (iii) commits at most m errors exists if and only if G is 3-colourable. This
shows that error-bounded hyper-minimisation is NP-hard.

Definition 4. We construct a DFA M = 〈Q,Σ, δ,⊤, F 〉 as follows:

– Q = {⊤,⊥,∞,,,/} ∪ V ∪ {#j | # ∈ {,,-,/}, j ∈ [3]},
– Σ = {a, b} ∪ V ∪ E,
– F = {∞,,},

On minimising automata with errors 9

v1 ,1 ,2 ,3 ,

⊤ ...
∞ -1 -2 -3

vn /1 /2 /3 /

v1

vn

e

e

e′

e′

Fig. 4. DFA M constructed in Section 4, where a-transitions are represented by un-
broken lines (unless noted otherwise), b-transitions by dashed lines, and e = {v1, vn}
and e′ = {v2, v3} with v1 < v2 < v3 < vn. The hyper-equivalence ∼ is indicated.

– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, # ∈ {,,/}

δ(⊤, v) = v δ(∞, a) = ,1 δ(∞, b) = /1

δ(v, e) = -1 δ(v1, e) = ,1 δ(v2, e) = /1

δ(-1, a) = -2 δ(-2, a) = -3 δ(-3, a) = , δ(-3, b) = /

δ(#1, a) = #2 δ(#2, a) = #3 δ(#3, a) = # δ(#3, b) = # δ(#, b) =∞

– For all remaining cases, we set δ(q, σ) = ⊥.

Consequently, the DFA M has 14 + |V | states (see Figure 4). Next, we show
how to collapse hyper-equivalent states using a proper 3-colouring c : V → [3] to
obtain only 14 states.

Definition 5. Let c : V → [3] be a proper 3-colouring for G. We construct the
DFA c(M) = 〈P,Σ, µ,⊤, F 〉 where

– P = {⊤,⊥,∞,,,/} ∪ [3] ∪ {#j | # ∈ {,,/}, j ∈ [3]},
– µ(p, σ) = δ(p, σ) for all p ∈ P \ {⊤, 1, 2, 3} and σ ∈ Σ, and
– for every v ∈ V , i ∈ [3], and e = {v1, v2} ∈ E with v1 < v2

µ(⊤, v) = c(v) µ(i, e) =

{

,1 , if c(v2) 6= i

/1 , otherwise.

Lemma 1. There exists a DFA that has at most 14 states and commits at most
|E| · (|V | − 2) errors when compared to M if and only if G is 3-colourable.

Corollary 1. ‘Error-bounded hyper-minimisation’ is NP-complete. More for-
mally, given a DFA M and two integers m, s ∈ poly(|M |), it is NP-complete to
decide whether there is a DFA N with at most s states and |L(M)△L(N)| ≤ m.

10 P. Gawrychowski, A. Jeż, A. Maletti

5 Error-bounded k-minimisation

In Section 3 the number of errors between M and the constructed k-minimal
DFA was not calculated. In general, there is no unique k-minimal DFA for M
and the various k-minimal DFAs for M can differ in the number of errors that
they commit relative to M . Since several dependent merges are performed in the
course of k-minimisation, the number of errors between the original DFA M and
the resulting k-minimal DFA is not necessarily the sum of the errors introduced
for each merging step. This is due to the fact that errors made in one merge
might be cancelled out in a subsequent merge. It is natural to ask, whether
it is nevertheless possible to efficiently construct an optimal k-minimal DFA
for M (i.e., a k-minimal DFA with the least number of errors introduced). In the
following we show that the construction of an optimal k-minimal DFA for M is
intractable (NP-hard).

The intractability is shown by a reduction from the 3-colouring problem for
a graph G = 〈V,E〉 in a similar, though much more refined, way as in Sec-
tion 4. We again construct a DFA M with one state v for every vertex v ∈ V
and one letter e for each edge e ∈ E. We introduce three additional states
{10, 20, 30} (besides others) to represent the 3 colours. For the following dis-
cussion, let N = 〈P,Σ, µ, p0, F

′〉 be a k-minimal DFA for M . Let us fix an
edge e = {v1, v2} ∈ E. The DFA M is constructed such that the languages
LM (δ(v1, e)) and LM (δ(v2, e)) have a large but finite symmetric difference; as
in the previous section, if a proper 3-colouring c : V → [3] exists the DFA N
can be obtained by merging each state v into c(v)0. In addition, for every edge
e = {v1, v2} ∈ E and vertex v ∈ e, we let µ(c(v)0, e) = δ(v, e). On the other
hand, if G admits no proper 3-colouring, then the DFA N is still obtained by
state merges performed on M . However, because G has no proper 3-colouring,
in the constructed DFA M there exist 2 states v1, v2 such that e = {v1, v2} ∈ E
and that both v1 and v2 are merged into the same state p ∈ P . Then the tran-
sition µ(p, e) cannot match both δ(v1, e) and δ(v2, e). In order to make such an
error costly, the left languages of v and v′ are designed to be large, but finite. In
contrast, we can easily change the transitions of states {10, 20, 30} by letters e
because the left-languages of the states {10, 20, 30} are small.

To keep the presentation simple, we will use two gadgets. The first one will
enable us to make sure that two states cannot be merged: k-similar states are
also hyper-equivalent, so we can simply avoid undesired merges by making states
hyper-inequivalent. Another gadget will be used to increase the in-level of certain
states to a desired value.

Lemma 2. For every congruence ≃ ⊆ Q×Q on M , there exists a DFA N such
that (i) p1 6∼ p2 for every p1 ∈ P \Q and p2 ∈ P with p1 6= p2, and (ii) q1 6∼ q2
in N for all q1 6≃ q2.

In graphical illustrations, we use different shapes for q1 and q2 to indicate
that q1 6∼ q2, because of the gadget of Lemma 2. Note that states with the same
shape need not be k-similar.

On minimising automata with errors 11

Lemma 3. For every subset S ⊆ Q \ {q0} of states and map min-level : S → N,
there exists a DFA N = 〈Q∪ I,Σ ∪∆,µ, q0, F 〉 such that |µ−1(i)| = 1 for every
i ∈ I and in-levelN (s) ≥ min-level(s) for every s ∈ S.

We will indicate the level i below the state name in graphical illustrations.
Moreover, we add a special feathered arrow to the state q, whenever the gadget
is used for the state q to increase its level.

Next, let us present the formal construction. Let G = 〈V,E〉 be an undirected
graph. Select k, s ∈ N such that s > log(|V |) + 2 and k > 4s. Moreover, let
ℓ = k − 2s.

30

3s− 1

20

3s− 1

21

k + 1

2ℓ

k + ℓ

10

3s− 1

11

k + 1

1ℓ

k + ℓ

v

s + 1
,0

k + 1

,1

k + 2

,s−1

k + s

,s

k + ℓ + 1

s

s
. . . -

3s

0
v′

s + 1
/
k + 1

v

v′

{a, b}s

e

e′

e

e′

bℓ−1

e

e

e

bℓ−1

{a, b}s−2

Fig. 5. Illustration of the DFA M of Section 5

Definition 6. We construct the DFA M = 〈Q,Σ, δ, 0, F 〉 as follows:

– Q = {⊥,-,/, 30} ∪ {ij | i ∈ [2], j ∈ [ℓ]} ∪ V ∪ [0, s] ∪ {,i | 0 ≤ i ≤ s},
– Σ = {a, b} ∪ V ∪ E,
– F = {,s, 1ℓ}, and
– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, i ∈ [s], and j ∈ [ℓ]

δ(i − 1, a) = i δ(v1, e) = ,0 δ(10, e) = - δ(1j−1, b) = 1j

δ(i − 1, b) = i δ(v2, e) = / δ(20, e) = - δ(2j−1, b) = 2j

δ(,i−1, a) = ,i δ(v, e) = - δ(30, e) = - δ(1ℓ, b) = ,s

δ(,i−1, b) = ,i δ(v, a) = 11 δ(2ℓ, b) = ,s

δ(-, a) = ,1 δ(s, v) = v

– For all remaining cases, we set δ(q, σ) = ⊥.

12 P. Gawrychowski, A. Jeż, A. Maletti

Finally, we show how to collapse k-similar states using a proper 3-colouring
c : V → [3]. We obtain the k-similar DFA c(M) = 〈P,Σ, µ, 0, F 〉 from M by
merging each state v into c(v)0. In addition, for every edge e = {v1, v2} ∈ E,
we let µ(c(v1)0, e) = δ(v1, e) and µ(c(v2)0, e) = δ(v2, e). Since the colouring c is
proper, we have that c(v1) 6= c(v2), which yields that µ is well-defined. For the
remaining i ∈ [3] \ {c(v1), c(v2)}, we let µ(i0, e) = ,0. All equivalent states (i.e.,
⊥ and /) are merged. The gadgets that were added to M survive and are added
to c(M). Naturally, if a certain state does no longer exist, then all transitions
leading to or originating from it are deleted too. This applies for example to -.

Lemma 4. There exists a k-minimal DFA N for M with at most

22s−1 · |E| · (|V | − 2) + 3 · 2s−1 · |E|+ 2s+1 · |V |

errors if and only if the input graph G is 3-colourable.

Corollary 2. ‘Error-bounded k-minimisation’ is NP-complete.

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
J. ACM 54(3) (2007)

2. Badr, A.: Hyper-minimization in O(n2). In: Proc. 13th Int. Conf. Implementation
and Application of Automata. LNCS, vol. 5148, pp. 223–231. Springer (2008)

3. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO, Theoret. Inform. Appl. 43(1), 69–94 (2009)

4. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor.
Comput. Sci. 321(1), 5–12 (2004)

5. Castiglione, G., Restivo, A., Sciortino, M.: Hopcroft’s algorithm and cyclic au-
tomata. In: Proc. 2nd Int. Conf. Language and Automata Theory and Applications.
LNCS, vol. 5196, pp. 172–183. Springer (2008)

6. Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Proc. 34th Int.
Symp. Mathematical Foundations of Computer Science. LNCS, vol. 5734, pp. 356–
368. Springer (2009)

7. Gries, D.: Describing an algorithm by Hopcroft. Acta Inf. 2(2), 97–109 (1973)
8. Holzer, M., Maletti, A.: An n log n algorithm for hyper-minimizing a (minimized)

deterministic automaton. Theoret. Comput. Sci. 411(38-39), 3404–3413 (2010)
9. Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton.

In: Kohavi, Z. (ed.) Theory of Machines and Computations, pp. 189–196. Academic
Press (1971)

10. Maletti, A.: Better hyper-minimization — not as fast, but fewer errors. In: Proc.
15th Int. Conf. Implementation and Application of Automata. LNCS, vol. 6482,
pp. 201–210. Springer (2011)

11. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)

On minimising automata with errors 13

A Proofs and additional material for Section 2

Lemma 5. If p, q ∈ Q then d(p, q) < +∞ implies that d(p, q) < n.

Proof. Let Di denote the equivalence relation defined as Di(p, q) iff d(p, q) ≤ i.
Let ni be the number of equivalence classes of Di, for i = 0, 1, Note that if
ni = ni+1 then ni = nj for all j > i and d(q, q′) > i implies d(q, q′) = +∞.

Since n0 ≤ |Q| the sequence n0 ≥ n1 ≥ . . . stabilises at position n|Q|−1,
i.e., there are no states q, q′ such that D|Q|(q, q

′) and ¬D|Q|−1(q, q′). Hence
d(q, q′) < +∞ implies D|Q|−1(q, q′), i.e., d(q, q′) < n. ⊓⊔

B Proofs and additional material for Section 3

B.1 Proofs and additional material for Section 3.1

It can be shown that if M ∼k N then the states reached after reading the same
word are also k-similar, assuming that the word is short enough.

Lemma 6. Let M ∼k N , q1, q2 ∈ Q, and w1, w2 ∈ Σ∗ be such that δ(wi) = qi
and |wi| = in-levelM (qi) for i ∈ [2]. If q1 6∼k q2 , then µ(w1) 6∼k µ(w2).

Proof. First, suppose that q1 6∼ q2. Then, M ∼ N yields that

µ(w1) ∼ δ(w1) = q1 6∼ q2 = δ(w2) ∼ µ(w2)

and thus µ(w1) 6∼ µ(w2), which proves that µ(w1) 6∼k µ(w2).
Second, let d(q1, q2) <∞. Since q1 6∼k q2, we have

d(q1, q2) + min(k, |w1|, |w2|) > k .

Clearly, there exists u ∈ LM (q1)△LM (q2) with |u| ≥ d(q1, q2) − 1. Moreover,
|w1u| ≥ k ≤ |w2u|. Since M ∼k N , we have w1u,w2u /∈ L(M)△L(N). Conse-
quently

u /∈ LM (q1)△LN (µ(w1)) and u /∈ LM (q2)△LN (µ(w2)) .

By assumption, u ∈ LM (q1)△LM (q2) and thus u ∈ LN(µ(w1))△LN(µ(w2)),
which shows that d(µ(w1), µ(w2)) ≥ |u| + 1. Clearly, in-levelN (µ(w1)) ≥ |w1|
and in-levelN (µ(w2)) ≥ |w2|, which yields µ(w1) 6∼k µ(w2). ⊓⊔

We show some properties of k-Minimise, which are used to show that it
properly constructs a k-minimal DFA. Let N denote the DFA constructed by
k-Minimise at any particular point.

Lemma 7. If δN (p′, w) = p and in-levelM (p) < k then

|w| ≤ in-levelM (p)− in-levelM (p′). (2)

14 P. Gawrychowski, A. Jeż, A. Maletti

Proof. The assertion of the lemma is shown to be hold after each merge done by
k-Minimise, i.e., by the induction on the number of merges done by k-Minimise.
If there were no merges done yet then N = M and the claim holds true. Let N
denote the DFA before the merge and N ′ after it.

We focus on w = a ∈ Σ. So assume that δN ′(p1, a) = p2 after merging
state p to q. The only non-trivial case is when δN (p1, a) = p and p2 = q,
i.e., when something is changed after the merging. By induction assumption
in-levelM (p) − in-levelM (p1) ≥ 1. As in-levelM (q) ≥ in-levelM (p) as guaran-
teed by k-Minimise, the claim is obtained.

When |w| > 1 it is enough to consider the states obtained after transitions
after each letter of w and sum up the inequalities. ⊓⊔

Lemma 8. During the run of k-Minimise for all p′ ∈ Q(N),

d(LM (p′), LN(p′)) ≤ max(0, k − in-levelM (p′)). (3)

Proof. We establish this claim by induction. Let N ′ denote the DFA after merg-
ing p to q and N just before this merge. Note, that as p 6≡ q (in M), thus
d(p, q) > 0 (in M). Thus p ∼k q implies min(k, in-levelM (p), in-levelM (q)) < k.
Since p is merged to q by k-Minimise, in-levelM (p) ≤ in-levelM (q) and as p ∼k

q also in-levelM (p) < k. Then by Lemma 2 we conclude that there is no word
leading from q to p in N : assume for the sake of contradiction that there is such
a word w. Since in-levelM (p) < k, by Lemma 2

in-levelM (p) ≥ in-levelM (q) + |w| > in-levelM (q) ,

contradiction. Thus there is now word leading from q to p in N and therefore
LN (q) = LN ′(q).

For the other case, lest us first estimate d(LN (p), LN ′(q)) = d(LN (p), LN (q)).
As already noted, min(k, in-levelM (p), in-levelM (q)) = in-levelM (p), which al-
lows us to reduce p ∼k q to

d(LM (p), LM (q)) + in-levelM (q) ≤ k

and thus

d(LM (p), LM (q)) ≤ k − in-levelM (p).

By induction assumption

d(LM (q), LN (q)) ≤ max(0, k − in-levelM (q))

d(LM (p), LN(p)) ≤ max(0, k − in-levelM (q))

= k − in-levelM (p)

and as d is an ultra metric

d(LN (p), LN (q)) ≤ k − in-levelM (p) . (4)

On minimising automata with errors 15

So consider an arbitrary state p′. If it has no word leading to p in N , then
LN (p′) = LN ′(p′) and we are done. If it has a word w leading to p, then Lemma 7
can be applied, establishing:

d(LN (p′), LN ′(p′)) = max
w:δN (p′,w)=p

|w| + d(LN ′(p), LN (q))

the former can be estimated by (3) and the latter by (4), yielding

d(LN (p′), LN ′(p′)) ≤ (in-levelM (p)− in-levelM (p′)) + (k − in-levelM (p))

≤ k − in-levelM (p′),

which ends the proof. ⊓⊔

Proof (of Theorem 1). Let q0, q1, . . . , qn be the starting states in DFAs M = N0,
N1, . . . , Nn = N . By Lemma 8, d(LM (qi), LNi

(qi)) ≤ k. On the other hand,
since qi is merged to qi+1 then d(LM (qi), LM (qi+1)) ≤ k. So all the languages in
question are within distance k of each other and therefore

d(L(M), L(N)) ≤ k .

Thus M∼kN . It is left to show that N is k-minimal. Consider the set of states
Q′ of N and let M ′ be a DFA k-similar to M . By k-Minimise, they are pairwise
k-dissimilar (as states in M). For a state q ∈ Q′ let wq be the word such that
|wq| ≥ min(in-levelM (q), k). Consider any two such words wq and wp. Then by
Lemma 6 wq and wp cannot lead to the same state in M ′. Hence the size of M ′

is at least |Q′|, which is exactly the size of N . ⊓⊔

Corollary 3 (of Theorem 1). Each maximal (with respect to the inclusion)
set Q′ of pairwise k-dissimilar states of a DFA M is of size of the k-minimal
DFA for M .

Proof. First note that without loss of generality we may assume that

p ∈ Q′, q /∈ Q′ and p∼kq implies in-levelM (p) ≥ in-levelM (q). (5)

If not, then we can replace p by q in Q′, without loosing the assumed property
of Q′. After finitely many such substitutions, Q′ satisfying (5) is obtained.

Run k-Minimise for M , and whenever there are two states p∼kq considered,
merge the one outside Q′ to the one in Q′ (do arbitrarily, if none is in Q′). Since
Q′ is maximal with respect to the inclusion, k-Minimise terminates with the
DFA with Q′ as the set of states. ⊓⊔

Now we are able to establish a structural characterisation of k-similar DFAs,
analogous to characterisation of hyper-equivalent DFA’s [3, Sect. 3.2]. In partic-
ular, we derive the analogue of [3, Theorem 3.8] for k-similar DFAs.

Corollary 4 (of Lemma 6 and Corollary 3). Let S ⊆ Q be a maximal set of
pairwise k-dissimilar states of M , and let N be a k-minimal DFA for M . Then
there exists a bijection h : S → P such that

16 P. Gawrychowski, A. Jeż, A. Maletti

– q ∼ h(q) for every q ∈ S, and

– q ≡ h(q) for every q ∈ S such that in-levelM (q) ≥ k.

Proof (of Corollary 4). We have |S| = |P | by Corollary 3. For every q ∈ S, let
wq ∈ δ−1(q) be such that |wq| = in-levelM (q). We define the mapping h : S → P
by h(q) = µ(wq) for every q ∈ S. Since M ∼k N , which yields M ∼ N , we
have q = δ(wq) ∼ µ(wq) = h(q). Finally, suppose that in-levelM (q) ≥ k. Then
LM (q) = LM (δ(wq)) = LN (µ(wq)) = LN (h(q)) because M ∼k N , which yields
q ≡ h(q). ⊓⊔

B.2 Additional material for Section 3.2

We refer to the distance tree we construct for the DFA M using the notation
D(M). We identify the leaves with the states of the DFA if this raises no con-
fusion. To simplify the argument, we assume that ⊥ is always in the D(M). We
refer to a tree in a distance forest by a name of a distance tree. The vertices that
are present in the compressed representation are called explicit, while those that
were removed are called implicit. The standard terms father f(v) of a vertex v
and ancestor always refer to implicit vertices.

Algorithm 2 Distance-Tree

1: for p ∈ Q do

2: state(p)← p, level(p)← 0, activate p

3: for ℓ = 1 to |n| do
4: group active nodes according to (δ((state(v), a))a∈Σ)
5: for each group of nodes V ′ such that |V ′| > 1 do

6: choose v ∈ V ′

7: create active node v′, level(v′) = ℓ, state(v′) = state(v)
8: for v′′ ∈ V ′ do

9: join v′′ to v′, deactivate v′′

10: replace state(v′′) in entries of δ by state(v′)

Lemma 9. For a minimised DFA M if Distance-Tree replaced the state q
in δ by p at phase ℓ then d(p, q) = ℓ.

Proof. The proof proceeds by induction on ℓ. If ℓ = 1 then q and p have the
same successors. Since q and p are not equivalent, their distance is exactly 1, as
claimed.

Suppose that q was replaced by p in phase ℓ > 1. Since q was not replaced by
p in phase ℓ− 1, by the induction assumption d(q, p) > d− 1. Let (q1, . . . , q|Σ|)
be the set of successors of q in the DFA and let (q′1, . . . , q

′
|Σ|) be the vector of

its successors in the representation in Distance-Tree. Since qi was replaced by

On minimising automata with errors 17

q′i in phase ℓ − 1 or earlier, d(qi, q
′
i) ≤ ℓ − 1. Similarly, d(pi, q

′
i) ≤ ℓ − 1. Then,

by (1),

d(p, q) = 1 +
|Σ|

max
i=1

d(qi, pi)

≤ 1 +
|Σ|

max
i=1

(max(d(qi, q
′
i), d(q′i, pi)))

≤ ℓ.

Consider now any other state r such that r was replaced by q in earlier phases.
Then d(r, q) ≤ ℓ− 1 and thus d(r, p) = ℓ. ⊓⊔

The bottleneck of Distance-Tree is the replacing of occurrences of q in δ
by some other state p. We show that such replacing can be done in a way so
that a single entry in δ is modified at most logn times.

Lemma 10. Distance-Tree can be implemented so that it alters every value
of δ at most logn times.

Proof. The key modification needed in Distance-Tree is the choice of node
v ∈ V ′. For each state we introduce a counter c(p), initially set to 1, which
keeps the track of how many states p represents. When we choose a node v ∈ V ′

we take the one with the largest c(state(v)). We update the value accordingly
c(state(v′))←

∑

v′′∈V ′ c(state(v′′)).
Note, that if we replace a value q by p in δ, then c(p) ≥ c(q) before the

update of c and so c(p) ≥ 2c(q) after the change. Thus if we replace the entry in
δ, the corresponding value of c at least doubles. Since c(p) is upper-bounded by
n, each entry is replaced at most logn times. ⊓⊔

Proof (of Theorem 2). To allow fast replacing of entries q in the δ, for each state
q used as the label in one of the dictionaries, we store an up-to-date list of its
occurrences in all vectors in all dictionaries.

When state p is merged into q we update the tries: we use the up-to date
list of occurrences. For each occurrence of p in an internal node v we have the
following situations: if v does not have a child labelled by q then we remove p
from the linear dictionary, and insert q into it, pointing at the same child as p
used to. If v has both children p and q, we have to merge their corresponding
subtrees, rooted at v1 and v2. We choose one of them, say v1, and insert each
child of v1 into subtrie of v2. Then we set pointer from q to v2. This might result
in yet another situation of the same type, we do so recursively until we get to
the leaves.

The total cost of the case, when we did not need to merge linear dictionaries
can be bounded similarly as in Lemma 10: note, that after inserting q and deleting
p from the linear dictionary, c(q) ≥ 2c(p). Thus each such element is modified
at most logn times and so the total cost is O(|Σ|n logn).

If we do merge the linear dictionaries, we make a different analysis. For each
linear dictionary we keep a counter, which calculates how many vertices were

18 P. Gawrychowski, A. Jeż, A. Maletti

inserted into this linear dictionary. When we merge two linear dictionaries, we
remove the one with the smaller value of the counter and insert all its elements
into the other dictionary. Then we sum the counters and update the remanding
counter.

Since each time a vertex is reinserted, the value of the counter in its linear
dictionary at least doubles, and the maximal value of such counter is n, each
vertex is inserted into a dictionary at most logn times.

If we are to merge two leaves, we simply join their respective lists and remove
one of the leaves. ⊓⊔

Now we can use the distance forest to our benefit. Instead of finding pairs
of states that are k-similar we proceed in another fashion: roughly speaking, for
each state q we want to find the closest (with respect to d) state p satisfying
in-level(p) ≥ in-level(q), then, using this state, we want to judge, whether q
is ever going to be merged to other state. To this end, we label the nodes of
the D(M) by states of the DFA M , formally we define state(v) for each node v
of D(M). Since leaves of the D(M) are identified with leaves, we obviously set
state(q) = q for each such leaf. Then we label each inner node with one of the
labels of its children, choosing the one with the maximal in-levelM .

For each state q let its submit node be the first node on the path from leaf q
to the root labelled with a state different than q and let the submit state be the
label of this node; let d(q) be the depth of the submit node q, if q is the label
of the root, then d(q) =∞. Furthermore, define value(q) = in-levelM (q) + d(q).
The next lemma shows that value(q) can be used to approximate ∼k.

Lemma 11. If value(q) ≤ k then q is k-similar to every state appearing as the
label on the path from its submit state to the root.

If value(p), value(q) > k then p ∼k q.

Proof. Suppose that value(q) ≤ k and let q′ be any node label above q’s submit
vertex (inclusively). Then

min(in-level(q), in-level(q′)) + level(lca(q, q′)) = in-level(q) + level(lca(q, q′))

≤ in-level(q) + d(q)

= value(q)

≤ k ,

and so q ∼k q′.
Let value(q), value(q′) > k, without loss of generality we may assume that

in-level(q) ≤ in-level(q′) and q is not q′’s submit node (which could happen if
in-level(q) = in-level(q′). Then d(q, q′) = level(lca(q, q′)) ≥ d(q). Thus

d(q, q′) + min(in-level(q), in-level(q′)) ≥ d(q) + in-level(q)

= value(q)

> k ,

which concludes the proof. ⊓⊔

On minimising automata with errors 19

For each state q let its k-ancestor node v be the first node on the path from
q to the root such that value(state(v)) > k, and let k-ancestor state be the label
of v.

Corollary 5 (of Lemma 11). The DFA obtained by merging each state q to
its k-ancestor state is k-minimal and k-similar to M .

The following theorem states easy consequences of Corollary 5.

Proof (of Theorem 3). Calculate the labels in the D(M) as described earlier,
this can be done using one depth-first traversal. Then calculate value(q) for each
state q, this as well can be done using one depth-first traversal. Sort the pairs
(q, value(q)) according to value(q), since value(q) ≤ 2n, this can be done in linear
time using CountingSort. Note, that the number of states of k-minimal DFA
Mk equals |{q | value(q) > k}|, by Corollary 5, which can be now easily computed
in linear time.

By Corollary 5 to obtain the k-minimal DFA it is enough to merge each q
with value(q) ≤ k to its k-ancestor. A table of ancestor assigning to state q
its k-ancestor can be computed in linear time. The merging can be performed
in O(|δ|) time, as we are only interested in the transition of the states q′ such
that value(q′) > k. We look through δ and replace each entry δ(q′, a) = q by
ancestor(q).

There is a little subtlety: when replacing δ(q′, a) = q by δ(q′, a) = q′′ we
should take care that q 6= ⊥, as otherwise it would be impossible to bound the
running time by |δ|. However, note that if q′′ ∼k ⊥ then the language of q′′ is fi-
nite and therefore there is a path from q′′ to ⊥, hence in-level(q′′) ≤ in-level(⊥).
Note, that when in-level for two states are equal, we arbitrarily choose one, so
without loss of generality it can be assumed that ⊥ is never merged to any other
state.

We now present a O(|δ| log n) algorithm, which at step k = 0, 1, . . . , n has in
memory the k-minimal DFA. As previously, in step k it will keep only states with
value at greater than k: it merges each existing state q such that value(q) = k into
its k-ancestor q′ which by the construction satisfies value(q′) ≥ value(q) + 1 > k.
To obtain the proper running time, we need only need to organise the data
structures properly. It is represented by a list of transition: for each state q we
list the pairs (a, q′) such that δ(a, q) = q′, for all valid a. Moreover, each q has a
list of incoming transition, i.e., list of pointers to the transitions to it. Moreover,
each state q has a counter rank(q), which describes how many states were merged
to it.

Assume that we merge p to q and rank(p) ≤ rank(q). Then the situa-
tion is easy. We redirect each transition to p into q, and perform the update
rank(q) ← rank(q) + rank(p). When rank(p) > rank(q) then we redirect each
transition to q into p, and replace the outgoing transition from p by outgoing
transitions from q. Since they are given as a list, this is done in O(1) time. Then
we rename p as q and update rank rank(q)← rank(q) + rank(p).

20 P. Gawrychowski, A. Jeż, A. Maletti

Note, that each time an entry in δ is modified, the rank of the target state
doubles. Thus each transition is modified at most logn times and so the running
time is O(|δ| log n).

Note, that while the running time O(|δ| logn), outputting the results for each
k might take a time up to Ω(n|δ| logn). ⊓⊔

B.3 Additional material for Section 3.3

Lemma 12. The total cost of maintaining the transition by $ in the tries is
O(|δ| log n) linear dictionary operations.

Proof. Because L(M) is finite, m(p) = max{|w| : w ∈ L(p)} is defined for any
state p, let us denote Qi = {p |m(p) = i} and Q<∞ =

⋃

iQi.
Consider a DFA M ′ built on states Q<∞ and their direct predecessors, i.e.,

Q′
<∞ = {q′ : ∃a ∈ Σ δ(q, a) ∈ Q<∞} ∪ {⊥}. Take the δ′ restricted to input

from Q′
<∞ and values in Q<∞. For each state q with infinite right-language

and transitions into states in Q<∞ we insert into vectors of successors ($, q′), or
($,⊥), if q has only undefined transitions. By Theorem 4 the cost of construction
of T ′ for M ′ is O(|δ| log n). Using T ′ for M ′ in phase d we merge states from
M ′ which are at distance d − 1 or less: it is enough to sort the nodes of T ′

according to their level and in phase d merge leaves in subtree of each node
v such that level(v) ≤ d. To perform the merging efficiently, each state in M ′

is assigned rank, which denotes the number of states that it represents. When
states q1, . . . , qr are to be merged, we choose the one with the maximal rank, say
qi and replace of occurrence of q1, . . . , qr in the trie by qi. Then we update the
rank: rank(qi)←

∑r

j=1 rank(qj). Thus each such entry in the trie is replaced at
most logn times: whenever it is replaced, the corresponding rank doubles and it
is upper bounded by n. ⊓⊔

Proof (of Theorem 5). In linear time we can identify states such that their right-
language is finite. By Theorem 4 their distance tree can be built in O(|δ| log n)
time.

Grouping of states in Distance-Tree is a by-product of using trie for the
vectors of successors. Each state is deleted from set Q once, each such deletion
results in an update of the trie.

The number of linear dictionary operations for the letters in the respective
signature can be upper bounded as in Theorem 2, that is, by O(|δ| logn). By
Lemma 12 the same bound applies to the construction and usage of the distance
tree for states with finite right-language, ⊓⊔

Next, we comment how the ancestors and nodes are represented for the algo-
rithm, as some of them are implicit: they are represented by an explicit vertex
directly below them with an offset, i.e., a pair (v, ℓ).

Recall, that we iteratively construct fragments of the distance forest, built
on states Qt = {p | m(p) = t}, i.e., recognising words of length at most t. For
each already constructed fragment we do the preprocessing allowing efficient

On minimising automata with errors 21

computing the lca for any pair of vertices. There are known construction for
doing this in constant time [4] however, they use the power of the full RAM
model. For our purposes, the simple construction that keeps at every node a
list of ancestors 20, 21, . . . , 2logn higher allow performing the search in Θ(log n)
time, which does not influence the total running time in our case. As shown
later, having the preprocessing performed for each such a fragment separately,
is enough to execute lca-queries for the whole tree.

Firstly we argue that indeed adding fragments built on states from Qt is
reasonable. Moreover, if for some states m(p) 6= m(q), d(p, q) can be calculated
easily.

Lemma 13. If m(p) 6= m(q) then d(p, q) = max(m(p),m(q)) + 1.
If m(p) = m(q) then d(p, q) ≤ max(m(p),m(q)) + 1.

Recall, that the spine is the path joining the state ⊥, which recognises an
empty language, with the root of the D(M). Note, that the spine has no com-
pressed fragments, as the distance between ⊥ and a a state p is equal to m(p)+1,
by Lemma 13, moreover, by (1) it is easy to see that {m(p) : p ∈ Q<∞} is equal
to {0, 1, 2, . . . ,max{p ∈ Q<∞ : m(p)}. Therefore the spine is created beforehand
as an uncompressed line of length max{p ∈ Q<∞ : m(p) + 1}, which is at most
|Q<∞|.

Lemma 14. The distance between v = ((ai, pi))i∈I1 and v′ = ((ai, p
′
i))i∈I2 can

be computed using O(|I1|+ |I2|) lca-queries.

Proof. We calculate their distance straight from the definition. This can be done
using |I1| + |I2| lca queries, by going through consecutive elements of these
vectors: as they are sorted, seeing (ai, pi) and (ai′ , p

′
i′) we can decide whether

ai = ai′ , in which case i = i′ ∈ I1∩I2, or ai > ai′ , and thus i ∈ I1\I2; or ai < ai′ ,
when i′ ∈ I2 \ I1. In the first case, we calculate d(pi, p

′
i′), this can be done by

comparing m(pi) and m(p′i′) and by calculating lca(pi, p
′
i′), if m(pi) = m(p′i′).

This distance is compared with the current maximum. If i ∈ I1 \ I2, we compare
the current maximum with m(pi) + 1; the situation for p′i′ is symmetric.

There are at most |I1| ∪ |I2| lca queries used and at most as much other
operations, which are all performed in constant time. So the cost of the whole
procedure can be charged to the |I1| ∪ |I2| lca queries. ⊓⊔

To show that the total time of the construction of the the fragment for Qt

is O(|δt| log t), where δt is the transition function restricted to the input from
Qt, we estimate separately the cost of finding the ancestors of the vectors and
the cost of grouping of the vectors, according to their 2k successors. However,
to properly estimate the time needed for that, we cannot use the whole already
constructed part of the distance tree, as it may be vary large comparing to Qt.
Thus, as a preprocessing step, we extract out of the distance tree the distance
tree induced by the states appearing in the vectors. Being more precise, we
calculate the subtrees Ta for a ∈ Σ: it is a sub-distance tree for states δ(Qt, a).

Lemma 15. Constructing Ta for a ∈ Σ can be done in time O(|δt| log |Qt|).

22 P. Gawrychowski, A. Jeż, A. Maletti

Proof. Firstly we calculate the states in δ(Qt, a) for each a, in total time O(|δt|).
Let us a fix a letter a. We sort the leaves in Ta in time (|Ta| log |Qt|): we assume
that they are in some arbitrary, but fixed, order in D(M). Let them be q1, q2,
. . . , qs. We build Ta by successively adding leaves. Suppose that a tree for q1, . . . ,
qi has already been built. The right-most path (names of nodes and their levels)
is kept as a list. To add qi+1, we calculate the lca(qi, qi+1) and remove from the
list all nodes with smaller level. If the last element of the list, call it v, has level
greater than lca(qi, qi+1) we create a new inner node v′ in Ta, insert it into the
right-most path as the last element, make the right-most son of v the only child
of v′ and v′ the new right-most son of v. Next we make qi+1 a right-most child
of the last node in the list (which might be v or v′).

Since each node is inserted and removed from the right-most path at most
once, the total running time is O(|Ta|). Summing up over all a ∈ Σ, we obtain
that the total construction time is O(|δt|). ⊓⊔

Lemma 16. The total time of finding ancestors of vectors is O(|δt| logn).

Proof. Finding the ancestors is implemented naively: for each state q in the
vector we traverse D(M) up 2k steps up from q.

Consider a pair (a, p) in one of the vectors v and one of the edges e in Ta on
the way from p to the spine. We show that e is traversed at most ⌈log t⌉ times
when constructing the distance tree for Qt.

Note, that the recursive calls are made for k = ⌈log t⌉, ⌈log t⌉ − 1, . . . , 1. So
it is enough to show that e is traversed once for a fixed value of k.

Consider a given instance of a recursive call. Then when the sub-recursive
calls are made, e goes to exactly one of these sub-calls, except when one of
the 2k-ancestor of leaves lays on e. However, in such a case there is no need to
traverse e by any sub-call from the lower group: the lower end of e is an ancestor
of all vertices in this tree. So we can modify the algorithm a bit: as soon as some
edge is to be traversed, we check if the root lies on this edge. If so, this edge
is not traversed, as searched node is implicit and therefore represented by the
lower end and an offset. And so e is traversed at most once for each k, which
concludes the proof. ⊓⊔

Lemma 17. Given k, the total size of grouping vectors in the recursive calls for
k is linear in their size plus an additional cost, which is O(|δt| log |Qt|) summed
over all k

Proof. We want to sort lexicographically vectors v1, . . . ,vi of integers in the
range 1, 2, . . . , n + |Σ|. This can be done in a standard way (say, usinf Radix-

Sort) in time O(n + |Σ| +
∑i

j=1 |vj |). This is too much, as n and |Σ| might

be large compared to
∑i

j=1 |vj |. Thus we can do the following. In each Ta we
can replace each node by a number from range 1, . . . , 2|Qt| − 1. Then instead of
sorting according to names in D(M), we use the local names from Ta. In this

way the running time is O(|Qt|+ |Σ|+
∑i

j=1 |vj |)

Still, for small instances, |Qt|+|Σ| can be substantially larger than
∑i

j=1 |vj |.
To avoid this problem, we process all the recursive call for a fixed k in parallel.

On minimising automata with errors 23

Then the sorting is done for all vectors in the recursive calls. Note, that if vec-
tors come from different recursive calls, they cannot have the same non-trivial
ancestors (and trivial, i.e., empty, ones can be identified and removed from the
sorting beforehand). Thus the additional cost O(|Qt|+ |Σ|) is included once for
each k = 1, . . . , log |Qt|, and so in total gives O((|Qt|+ |Σ|) log |Qt|) time, which
is O(|δt| log |Qt|). ⊓⊔

Two previous lemmata allow calculating the whole recursion time

Lemma 18. The cost of the procedure for vectors v1, . . . ,vℓ, excluding the ad-
ditional cost of O(|δt| log |Qt|) from Lemma 17, is O((

∑ℓ
i=1 |vi| − |v|) log |Qt|),

where v is a lowest common ancestor of v1, . . . ,vℓ.

Proof. First note, that if v is the lowest ancestor of v1, . . . ,vℓ and v′ is some
ancestor of these vectors, then |v| ≥ |v′|, and so the estimation using |v′| is
weaker than the one using |v|.

The claim is shown by an induction. Fix a constant c, for which it is shown
that the total cost is at most c(

∑ℓ

i=1 |vi| − |v|) log s.
The basis of the induction are calls for at most two vectors. No recursive call

is made for one vector, and so we do not consider it. As observed in Lemma 14,
when there are only two vectors v,v′, the calculation is done using O(v+v′) lca
queries. So c can be chosen in advance so that this is at most c(v + v′) log t.

When there are more than two vectors, by Lemma 17 we can group them ac-
cording to their ancestors in time at most

∑ℓ

i=1 |vi|. Since |v| ≤ minℓ
i=1 |vi|, con-

stant c can be chosen in advance in the way that this is at most c(
∑ℓ

i=1 |vi|−|v|)
time.

Then there are sub-calls made. Let u1, . . . ,uℓ′ be the ancestors of vectors.
Then the ‘upper’ recursive call, by the induction assumption, takes at most

c(log s−1)(
∑ℓ′

i=1 ui−v) (note, that v is a common ancestor of u1, . . . ,uℓ′). The

‘lower’ subcalls take, in total, time c(
∑ℓ

i=1 |vi|−
∑ℓ′

i=1 |ui|)(log s−1), since each
ui is a common ancestor of vectors for one of these subcalls. Hence all the calls
take at most c(

∑ℓ
i=1 |vi| − |v|)(log s− 1) time.

Summing the cost of the recursive calls and the grouping:

c(

ℓ
∑

i=1

|vi| − |v|) + c(

ℓ
∑

i=1

|vi| − |v|)(log s− 1) ≤ c(

ℓ
∑

i=1

|vi| − |v|) log s,

as claimed. ⊓⊔

Proof (of Theorem 4). By Lemma 17 together with Lemma 18.

C Additional material for Section 4

The DFA c(M) has 14 states, and it can easily be verified that it is hyper-
equivalent to M and has no different, but equivalent kernel states. It is depicted
in Figure 6.

24 P. Gawrychowski, A. Jeż, A. Maletti

1 ,1 ,2 ,3 ,

⊤ 2 ∞

3 /1 /2 /3 /

c
−1(1)

c
−1(2)

c
−1(3)

e

e

e
′

e
′

e

e
′

Fig. 6. DFA c(M) constructed in Section 4, where a-transitions are represented by
unbroken lines (unless noted otherwise), b-transitions are represented by dashed lines,
and e = {v1, v2} and e′ = {v3, v4} with v1 < v2 < v3 < v4 and c(v1) = 1, c(v2) = 3,
c(v3) = 1, and c(v4) = 2. The state ⊥ is not depicted.

Proof (of Lemma 1). Let N = 〈P,Σ, µ, p0, F
′〉 be a DFA such that M ∼ N

and |P | ≤ 14. Without loss of generality we may assume that there are no
different, but equivalent kernel states in N . Note that the DFA M is mini-
mal provided that G has no vertex without any incident edge. By [3, Theo-
rem 3.8]3 there exists a mapping h : Q→ P such that q ∼ h(q) for every q ∈ Q,
which additionally is an isomorphism h : Ker(M)→ Ker(N) between the kernel
states. Since Ker(M) = {⊥,∞,,,/} ∪ {#j | # ∈ {,,/}, j ∈ [3]}, we have
{∞,,} ⊆ F ′ and 10 distinct states in N that behave like their counterparts
in M [i.e., LM (q) = LN(h(q)) for every q ∈ Ker(M)]. Since ⊤ 6∼ p and δ(v) 6∼ p
for every p ∈ Ker(N) and v ∈ V , we conclude that h(⊤) = p0 /∈ Ker(N) and
h(δ(v)) /∈ Ker(N), which means that we identified the 11th and 12th state in N
because they are not hyper-equivalent to each other (i.e., ⊤ 6∼ δ(v) for every
v ∈ V). Consequently, there are at most 2 other unidentified states.

Claim 1. The DFA N commits at least |E| · (|V | − 2) errors with prefix ve such
that v ∈ V is a vertex and e ∈ E is a non-incident edge. Exactly |E| · (|V | − 2)
such errors are committed if µ(ve) ∈ {h(,1), h(/1)} for every v ∈ V and e ∈ E
with v /∈ e.

Proof. Let v ∈ V be a vertex and e ∈ E be a non-incident edge, which means
that v /∈ e. Clearly, δ(veaj−1) = -j for all j ∈ [3] and -i 6∼ -j for all dif-
ferent i, j ∈ [3]. Consequently, also the 3 states of S = {µ(veaj−1) | j ∈ [3]}
are pairwise hyper-inequivalent (and hence different). Since there are at most
2 unidentified states, at least one state of S is already identified. Moreover,

3 Actually, the cited theorem assumes N to be minimal, but the original proof also
works in our relaxed setting (i.e., when there are no different, but equivalent states
in the kernel).

On minimising automata with errors 25

δ(veaj−1) ∼ µ(veaj−1) for all j ∈ [3] yields that µ(veaj−1) ∈ {h(,j), h(/j)}
for at least one j ∈ [3], since ,j and /j are the only states hyper-equivalent
to ,j and µ(veaj−1) ∼ ,j. Since ∼ is a congruence and h is an isomorphism
on Ker(M), we obtain that µ(vea2) ∈ {h(,3), h(/3)} in any case. However,
δ(vea2) = -3, so we obtain the error word vea2x for some x ∈ {a, b} because

– LN (h(,3)) = LM (,3) and LN (h(/3)) = LM (/3),
– LM (-3)△LN(h(,3)) = LM (-3)△LM (,3) = {b}, and
– LM (-3)△LN(h(/3)) = LM (-3)△LM (/3) = {a}.

Moreover, if µ(ve) ∈ {h(,1), h(/1)}, then there is exactly one error word
with prefix ve. Overall, this yields at least one error for every v ∈ V and e ∈ E
with v /∈ e. The total number of such errors is at least |E| · (|V | − 2), and it is
exactly |E| · (|V | − 2) if µ(ve) ∈ {h(,1), h(/1)} for every v ∈ V and e ∈ E with
v /∈ e. ⊓⊔

Let S = {µ(v) | v ∈ V }. For every v ∈ V , the state δ(v) is not hyper-
equivalent to any state of Ker(N) and δ(v) 6∼ p0, which yields that |S| ≤ 3;
without loosing generality we can assume that |S| = 3, as this is the hardest
case. Let S = {p1, p2, p3}, and let c : V → [3] be such that for every v ∈ V we
have c(v) = i if and only if µ(v) = pi. Thus, we deduced a 3-colouring from the
transitions of N . Next, we investigate colouring violations and its connection
with the number of errors with respect to M . For every edge e = {v1, v2} ∈ E
such that c(v1) = c(v2), we have LN(µ(v1e)) = LN (µ(v2e)), but

LM (δ(v1e))△LM (δ(v2e)) = LM (,1)△LM (/1) = {aaa, aab} .

Consequently, we obtain at least 2 additional errors for every such edge e because
the corresponding error words start with ve where v ∈ e. Those two errors
together with the errors described in Claim 1 yield that N commits strictly
more than |E| · (|V | − 2) errors if G is not 3-colourable.

Finally, we show that the DFA c(M) = 〈P,Σ, µ,⊤, F 〉, which has exactly
14 states, commits exactly |E| ·(|V |−2) errors, if G is 3-colourable by the proper
3-colouring c : V → [3]. By Claim 1, c(M) commits exactly |E| · (|V | − 2) errors
with prefix ve for v ∈ V and e ∈ E with v /∈ e because µ(ve) ∈ {,1,/1} for
all such v and e. Clearly, all remaining error words must start with ve for some
v ∈ V and e ∈ E such that v ∈ e. However, if v ∈ e, then δ(ve) = µ(c(v)e) by
the definition of c(M), which yields that no error word with prefix ve exists. ⊓⊔

D Additional material for Section 5

Recall that M = 〈Q,Σ, δ, q0, F 〉 is our DFA and that we can always rename
states to avoid conflicts. In particular, we assume that Q ∩ N = ∅.

Lemma 19 (full version of Lemma 2). For every congruence ≃ ⊆ Q × Q
on M , there exists a DFA N = 〈P,∆, µ, q0, F

′〉 such that

(i) LM (q) = LN(q) ∩Σ∗ and δ−1(q) = µ−1(q) for every q ∈ Q,

26 P. Gawrychowski, A. Jeż, A. Maletti

(ii) LM (q1)△LM (q2) = LN (q1)△LN (q2) for all q1 ≃ q2,
(iii) p1 6∼ p2 for every p1 ∈ P \Q and p2 ∈ P with p1 6= p2, and
(iv) q1 6∼ q2 in N for all q1 6≃ q2.

Proof. Let n be the index of ≃ and θ : (Q/≃) → [n] be an arbitrary bijection.
Moreover, let

– P = Q ∪ [n] and F ′ = F ∪ {n},
– ∆ = Σ ∪ {t, x} where t, x /∈ Σ are different, new letters,
– µ(q, σ) = δ(q, σ) for every q ∈ Q and σ ∈ Σ,
– µ(q, t) = θ([q]≃) for every q ∈ Q, and
– µ(i, x) = i + 1 for every i ∈ [n− 1] and µ(n, x) = 1.

Next, we discuss hyper-equivalence and k-similarity in the DFA N . Clearly, i 6∼ j
for all different i, j ∈ [n]. Since ∼ is a congruence, we obtain that q1 6∼ q2 for all
q1, q2 ∈ Q such that q1 6≃ q2.Moreover, i 6∼ q for every i ∈ [n] and q ∈ Q. The (i)
is obvious. Finally, we can prove by an induction on the length of w ∈ ∆∗ that
w ∈ LM (q1)△LM (q2) if and only if w ∈ LN(q1)△LN(q2) for all q1 ≃ q2. ⊓⊔

In the future, we will use the construction in the proof of Lemma 19 as
a gadget with n states and simply assume that we can enforce that q1 6∼ q2 for
every q1 6≃ q2 and every congruence ≃ with index n. This can be done since none
of the newly added states is k-similar to an existing state and all newly added
states are pairwise dissimilar. Moreover, since we will only merge k-similar states
and µ(q1, t) = µ(q2, t) for all q1 ∼k q2, the gadget does not introduce new errors.

Lemma 20 (full version of Lemma 3). For every subset S ⊆ Q \ {q0} of
states and mapping min-level : S → N, there is a DFA N = 〈Q∪I,Σ∪∆,µ, q0, F 〉
such that

– LM (q) = LN(q) for every q ∈ Q \ {q0},
– |µ−1(i)| = 1 for every i ∈ I,
– |δ−1(s)△µ−1(s)| = 1 for s ∈ S with min-level(s) ≥ 2 and δ−1(q) = µ−1(q)

for all remaining q ∈ Q, and
– in-levelN (s) ≥ min-level(s) for every s ∈ S.

Proof. Let n = max {min-level(s) | s ∈ S} be the maximal requested level. We
construct the DFA N such that

– I = [n] (supposing that Q ∩ N = ∅),
– ∆ = {d} ∪ {ds | s ∈ S} are new, different letters,
– µ(q, σ) = δ(q, σ) for every q ∈ Q and σ ∈ Σ, and
– µ(q0, d) = 1 and µ(i, d) = i + 1 for every i ∈ [n− 1],
– µ(min-level(s)− 1, ds) = s for every s ∈ S such that min-level(s) ≥ 2.

Clearly, LM (q) = LN(q) for every q ∈ Q \ {q0} and in-levelN (s) ≥ min-level(s)
for every s ∈ S. Finally, µ−1(i) = {di} for every i ∈ [n], which can be used to
prove the remaining statements. ⊓⊔

On minimising automata with errors 27

We can use the first gadget to make sure that all newly introduced states in
the previous construction are k-dissimilar. Mind that a renaming can be used to
ensure that Q ∩ N = ∅.

We use the gadgets of Lemmata 19 and 20 as follows: We select the states
S = {10, 20, 30, 11, 21,,0,/} and let min-level : S → N be such that

min-level(10) = min-level(20) = min-level(30) = 3s− 1

min-level(,0) = min-level(/) = min-level(11) = min-level(21) = k + 1 .

Moreover, let ≃ ⊆ Q × Q be the equivalence induced by the partition (single-
element classes are omitted)

{⊥,-,/} ∪ {,i | 0 ≤ i ≤ s} ∪ {ij | i ∈ [2], j ∈ [ℓ]} {v | v ∈ V } ∪ {10, 20, 30} .

It can easily be checked that ≃ is a congruence. Let M = 〈Q,Σ, δ, 0, F 〉 be the
DFA obtained after adding the gadgets of Lemmata 19 and 20 using the above
parameters. The obtained DFA M is illustrated in Fig. 5. We state some simple
properties that follow immediately from the gadgets.

Lemma 21. We observe the following simple properties:

– Hyper-inequivalence is as indicated in Fig. 5; i.e., q1 6∼ q2 for every q1 6≃ q2.
– The levels are as indicated in Fig. 5. More specifically, for j ∈ [ℓ], i ∈ [s−1],

and v ∈ V .

in-levelM (10) = in-levelM (20) = 3s− 1 in-levelM (⊥) =∞

in-levelM (30) = 3s− 1

in-levelM (1j) = in-levelM (2j) = k + j in-levelM (v) = s + 1

in-levelM (,i) = k + i + 1 in-levelM (,s) = k + ℓ + 1

in-levelM (-) = 3s in-levelM (i) = i

in-levelM (/) = k + 1 in-levelM (s) = s

Proof. Both properties follow immediately from Lemmata 19 and 20 and trivial
inductions. ⊓⊔

Lemma 22.

(i) The difference between the right-languages of the states {10, 20, 30} is small.
More precisely,

LM (10)△LM (20) = {abℓ−1}

LM (10)△LM (30) = {abℓ−1, abℓ}

LM (20)△LM (30) = {abℓ} .

(ii) Additionally, |δ−1(v)| = 2s for every v ∈ V , and

|LM (,i)△LM (/)| = 2s−i d(,i,/) = s− i + 1

28 P. Gawrychowski, A. Jeż, A. Maletti

|LM (,i)△LM (-)| ≥ 2s−1 d(,i,-) = s + 1

|LM (-)△LM (/)| = 2s−1 d(-,/) = s + 1

|LM (1j)△LM (-)| ≥ |LM (-)| = 2s−1 d(1j ,-) = max(s, ℓ − j + 1) + 1

|LM (2j)△LM (-)| ≥ |LM (-)| = 2s−1 d(2j ,-) = max(s, ℓ − j + 1) + 1

for every 0 ≤ i ≤ s and j ∈ [ℓ].
(iii) Finally, ∼k is the reflexive and symmetric closure of

≡ ∪ {(i0, v) | i ∈ [3], v ∈ V } ∪ {(v1, v2) | v1, v2 ∈ V } ∪

∪ {(-,,i) | 0 ≤ i ≤ s} ∪ {(-,/), (-,⊥)} ∪ {(-, ij) | i ∈ [2], s + 1 < j ≤ ℓ}.

Proof. Properties (i) and (ii) can be observed easily. We turn to (iii): let i, i′ ∈ [3]
such that i 6= i′. Since in-levelM (i0) = in-levelM (i′0) = 3s− 1 by Lemma 21 and
d(i1, i

′
1) ≥ ℓ−1 by (i), we obtain d(i0, i

′
0)+3s ≥ (k−2s)−1+3s = k+s−1 ≥ k,

which proves that i0 6∼k i′0. Similarly, we can compute d(i0, v) + s + 1 ≤
(k− 2s+ 1) + s+ 2 = k− s+ 3 ≤ k for every v ∈ V , which proves i0 ∼k v. Now,
let v1, v2 ∈ V . Then

in-levelM (v1) = in-levelM (v2) = s + 1 and d(v1, v2) ≤ s + 2 ,

which yields 2s + 3 < k and proves that v1 ∼k v2. Since in-level(-) = 3s
and d(,0,-) = s + 1, we obtain 3s + s + 1 = 4s + 1 ≤ k, which proves that
,0 ∼k -. In essentially the same way, we can prove all similarities to -, which
yields that we proved all similarities. Clearly, two states q1, q2 ∈ Q such that
min(in-levelM (q1), in-levelM (q2)) ≥ k are k-similar if and only if q1 ≡ q2, which
proves the nontrivial dissimilarities. ⊓⊔

Using a proper 3-colouring c : V → [3] we define the DFA c(m).

Definition 7. Let c : V → [3] be a 3-colouring and c(M) = 〈P,Σ, µ, 0, F 〉 be the
DFA such that

– P = {⊥} ∪ {ij | i ∈ [2], j ∈ [ℓ]} ∪ [0, s] ∪ {,i | 0 ≤ i ≤ s}
– for every v ∈ V , e = {v1, v2} ∈ E with v /∈ e and v1 < v2, i ∈ [s], j ∈ [ℓ],

and j′ ∈ [3]

µ(i − 1, a) = i µ(,i−1, a) = ,i µ(1j−1, a) = 1j

µ(i− 1, b) = i µ(,i−1, b) = ,i µ(2j−1, a) = 2j

µ(s, v) = c(v)0 µ(1ℓ, a) = ,s µ(2ℓ, a) = ,s

µ(j′0, e) =

{

,0 , if c(v2) 6= j′

⊥ , otherwise.

– For all remaining cases, we set µ(q, σ) = ⊥.

The DFA c(M) is illustrated in Figure 7. We first show that c(M) is k-similar
to M and then that it is k-minimal.

On minimising automata with errors 29

Lemma 23. The constructed DFA c(M) = 〈P,Σ, µ, 0, F 〉 is k-similar to M .

Proof. Let ∆ be the alphabet of letters without the letters used by the gadgets,
which are collected in Γ . We first observe the equalities

LN(,s) = LM (,s) LN (,s) ∩∆∗ = {ε}

LN (⊥) = LM (⊥) = LM (/) LN(⊥) ∩∆∗ = ∅

LN(1j) = LM (1j) LN(1j) ∩∆∗ = {bℓ−j, bℓ−j+1}

LN(2j) = LM (2j) LN(2j) ∩∆∗ = {bℓ−j+1}

LN (,i) = LM (,i) LN(,i) ∩∆∗ = {a, b}s−i

µ−1(i) = δ−1(i) µ−1(i) = {a, b}i .

In addition, since {ij | i ∈ [2], j ∈ [ℓ]} forms a single class of ≃ in both
c(M) and M it holds that

Lc(M)(ij) ∩∆∗ΓΣ∗ = LM (i′j′) ∩∆∗ΓΣ∗

for all i, i′ ∈ [2] and j, j′ ∈ [ℓ]. From those statements and simple applications of
the statements of Lemmas 21 and 22 we can easily conclude that M and c(M)
are k-similar. ⊓⊔

30

3s− 1

21

k + 1

2ℓ

k + ℓ

s

s

20

3s− 1

11

k + 1

1ℓ

k + ℓ

0
10

3s− 1
,0

k + 1

,1

k + 2

,s−1

k + s

,s

k + ℓ + 1

v1

v2

v3

{a, b}s

e

bℓ−1

e

bℓ−1

{a, b}s−2

Fig. 7. Illustration of the DFA c(M) of Section 5

Note, that all states in c(M) are pairwise k-dissimilar by Lemma 22. Con-
sequently, they form a maximal set of pairwise k-dissimilar states in M , which
yields that |P | coincides with the number of states of all k-minimal DFA for M
by Lemma 3. Thus DFA M is k-minimal.

We finally show that our construction is correct.

Proof (of Lemma 4). Let N = (P,Σ, p0, µ, F
′) be a DFA that is k-minimal

for M . We select a maximal set Q′ of pairwise k-dissimilar states by

Q′ = {⊥} ∪ {ij | i ∈ [2], j ∈ [ℓ]} ∪ [0, s] ∪ {,i | 0 ≤ i ≤ s} .

30 P. Gawrychowski, A. Jeż, A. Maletti

Let h : Q′ → P be the bijection of Corollary 4 using the maximal set Q′. Let

S = {⊥} ∪ {,i | 0 ≤ i ≤ s} ∪ {ij | i ∈ [2], j ∈ [ℓ]} .

Consequently, q ≡ h(q) for every q ∈ S. From M ∼k N , which yields M ∼ N ,
we can conclude that δ(w) ∼ µ(w) for every w ∈ Σ∗. Let w ∈ {a, b}i for some
0 ≤ i ≤ s. Then µ(w) = h(i) because µ(w) ∼ δ(w) = i and h(i) is the only
state p ∈ P such that p ∼ i. Now, let w = uv with u ∈ {a, b}s and v ∈ V . Since
δ(uv) = v and v ∼ i0 only for i ∈ [3], we obtain µ(uv) ∈ {h(10), h(20), h(30)}.
From this behaviour we deduce a colouring c : V → [3] by c(v) = i if and only if
µ(uv) = h(i0) for every v ∈ V . Note that this definition does not depend on the
choice of u because µ(u) = µ(u′) = h(s) for all u, u′ ∈ {a, b}s.

Claim 2. The DFA N commits at least

m = 22s−1 · |E| · (|V | − 2) + 3 · 2s−1 · |E|

errors with prefix

– uve where u ∈ {a, b}∗, v ∈ V is a vertex, and e ∈ E such that v /∈ e, or

– dwe where d is the main symbol of the level gadget, w ∈ Σ∗, and e ∈ E.

Exactly m such errors are committed if the following two conditions, called (†),
are fulfilled:

(i) µ(uve) ∈ {h(,1), h(⊥)} for every u ∈ {a, b}∗, v ∈ V and e ∈ E with v /∈ e.

(ii) µ(dwe) ∈ {h(,1), h(⊥)} for every w ∈ Σ∗ and e ∈ E.

Proof. We distinguish two cases: whether the error word goes through i0 for
some i ∈ [3] or it goes through v for some v ∈ V :

– The only way to arrive at i0 in M is via the level gadget. Then by Lemma 20
there exists exactly one w ∈ δ−1(i0) such that |w| = 3s− 1 and w does not
end with v ∈ V . In addition, δ(i0, e) = - for every e ∈ E. However, in N
we have µ(w) ∈ {h(10), h(20), h(30)} and µ(h(j0), e) ∈ h(S) for every j ∈ [3]
because these are the only hyper-equivalent states. Since q ≡ h(q) for every
q ∈ S, we have

|LN(h(q))△LM (-)| ≥ 2s−1

|LN(h(⊥))△LM (-)| = |LN(h(,0))△LM (-)| = 2s−1

for every q ∈ S by Lemma 22(ii). This yields at least 2s−1 error words
that start with we, and exactly 2s−1 such error words under condition (†).
Consequently, there are at least 3 · 2s−1 · |E| such error words in total, and
exactly that many under condition (†), because the level gadget is reproduced
exactly.

On minimising automata with errors 31

– Next, we consider a word w = uve with u ∈ {a, b}s, v ∈ V , and e ∈ E
such that v /∈ e. Clearly, δ(w) = -, but µ(w) ∈ h(S) because h(S) are the
only states of P that are hyper-equivalent to -. Since q ≡ h(q) for every
q ∈ S and µ(u) = h(s) independently of u, there are 2s such words u
and |LM (-)△LN (h(q))| ≥ 2s−1 for every q ∈ S by Lemma 22(ii) be-
cause LN(h(q)) = LM (q). The same lemma also allows us to conclude
that |LM (-)△LN (h(q))| = 2s−1 under condition (†). Overall, there are
2s · 2s−1 · |E| · (|V | − 2) such error words, and exactly that many under
condition (†).

This proves the claim. ⊓⊔

Now we investigate the number of errors introduced for a colouring vio-
lation in the 3-colouring c. Let e = {v1, v2} ∈ E be a violating edge, i.e.,
c(v1) = c(v2). Then we have µ(uv1e) = µ(uv2e) ∈ h(S) for every u ∈ {a, b}s.
However, {δ(uv1e), δ(uv2e)} = {,0,/}, which yields at least 2s · 2s errors by
Lemma 22(ii). Since s > log2(|V |) + 2, we have that 22s > 2s+1 · |V |, which,
together with Claim 2 proves our statement if the graph is not 3-colourable.

Finally, let us consider the errors of c(M) = 〈P,Σ, µ, 0, F 〉 provided that
c : V → [3] is a proper 3-colouring for G. Recall the properties mentioned in the
proof of Lemma 23. Since c(M) fulfils property (†), we already identified exactly
the errors of Claim 2. Clearly, all error words pass a state h(i0) in N with i ∈ [3],
which yields that we only have to consider error words with prefix uve or uva
where u ∈ {a, b}∗, v ∈ V , and e ∈ E such that v ∈ e.

– We start with the prefix uva. As already observed we have that µ−1(s) =
{a, b}s = δ−1(s). Moreover, µ(s, v) = i0 for all v ∈ c−1(i), whereas we have
δ(s, v) = v. Thus, we consider LM (v)△Lc(M)(i0). Since δ(v, a) = 11 and
µ(i0, a) = i1, we obtain the potential errors

{uvabj | j ∈ {ℓ− 1, ℓ}, u ∈ {a, b}s} .

Consequently, we have 2s+1 · |V | potential errors, all of which are of length
at most s + 2 + ℓ = k − s + 2 < k.

– Finally, we have to consider the prefixes uve. If v ∈ e, then µ(i0, e) ≡ δ(v, e)
by the construction of c(M) and so no errors are introduced.

Summing up all identified error words, we obtain that the DFA c(M) commits
at most

22s−1 · |E| · (|V | − 2) + 3 · 2s−1 · |E|+ 2s+1 · |V |

errors, all of which are of length smaller than k, which also proves that the
DFA c(M) is k-similar to M . Moreover, since all of its states are pairwise k-
dissimilar, it is also k-minimal. ⊓⊔

	On minimising automata with errors

