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Abstract. We study the recognition of R-trivial idempotent (R1) lan-
guages by various models of ”decide-and-halt” quantum finite automata
(QFA) and probabilistic reversible automata (DH-PRA). We introduce
bistochastic QFA (MM-BQFA), a model which generalizes both Nayak’s
enhanced QFA and DH-PRA. We apply tools from algebraic automata
theory and systems of linear inequalities to give a complete character-
ization of R1 languages recognized by all these models. We also find
that ”forbidden constructions” known so far do not include all of the
languages that cannot be recognized by measure-many QFA.

1 Introduction

Measure-many quantum finite automata (MM-QFA) were defined in 1997 [22]
and since then, their language class characterization problem remains open.
The difficulties arise because the language class is not closed under Boolean
operations like union and intersection [5]. Later on, a probabilistic reversible
(”decide-and-halt” probabilistic reversible automaton, DH-PRA) and a more
general model of quantum finite automata (enhanced quantum finite automa-
ton, EQFA) were defined as well, which remarkably share with MM-QFA the
same property of non-closure [16, 26].

Nevertheless, other probabilistic reversible and quantum models of finite au-
tomata are known as well (”classical” probabilistic reversible automata, C-PRA,
and Latvian quantum finite automata, LQFA), closed under Boolean operations
[15, 2]. The language class characterization problem for these models were solved
by help of algebraic automata theory [2]. As a matter of fact, the language classes
of both models form the same language variety, corresponding to the EJ monoid
variety.

In [2], it is also stated that MM-QFA recognize any regular language cor-
responding to the monoid variety EJ. Since any syntactic monoid of a unary
regular language belongs to EJ, the results in [2] imply that MM-QFA recog-
nize any unary regular language. In [9], MM-QFA recognizing unary languages
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are studied in detail, the authors give a new proof of this result by explicitly
constructing MM-QFA recognizing unary languages.

The results by Brodsky and Pippenger [10] combined with the non-closure
property imply that the class of languages recognized by MM-QFA is a proper
subclass of the language variety corresponding to the ER monoid variety. The
same holds for DH-PRA and for EQFA [16, 26]. In the paper, we consider a
sub-variety of ER, the variety of R-trivial idempotent monoids R1 and de-
termine which are the R-trivial idempotent languages (R1 languages) that are
recognizable by DH-PRA, MM-QFA, EQFA and MM-BQFA (”decide-and-halt”
models). Since R1 shares a lot of the characteristic properties with ER, the
obtained results may serve as an insight to solve the general problem relevant
to ER.

The paper is structured as follows. Section 2 gives definitions used throughout
the paper. Section 3 describes the algebraic tools - monoids, morphisms and
varieties. Section 4 considers completely positive maps. We apply von Neumann-
Halperin theorem and the result by Kuperberg to obtain Theorem 4.7, which
is essential to prove the limitations of QFA in terms of language recognition.
Sections 5, 6, 7, 8, 9 present the main results of the paper:

(1) Introduction of MM-BQFA, a model which generalizes the earlier ”decide-
and-halt” automata models (Section 5, Definition 5.1);

(2) Definition of systems of linear inequalities corresponding to R1 languages.
Proof that any R1 language cannot be recognized by the ”decide-and-
halt” models, if its system of linear inequalities is not consistent. (Section
6, Definition 6.4, Theorem 6.5);

(3) The construction of DH-PRA (this presumes also EQFA and MM-BQFA)
and MM-QFA for any R1 language having a consistent system of inequal-
ities. Consequently, we obtain that all four ”decide-and-halt” models rec-
ognize exactly the same R1 languages. An R1 language is recognizable
by any of these models if and only if the corresponding system of linear
inequalities is consistent. (Sections 7, 8, Theorems 7.2, 8.3, 8.4, 8.5);

(4) The proof that the ”forbidden constructions” known from [5] do not give
all of the languages that cannot be recognized by MM-QFA (Section 9,
Theorem 9.2).

Among other results, we obtain the language class recognized by MO-BQFA
(Theorem 5.2) and give some closure properties of MM-BQFA (Theorems 5.3,
5.4 and Corollaries 6.6, 7.3).

2 Preliminaries

Given an alphabet A, let A∗ be the set of words over alphabet A. Given a word
x, let |x| be the length of x. Introduce a partial order 6 on A∗, let x 6 y if and
only if there exists z ∈ A∗ such that xz = y.

Let P(A) be the set of subsets of A, including the empty set ∅. Note that
there is a natural partial order on P(A), i.e., the subset order. Given a word



s ∈ A∗, let sω be the set of letters of the word s. We say that u,v ∈ A∗ are
equivalent with respect to ω, u ∼ω v, if uω = vω (that is, u and v consist of
the same set of letters). Note that ∼ω is an equivalence relation. The function ω
is a morphism; (uv)ω = uω∪vω. Moreover, ω preserves the order relation since
u 6 v implies uω ⊆ vω.

Let F(A) be the set of all words over the alphabet A that do not contain any
repeated letters. The empty word ε is an element of F(A). Let τ be a function
such that for every s ∈ A∗, any repeated letters in s are deleted, leaving only the
first occurrence. We say that u,v ∈ A∗ are equivalent with respect to τ , u ∼τ v,
if uτ = vτ . Note that ∼τ is an equivalence relation. Introduce a partial order 6
on F(A), let v1 6 v2 if and only if there exists v ∈ F(A) such that v1v = v2.

A deterministic finite automaton A is a tuple (Q,A, q0, · ), where Q - a set
of states, A - a finite alphabet, q0 - an initial state and · is a transition function,
that is, an everywhere defined function from Q×A to Q. We say that a state q
of the automaton A accepts a word x ∈ A∗, if the input x sets A into the state q.
Given an automaton (Q,A, q0, · ), one may assign to it a set of final states QF ,
a subset of Q. The resulting automaton is denoted by (Q,A, q0, · , QF ).

3 Monoids and Varieties

A general overview on varieties of finite semigroups, monoids as well as opera-
tions on them is given in [33]. It can also serve as a source for the definitions of
morphisms and word quotients.

Unless specified otherwise, the monoids discussed in this section are assumed
to be finite.

An element e of a monoid M is called an idempotent, if e2 = e. It is a
well-known fact that for any monoid M there exists k > 0 such that for any
element x ∈ M xk is idempotent. Moreover, if xk and xl both are idempotents,
then xk = xl. If x is an element of a monoid M, the unique idempotent of the
subsemigroup of M generated by x is denoted by xω . The set of idempotents of
the monoid M is denoted by E(M).

Given a regular language L ⊆ A∗, words u,v ∈ A∗ are called syntactically
congruent, u ∼L v, if for all x,y ∈ A∗ xuy ∈ L if and only if xvy ∈ L. The
set of equivalence classes A∗/ ∼L is a monoid, called syntactic monoid of L
and denoted M(L). The morphism ϕ from A∗ to A∗/ ∼L is called syntactic
morphism.

Given a monoid variety V, the corresponding language variety is denoted by
V. The set of languages over alphabet A recognized by monoids in V is denoted
by A∗V.

3.1 Varieties Definitions

The monoid varieties used in this paper may be defined by some simple identities.
For example, a monoidM belongs to the variety defined by an identity [[xy = yx]]
if and only if for any x, y ∈ M xy = yx. In this paper, we shall refer to the
following monoid varieties:



(1) G = [[xω = 1]], the variety of groups.
The respective language variety is denoted G;
(2) J1 = [[x2 = x, xy = yx]], the variety of commutative and idempotent
monoids, also known as semilattice monoids.
The respective language variety - J1 (semilattice languages);
(3) R1 = [[xyx = xy]], the variety of R-trivial idempotent monoids, also
known as left regular band monoids. The respective language variety - R1

(R-trivial idempotent languages, or R1 languages);
(4) ER1 = [[xωyωxω = xωyω]], the variety of such monoids M that E(M)
is an R-trivial idempotent monoid. This variety is equal to R1 ∗G [17], the
variety generated by semidirect products of R-trivial idempotent monoids
by groups. The respective language variety - ER1;
(5) J = [[xωx = xω, (xy)ω = (yx)ω ]] = [[(xy)ωx = (xy)ω , x(yx)ω = (yx)ω ]],
the variety of J -trivial monoids. The respective language variety - J ;
(6) R = [[(xy)ωx = (xy)ω ]], the variety of R-trivial monoids.
The respective language variety - R;
(7) EJ = [[(xωyω)ω = (yωxω)ω]] = [[(xωyω)ωxω = (xωyω)ω, xω(yωxω)ω =
(yωxω)ω]], the variety of such monoids M that E(M) generates a J -trivial
monoid. This variety is equal to J ∗G, the variety generated by semidirect
products of J -trivial monoids by groups [34].
The respective language variety - EJ ;
(8) ER = [[(xωyω)ωxω = (xωyω)ω]], the variety considered in [14]. It is the
variety of such monoids M that E(M) generates an R-trivial monoid [1,
p.132]. This variety is equal to R ∗G, the variety generated by semidirect
products of R-trivial monoids by groups [1, p.344].
The respective language variety - ER.

It is possible to check that J1 ⊂ J ⊂ EJ, R1 ⊂ R ⊂ ER, R1 ⊂ ER1 ⊂ ER,
J1 ⊂ R1, J ⊂ R and G ⊂ EJ ⊂ ER.

3.2 Semilattice Languages and Free Semilattices

We need some characterizations for semilattice languages.

Definition 3.1. A free semilattice over an alphabet A is a monoid (P(A),∪),
where ∪ is the ordinary set union.

For any alphabet A, the free semilattice P(A) satisfies the identities of J1,
therefore P(A) ∈ J1.

For the sake of completeness, we give a proof for the following

Proposition 3.2. Given a language L ∈ A∗J1, the free semilattice P(A) is
divided by M(L).

Proof. Let ϕ be the syntactic morphism from A∗ to M(L). It suffices to prove
that ω−1ϕ is a surjective morphism.

Let s1, s2 ∈ A∗. Since M(L) ∈ J1, s1 ∼ω s2 implies s1ϕ = s2ϕ. Let p ∈
P(A). Let t1, t2 ∈ pω−1. Now, since t1 ∼ω t2, t1ϕ = t2ϕ. Hence ω−1ϕ is a
function.



Let p1, p2 ∈ P(A). Let s1 ∈ (p1p2)ω
−1 and let s2 ∈ (p1ω

−1)(p2ω
−1). The

words s1 and s2 consist of the same set of letters, so s1 ∼ω s2. Therefore s1ϕ =
s2ϕ, hence ((p1p2)ω

−1)ϕ = ((p1ω
−1)(p2ω

−1))ϕ = p1(ω
−1ϕ)p2(ω

−1ϕ). So ω−1ϕ
is a morphism.

The morphism ϕ is surjective and ω is everywhere defined, therefore ω−1ϕ
is surjective. ⊓⊔

{}

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

a b c

a, b a, c b, c

a, b, c

a b c

b
c

a c
a

b

c b a

Fig. 1. Free semilattice over {a, b, c}.

An immediate consequence [33, p.17, Prop. 2.7] is that P(A) recognizes any
language L in A∗J1. Moreover, L is a disjoint union of some languagesX1ω

−1,...,
Xnω

−1, where X1,..., Xn ∈ P(A).
Thus, taking into account [33, p.40, Prop. 3.10], the following characteriza-

tions have been established:

Theorem 3.3. Let L be a language over alphabet A. The following conditions
are equivalent:

(1) The syntactic monoid of L belongs to the variety J1;

(2) L is a Boolean combination of languages of the form A∗aA∗, where a ∈ A;

(3) L is a Boolean combination of languages of the form B∗, where B ⊆ A;

(4) L is a disjoint union of languages of the form X1ω
−1, ..., Xnω

−1, where
X1, ..., Xn ∈ P(A).

Therefore, in order to specify a particular language L ∈ A∗J1, one may
identify it by indicating a particular subset of P(A).

Given a free semilattice P(A), one may represent it as a deterministic finite
automaton (P(A), A, ∅, · ), where for every X ∈ P(A) and for every a ∈ A,



X · a = X∪{a}. By Theorem 3.3 (4), for any semilattice language L over alphabet
A, Lω is a set of final states, such that the automaton recognizes the language.

A free semilattice over {a, b, c} represented as a finite automaton is depicted
in Figure 1.

The states of (P(A), A, ∅, · ) can be separated into several levels, i.e., a state
is at level k if it corresponds to an element in P(A) of cardinality k.

3.3 R1 languages and Free Left Regular Bands

We also need some characterizations for R1 languages.

Definition 3.4. A free left regular band over an alphabet A is a monoid (F(A), · ),
where x·y = (xy)τ , i.e., concatenation followed by the application of τ .

The function τ is a morphism; for any u,v ∈ A∗ (uv)τ = uτ ·vτ . Moreover,
τ preserves the order relation since u 6 v implies uτ 6 vτ .

For any alphabet A, the free left regular band F(A) satisfies the identities of
R1, therefore F(A) ∈ R1.

Characterizations of R1 languages are established in [35]:

Theorem 3.5. Let L be a language over alphabet A. The following conditions
are equivalent:

(1) The syntactic monoid of L belongs to the variety R1;

(2) L is a Boolean combination of languages of the form B∗aA∗, where a ∈ A
and B ⊆ A;

(3) L is a disjoint union of languages of the form

a1a
∗
1a2{a1, a2}∗a3{a1, a2, a3}∗...am{a1, a2, ..., am}∗,

where the ai’s are distinct letters of A.

Let L be a single language from the disjoint union specified in Theorem 3.5
(3). There exists a single element x ∈ F(A) such that xτ−1 = L, therefore F(A)
recognizes any language in A∗R1. Hence by [33, p.17, Prop. 2.7], M(L) divides
F(A).

Therefore, in order to specify a particular language L ∈ A∗R1, one may iden-
tify it by indicating a particular subset of F(A). For example, the semilattice lan-
guage A∗aA∗ may also be denoted as {a, ab,ba, ac, ca, abc, acb,bac,bca, cab,
cba}.

It is also self-evident that P(A) is a quotient of F(A). Indeed, let σ be a
restriction of ω to F(A). The function σ is a surjective morphism from F(A) to
P(A) which preserves the order relation.

Given a free left regular band F(A), one may represent it as a deterministic
finite automaton (F(A), A, ε, ·F(A) ). By Theorem 3.5 (3), for any R1 language
L over alphabet A, Lτ is a set of final states, such that the automaton recognizes
the language.

A free left regular band over {a, b, c} represented as a finite automaton is
depicted in Figure 2.



Free left regular bands and free semilattices are key elements to prove that
a quantum automaton may recognize a particular R1 language if and only if its
system of linear inequalities is consistent.

ε

a b c

ab ba ac ca bc cb

abc bac acb cab bca cba

a b c

a, b a, b a, c a, c b, c b, c

a, b, c a, b, c a, b, c a, b, c a, b, c a, b, c

a b c

b
c

a c
a

b

c c
b b

a a

Fig. 2. Free left regular band over {a, b, c}.

4 Completely Positive Maps

In this section, we establish some facts about completely positive maps with
certain properties, i.e., completely positive maps that describe the evolution of
bistochastic quantum finite automata, defined in the next section. A compre-
hensive account on quantum computation can be found in [29].

Following [29], we call a matrix M ∈ Cn×n positive, if for any vector X ∈ Cn,
X∗MX is real and nonnegative. In literature, positive matrices sometimes are
called positive semi-definite. For arbitrary matricesM,N we may writeM > N if
M−N is positive. This defines a partial ordering on Cn×n. Also note that the set
of all positive matrices in Cn×n is an additive monoid. A matrix is positive if and
only if it is Hermitian and all of its eigenvalues are nonnegative ([29, Exercises
2.21,2.24]). A matrix M is positive if and only if exists a matrix S ∈ Cn×n such
that M = S∗S ([38, Section 6.1]). Let Tr(A) be a trace of a matrix A. The inner
product of two matrices A and B is defined as 〈A,B〉 = Tr(A∗B). Consequently,
the norm of a matrix A (the Frobenius norm) is defined as ‖A‖ =

√
Tr(A∗A).

Proposition 4.1. A matrix M is positive if and only if for any positive A
Tr(MA) > 0.



Proof. Assume that for any positive A Tr(MA) > 0. Take A = XX∗, where
X is an arbitrary vector. Now X∗MX = Tr(MXX∗) > 0, hence for any X
X∗MX > 0. So M is positive.

Assume M is positive. Let A be a positive matrix. So A admits spectral

decomposition, A =
n∑

i=1

λiXiX
∗
i , where λi are nonnegative eigenvalues and Xi

- eigenvectors of A. Now Tr(MA) = Tr(M
n∑

i=1

λiXiX
∗
i ) =

n∑
i=1

λi Tr(MXiX
∗
i ) =

n∑
i=1

λiX
∗
i MXi > 0. ⊓⊔

A linear map Φ : Cn×n −→ Cm×m is called positive, if for any n× n positive
matrix M Φ(M) is positive. Any linear map from Cn×n to Cm×m may be re-

garded as a linear operator in Cn2×m2

. The norm of a linear map Φ from Cn×n

to Cm×m is defined as sup
M∈Cn×n

‖Φ(M)‖
‖M‖ . A linear map Φ is called a contraction, if

‖Φ‖ 6 1.

Let Is be the identity map over Cs×s. Given two linear maps Φ and Ψ ,
let Φ

⊗
Ψ be the tensor product of those maps. A positive linear map Φ is

called completely positive (CP), if for any s > 1, Φ
⊗

Is is positive. By Choi’s
theorem [11], a linear map is completely positive if and only if it admits a Kraus
decomposition, meaning that there exist matrices V1, . . . , Vl ∈ Cm×n, l 6 nm,

such that for any matrix M ∈ Cn×n Φ(M) =
l∑

i=1

ViMV ∗
i . So any CP map may

be identified by a set of its Kraus operators {V1, . . . , Vl}.
A completely positive map Φ is called trace-preserving, if for any positive M ,

Tr(Φ(M)) = Tr(M). A CP map Φ = {V1, . . . , Vl} from Cn×n to Cm×m is trace

preserving if and only if
l∑

i=1

V ∗
i Vi = In [29, §8.2.3].

A completely positive map Φ is called sub-tracial iff for any positive M we
have Tr(Φ(M)) 6 Tr(M).

Theorem 4.2. A completely positive map Φ = {V1, . . . , Vl} from Cn×n to Cm×m

is sub-tracial if and only if
l∑

i=1

V ∗
i Vi 6 In.

Proof. Assume that
l∑

i=1

V ∗
i Vi 6 In. So exists a positive matrix P such that

l∑
i=1

V ∗
i Vi + P = In. Moreover, P =

n∑
i=1

λiXiX
∗
i , where λi are nonnegative eigen-

values andXi - eigenvectors of P . By addingm−1 zero columns to each vectorXi

one respectively obtains matricesWi ∈ Cn×m such thatXiX
∗
i = WiW

∗
i . For each

i, 1 6 i 6 n, let Vl+i =
√
λiW

∗
i . So

l+n∑
i=1

V ∗
i Vi = In. Hence {V1, . . . , Vl, . . . , Vl+n}

is a trace-preserving CP map, so for any positive M Tr

(
l+n∑
i=1

ViMV ∗
i

)
= Tr(M).



The matrix
n∑

i=1

Vl+iMV ∗
l+i is positive, therefore Tr

(
n∑

i=1

Vl+iMV ∗
l+i

)
> 0. Hence

Tr

(
l∑

i=1

ViMV ∗
i

)
6 Tr(M).

Assume that for all positiveM Tr(Φ(M)) 6 Tr(M). Since Tr

(
l∑

i=1

ViMV ∗
i

)
=

Tr

(
l∑

i=1

V ∗
i ViM

)
, for all positive M Tr

(
l∑

i=1

V ∗
i ViM

)
6 Tr (M). So for any pos-

itive M Tr

((
In −

l∑
i=1

V ∗
i Vi

)
M

)
> 0. Now by Proposition 4.1, In−

l∑
i=1

V ∗
i Vi is

positive, therefore
l∑

i=1

V ∗
i Vi 6 In. ⊓⊔

A CP map Φ = {V1, . . . , Vl} from Cn×n to Cm×m is called unital if Φ(In) = Im,

i.e.,
l∑

i=1

ViV
∗
i = Im. A CP map from Cn×n to Cm×m Φ = {V1, . . . , Vl} is called

sub-unital if Φ(In) 6 Im, i.e.,
l∑

i=1

ViV
∗
i 6 Im.

A composition of CP maps Φ0, ..., Φm from Cn×n to Cn×n is a CP map
Φ = Φ0 ◦ · · · ◦ Φm such that for any M ∈ Cn×n Φ(M) = Φ0(Φ1(...(Φm(M))...).

A CP map Φ = {V1, . . . , Vl} from Cn×n to Cn×n is called bistochastic, if it is

both trace preserving and unital, i.e.,
l∑

i=1

ViV
∗
i =

l∑
i=1

V ∗
i Vi = In.

Examples of bistochastic CP maps.

(1) A map defined by unitary matrix U , i.e., a CP map Φ(M) = UMU∗,
called unitary operation;

(2) A collection of projection matrices {Pi} such that
l∑

i=1

Pi = I, i.e., a CP

map Φ(M) =
l∑

i=1

PiMP ∗
i , called orthogonal measurement;

(3) A CP map Φ(M) =
l∑

i=1

piUiMU∗
i , where

l∑
i=1

pi = 1 and for all i Ui are

unitary. Such a map is called random unitary operation;
(4) Any composition of the maps above.

A CP map Cn×n to Cn×n is called sub-bistochastic1, if it is both sub-unital
and sub-tracial. A composition of two sub-bistochastic CP maps is a sub-bistochastic
CP map.

We are interested about some properties of the asymptotic dynamics resulting
from iterative application of a CP sub-bistochastic map.

A CP map Φ from Cn×n to Cn×n is called idempotent if Φ ◦ Φ = Φ.

1 Sometimes in quantum physics and quantum computation literature, a CP map is
sub-tracial by definition. In such cases, sub-bistochastic CP maps are called sub-
unital CP.



Definition 4.3. A CP map Φ from Cn×n to Cn×n generates a unique idem-
potent, denoted Φω, if there exists a sequence of positive integers ns such that
1) exists the limit Φω = lim

s→∞
Φns ; 2) the CP map Φω is idempotent; 3) for

any sequence of positive integers ms such that the limit lim
s→∞

Φms exists and is

idempotent, lim
s→∞

Φms = Φω.

For example, if Φ is a unitary operation then Φω is the identity map. (Theo-
rem 4.5.)

Note that any CP map from Cn×n to Cn×n may be regarded as a linear
operator in Cn2×n2

. In this sense, the conjugate transpose of Φ = {V1, . . . , Vl} is
Φ∗ = {V ∗

1 , . . . , V
∗
l }. Kuperberg has provided a sketch of the proof [23] that for

any CP sub-bistochastic map Φ from Cn×n to Cn×n, its idempotent Φω exists
and it is a linear projection operator in Cn2×n2

. We reconstruct a full proof of
this result below. The first step in that direction is the following theorem.

Theorem 4.4. Any CP sub-bistochastic map Φ is a contraction.2

Proof. We need to prove that ‖Φ‖ 6 1. Let σmax(Φ) - the largest singular
value of Φ and λmax(Φ

∗◦Φ) - the largest eigenvalue of Φ∗◦Φ. Note that ‖Φ‖ =
σmax(Φ) =

√
λmax(Φ∗◦Φ). Let M an eigenvector of Φ∗◦Φ corresponding to

λmax. So Φ∗◦Φ(M) = λmaxM . Suppose M is not Hermitian. Let V1, ..., Vl be

the Kraus operators corresponding to Φ∗◦Φ. So Φ∗◦Φ(M∗) =
l∑

i=1

ViM
∗V ∗

i =

(
l∑

i=1

ViMV ∗
i )

∗ = (λmaxM)∗ = λmaxM
∗. Hence M∗ is an eigenvector correspond-

ing to λmax as well. Therefore M +M∗ is an eigenvector also corresponding to
λmax, and it is Hermitian. So without loss of generality, we may assume that M
is Hermitian. Note that Tr(Φ∗◦Φ(M)) = λmaxTr(M). On the other hand, since
Φ∗◦Φ is sub-bistochastic, Tr(Φ∗◦Φ(M)) 6 Tr(M). Hence λmax 6 1. Therefore
‖Φ‖ 6 1. ⊓⊔

Theorem 4.5. Any CP sub-bistochastic map Φ generates a unique idempotent
Φω.

Proof. Let σmax - the largest singular value of Φ and λ - any of its eigenvalues.
Due to Browne’s theorem [7, Fact 5.11.21 i)], |λ| 6 σmax. Therefore by Theorem
4.4, |λ| 6 1. Let λ1 an eigenvalue such that |λ1| = 1. Let m(λ1) and g(λ1) - the
algebraic and geometric multiplicity of λ1. It has been proved in [25, Lemmas
2 and 3] that m(λ1) = g(λ1). (The proofs are given for the bistochastic case,
but they can be copied for sub-bistochastic case with a sole modification: in the
proof of Lemma 2 in [25], replace ”‖ΦA‖ = 1” with ”‖ΦA‖ 6 1”. Before [25],
the same has been proved for random unitary operations in [30].)

The map Φ may be viewed as an n2 × n2 matrix, it admits Jordan normal
form. So Φ = SJS−1, where J is a Jordan block matrix and S - some non-
singular matrix. Consider the Jordan blocks corresponding to any eigenvalue

2 The special case dealing with bistochastic maps was proved in [32].



λ1 such that |λ1| = 1. Since m(λ1) = g(λ1), any such Jordan block is one-
dimensional. Any other Jordan block B is related to an eigenvalue λ such that
|λ| < 1, so lim

s→∞
Bs = 0. Consider the diagonal matrix L corresponding to

eigenvalues λ1 such that |λ1| = 1. There exists a strictly monotone increasing
sequence of positive integers ns such that lim

s→∞
Lns = I. (This is implied by [19,

Theorem 201].) Thus Lω = I. The uniqueness of Lω comes from the fact that
the identity matrix is the only idempotent diagonal matrix with diagonal entries
all nonzero. So J generates a unique idempotent; Jω is a diagonal matrix with
zeroes and ones on the diagonal. Therefore Φ generates a unique idempotent as
well; Φω = SJωS−1. ⊓⊔
If Φ is a CP sub-bistochastic map, then Φω is a CP sub-bistochastic map as well.

Theorem 4.6. The unique idempotent Φω generated by a CP sub-bistochastic
map Φ from Cn×n to Cn×n is a projection operator in Cn2×n2

.

Proof. By Theorem 4.4, Φ is a contraction. So Φω is a contraction as well. There-
fore, due to Halperin [18, 3.(III)], Φω is a projection. ⊓⊔
Finally, we are ready to formulate a theorem, which is the main result of this
section. As shown further in the paper, this theorem ultimately is the reason
why certain models of quantum finite automata cannot recognize all regular
languages.

Theorem 4.7. Let e1, ..., ek be idempotent CP sub-bistochastic maps from Cn×n

to Cn×n. Then for any i, 1 6 i 6 k,

(1) lim
n→∞

(e1 ◦ ... ◦ ek)
n = (e1 ◦ ... ◦ ek)

ω = (eπ(1) ◦ ... ◦ eπ(k))
ω, where π is a

permutation in {1, . . . , k};
(2) (e1 ◦ ... ◦ ek)ω = ei ◦ (e1 ◦ ... ◦ ek)ω = (e1 ◦ ... ◦ ek)ω ◦ ei.

Proof. Since e1, ..., ek are projections, by von Neumann-Halperin theorem [18,
Theorem 1], lim

n→∞
(e1 ◦ ... ◦ ek)

n = (e1 ◦ ... ◦ ek)
ω = (eπ(1) ◦ ... ◦ eπ(k))

ω. In the

same way, (e1 ◦ ... ◦ ek)
ω = (ei ◦ e1 ◦ ... ◦ ek)ω = (e1 ◦ ... ◦ ek ◦ ei)

ω . Note that
ei◦(ei◦e1◦...◦ek)ω = (ei◦e1◦...◦ek)ω and (e1◦...◦ek◦ei)ω◦ei = (e1◦...◦ek◦ei)ω.
Therefore (e1 ◦ ... ◦ ek)ω = ei ◦ (e1 ◦ ... ◦ ek)ω = (e1 ◦ ... ◦ ek)ω ◦ ei. ⊓⊔

Any finite quantum system at a particular moment of time (i.e., its mixed
state) is described by a density matrix. By [29, Theorem 2.5], a matrix is a
density matrix if and only if it is positive and its trace is equal to 1.

Informally, an n×n density matrix describes a quantum system with n states.
A completely positive trace-preserving map describes an evolution of a quantum
system as allowed by quantum mechanics. It maps a density matrix to a density
matrix.

5 Automata Models

An overview of different models of finite automata, relevant to our research,
is given in the following table. The definition for bistochastic quantum finite



automata is given below. For the formal definitions of other indicated automata
models, the reader is referred to the references given in the table.

As seen further, measure-once (measure-many) bistochastic quantum finite
automata is a generalization of any other ”classical” (”decide-and-halt”, respec-
tively) word acceptance model from Table 1. At the same time BQFA have the
same limitations for language recognition as known for other models above. Thus
we consider the introduction of yet another model of quantum finite automata
justified, because it allows us to prove the limitations of language recognition for
all the models within single framework. Therefore the proof of the new limitations
for MM-BQFA in Section 6, which are expressed in terms of linear inequalities,
implies the same for any other ”decide-and-halt” word acceptance model in the
table.

Table 1. Automata Models

”Classical” word
acceptance

”Decide-and-halt” word
acceptance

Deterministic
Reversible Automata

Group Automata (GA)
[20, 37]

Reversible Finite Automata
(RFA) [3, 17]

Quantum Finite
Automata with Pure
States

Measure-Once Quantum
Finite Automata (MO-QFA)
[27, 10]

Measure-Many Quantum
Finite Automata (MM-QFA)
[22, 10, 5, 2]

Probabilistic
Reversible Automata

”Classical” Probabilistic
Reversible Automata
(C-PRA) [15, 2]

”Decide-and-halt” Probabilistic
Reversible Automata (DH-PRA)
[15, 16]

Quantum Finite
Automata with
Mixed States

Latvian Quantum Finite
Automata (LQFA) [2]

Enhanced Quantum Finite
Automata (EQFA) [28, 26]

Measure-Once Bistochastic
Quantum Finite Automata
(MO-BQFA)

Measure-Many Bistochastic
Quantum Finite Automata
(MM-BQFA)

Definition 5.1. A bistochastic quantum finite automaton (BQFA) is a tuple
(Q,A ∪ {#, $}, q0, {Φa}), where Q is a finite set of states, A - a finite input
alphabet, #, $ /∈ A - initial and final end-markers, q0 - an initial state and for
each a ∈ A ∪ {#, $} Φa is a CP bistochastic transition map from C|Q|×|Q| to
C|Q|×|Q|.

Regardless of which word acceptance model is used, each input word is enclosed
into end-markers #, $. At any step, the mixed state of a BQFA may be described
by a density matrix ρ. The computation starts in the state |q0〉〈q0|.

Operation of a measure-once BQFA and word acceptance. On input letter
a ∈ A, ρ is transformed into Φa(ρ). The set of statesQ is partitioned into two dis-
joint subsets Qacc and Qrej . After reading the final end-marker $, a measurement
{Pacc, Prej} is applied to ρ, where Pacc =

∑
q∈Qacc

|q〉〈q| and Prej =
∑

q∈Qrej

|q〉〈q|.

The respective input word is accepted with probability Tr(PaccρPacc) and re-
jected with probability Tr(PrejρPrej). For any word a = a1 . . . ak, define Φa =
Φak

◦ · · · ◦ Φa1
.



Operation of a measure-many BQFA and word acceptance. The set of states
Q is partitioned into three disjoint subsets Qnon, Qacc and Qrej - non-halting,
accepting and rejecting states, respectively. It is assumed that q0 ∈ Qnon. On
input letter a ∈ A, ρ is transformed into ρ′ = Φa(ρ). After that, a measure-
ment {Pnon, Pacc, Prej} is applied to ρ′, where for each i ∈ {non, acc, rej}
Pi =

∑
q∈Qi

|q〉〈q|. The respective input word is accepted (rejected) with probabil-

ity Tr(Paccρ
′Pacc) (Tr(Prejρ

′Prej), respectively). If the input word is accepted or
rejected, the computation is halted. Otherwise, with probability Tr(Pnonρ

′Pnon),
the computation continues from the mixed state Pnonρ

′Pnon/Tr(Pnonρ
′Pnon). To

ensure that any input word is always either accepted or rejected, it is required
for Φ$ that for any ρ such that Tr(PnonρPnon) = 1, Tr(PnonΦ$(ρ)Pnon) = 0.

To describe the probability distribution S#u of a MM-BQFA A after reading
some prefix #u, it is convenient to use density matrices ρ scaled by p, 0 6 p 6 1.
So the probability distribution S#u of A is a triple (ρ, pacc, prej), where Tr(ρ) +
pacc+prej = 1, ρ/Tr(ρ) is the current mixed state and pacc, prej are respectively
the probabilities that A has accepted or rejected the input. So the scaled density
matrix ρ may be called a scaled mixed state. For any a ∈ A∪{#, $}, let Ψa(ρ) =
PnonΦa(ρ)Pnon. After reading the next input letter a, the probability distribution
is S#ua = (Ψa(ρ), pacc + Tr(PaccΦa(ρ)Pacc), prej + Tr(PrejΦa(ρ)Prej)). For any
word a = a1 . . . ak, define Ψa = Ψak

◦ · · · ◦ Ψa1
. Hence ρ = Ψ#u(|q0〉〈q0|). Note

that Ψa is a CP sub-bistochastic map.

Language recognition is defined in a way equivalent to Rabin’s [36]. Suppose
that an automaton A corresponds to one of the probabilistic or quantum models
from the table above. By px,A (or px, if no ambiguity arises) we denote the
probability that an input x is accepted by the automaton A. Furthermore, we
denote PL = {px,A | x ∈ L}, PL = {px,A | x /∈ L}, p1 = supPL, p2 = inf PL.
It is said that an automaton A recognizes a language L with interval (p1, p2),
if p1 ≤ p2 and PL ∩ PL = ∅. It is said that an automaton A recognizes a
language L with bounded error and interval (p1, p2), if p1 < p2. We consider
only bounded error language recognition. An automaton is said to recognize
a language with probability p if the automaton recognizes the language with
interval (1 − p, p). It is said that a language is recognized by some class of
automata with probability 1− ǫ, if for every ǫ > 0 there exists an automaton in
the class which recognizes the language with interval (ǫ1, 1−ǫ2), where ǫ1, ǫ2 ≤ ǫ.
A language L is recognizable with interval (p1, p2) iff it is recognizable with some
probability p (see, for example, [15]).

BQFA as a generalization of other models. Since unitary operations and or-
thogonal measurements are bistochastic operations, MO-BQFA is a generaliza-
tion of LQFA and MM-BQFA is a generalization of EQFA. Also one can see
that MO-BQFA and MM-BQFA are generalizations of C-PRA and DH-PRA,
respectively. A probability distribution vector P =

∑
i

pi|qi〉 of a PRA corre-

sponds to the mixed state ρ =
∑
i

pi|qi〉〈qi| of a BQFA. Any transition matrix B

of a PRA is doubly stochastic. By the Birkhoff theorem [38, Theorem 4.21], any
doubly stochastic matrix is a convex combination of some permutation matrices.



Thus B =
∑
s

psTs, where ps are nonnegative numbers with sum equal to 1 and

Ts - permutation matrices. So the CP bistochastic map corresponding to the
transition matrix B is Φ(ρ) =

∑
s

psTsρT
∗
s , which is a random unitary operation.

Indeed, one may check that Φ(ρ) is a diagonal matrix such that (Φ(ρ))ii = (BP )i.
On the other hand, BQFA are a special case of one-way general QFA (also

called quantum automata with open time evolution), which admit any CP trace-
preserving transition maps. One-way general QFA recognize with bounded error
exactly the regular languages [21, 24], this fact was also mentioned in [6, In-
troduction]. Similar models of quantum automata which recognize any regular
language have been proposed in [31, 12, 8, 13]. So the recognition power of BQFA
is also limited to regular languages only.

Comparison of the language classes. Having a certain class of automata
A, let us denote by L(A) the respective class of languages. Thus L(GA) =
L(MO-QFA) = G,L(C-PRA) =L(LQFA) =L(MO-BQFA) = EJ , G (L(RFA)

( ER1, EJ ( L(MM-QFA)
?
= L(DH-PRA)

?
= L(EQFA)

?
= L(MM-BQFA) (

ER. Relations concerning BQFA are proved below. All the other relations are
known from the references given in Table 1.

Theorem 5.2. L(MO-BQFA) = EJ .

Proof. Since L(LQFA) = EJ [2] and MO-BQFA is a generalization of LQFA,
EJ ⊆ L(MO-BQFA). It remains to prove that L(MO-BQFA) ⊆ EJ .

Suppose that a MO-BQFA A recognizes a language L over alphabet A, such
that L /∈ A∗EJ . Let M = M(L) - the syntactic monoid of L and ϕ - the
syntactic morphism from A∗ to M. By assumption, there exist x, y ∈ M such
that (xωyω)ω 6= (yωxω)ω. There exists a positive integer k such that for all z inM
zk = zω, therefore (xkyk)k 6= (ykxk)k. Let a ∈ xkϕ−1 and b ∈ ykϕ−1. Consider
the CP bistochastic transition maps Φa and Φb of A. Theorem 4.7 implies that
there exists a sequence of positive integers sn such that lim

n→∞
(Φsn

a
◦ Φsn

b
)n =

lim
n→∞

(Φsn
b

◦ Φsn
a
)n = (Φω

a
◦ Φω

b
)ω = (Φω

b
◦ Φω

a
)ω . Note that ‖Φu‖ = ‖Φv‖ =

1. Therefore for any ǫ > 0 there exists n > 0 such that for any u,v ∈ A∗

|pu(asnbsn)nv − pu(bsnasn)nv| < ǫ. So there exists n such that (asnbsn)n ∼L

(bsnasn)n. Hence (asnbsn)nϕ = (bsnasn)nϕ = (xkyk)n = (ykxk)n. The latter
implies (xkyk)k = (ykxk)k. This is a contradiction. ⊓⊔
The next theorem is equivalent to the statement that MM-BQFA can’t recognize
any language that does not satisfy the partial order condition from [10].

Theorem 5.3. L(MM-BQFA) ⊆ ER.

Proof. Suppose that a MM-BQFA A recognizes a language L over alphabet A,
such that L /∈ A∗ER. Let M = M(L) - the syntactic monoid of L and ϕ - the
syntactic morphism from A∗ to M. By assumption, there exist x, y ∈ M such
that (xωyω)ωxω 6= (xωyω)ω. There exists a positive integer k such that for all z
in M zk = zω, therefore (xkyk)kxk 6= (xkyk)k. Let a ∈ xkϕ−1 and b ∈ ykϕ−1.
Consider the CP sub-bistochastic maps Ψa and Ψb of A. Theorem 4.7 implies



that there exists a sequence of positive integers sn such that lim
n→∞

Ψsn
a ◦ (Ψsn

b
◦

Φsn
a
)n = lim

n→∞
(Ψsn

b
◦ Ψsn

a
)n = (Φω

b
◦ Φω

a
)ω. Let u,v ∈ A∗. Let a(n) = asn and

b(n) = bsn . Let w(n) = #u(a(n)b(n))n. After reading the word w(n) the
probability distribution is Sw(n) = (Ψw(n)(|q0〉〈q0|), pacc, prej). If a(n) is read
afterwards, Sw(n)a(n) = (Ψw(n)a(n)(|q0〉〈q0|), p′acc, p′rej), where p′acc > pacc and
p′rej > prej . Note that lim

n→∞
Ψw(n) = lim

n→∞
Ψw(n)a(n) and ‖Ψu‖ 6 1, ‖Ψv‖ 6 1.

Therefore for any ǫ > 0 there exists n > 0 such that for any u ‖Ψw(n)(|q0〉〈q0|)−
Ψw(n)a(n)(|q0〉〈q0|)‖ < ǫ. The latter in turn implies p′acc − pacc < ǫ and p′rej −
prej < ǫ. So there exists n such that for any u,v u(asnbsn)nv ∈ L if and
only if u(asnbsn)nasnv ∈ L. Hence (asnbsn)nϕ = (asnbsn)nasnϕ = (xkyk)n =
(xkyk)nxk. The latter implies (xkyk)k = (xkyk)kxk. This is a contradiction. ⊓⊔

The relation L(MM-BQFA) ( ER is demonstrated in Section 6 (Corollary 6.6).
L(MM-BQFA) shares a lot of properties with the language classes of other

”decide-and-halt” word acceptance models, like closure under complement and
inverse homomorphisms. In Section 9 it is noted that MM-BQFA does not rec-
ognize any of the languages corresponding to ”forbidden constructions” from
[5, Theorem 4.3]. Similarly as other ”decide-and-halt” models, L(MM-BQFA) is
not closed under union and intersection.

Theorem 5.4. The class L(MM-BQFA) is closed under complement, inverse
free monoid morphisms, and word quotient.

Proof. The proof goes along the same lines as in [10, Theorem 4.1], where the
same was proved for L(MM-QFA). Closure under complement follows from the
fact that we can exchange the accepting and rejecting states of the MM-BQFA.
Closure under inverse free monoid morphisms is proved in the same way as in
[10], it is implied by the deferred measurement principle [29, p.186]. Closure
under word quotient is implied by closure under inverse free monoid morphisms
and the presence of both end-markers. ⊓⊔

Non-closure under union and intersection is demonstrated in Section 7 (Corollary
7.3).

6 Linear Inequalities

In this section, we derive a system of linear inequalities that an R1 language
recognized by a MM-BQFA must satisfy. Let S be a MM-BQFA over alphabet
A. Let {v0,v1, ...,vR} = F(A). Assume v0 = ε. For any u ∈ A∗, let Ψ(u) =
Ψ#u. Recall τ is the natural morphism from A∗ to F(A) (see Section 2 and
subsection 3.3). First, we prove that there exist words u0,u1, ...,uR ∈ A∗, for
each i uiτ = vi, such that the automaton S has essentially the same scaled
density matrices for the words consisting of the same letters:

Proposition 6.1. For every ǫ > 0 there exists an everywhere defined injective
function θ from F(A) to A∗ such that for all v,v′ ∈ F(A)



(1) vθτ = v;

(2) v 6 v′ if and only if vθ 6 v′θ;

(3) if v ∼ω v′, then ‖Ψ(vθ) − Ψ(v′θ)‖ < ǫ.

Proof. Let ml (l = 1, 2, ...) be a sequence of positive integers such that for all
letters a ∈ A lim

l→∞
Ψ(aml) = Ψω

a (existence is implied by Theorem 4.5 and [19,

Theorem 201]).
Let µ be a function that assigns to any word in A∗ the same word (of the

same length) with letters sorted in alphabetical order. Let κi, i ∈ N, a morphism
from A∗ to A∗ such that for any a ∈ A aκi = ai.

Let ξ = ξl be an everywhere defined function from F(A) to A∗, such that
εξ = ε and for all v ∈ F(A), if |v| = 1 then vξ = vml and otherwise, if |v| > 2
then vξ = (vµκml

)l.
For any v in F(A), where v = a1...ak (ai are distinct letters of A), define a

finite sequence of prefixes, denoted v[i], where v[0] = ε and for all i, 1 6 i 6 k,
v[i] = a1...ai.

Let us define the function θ = θl by induction as follows. Let v[0]θ = εθ = ε
and for all i, 1 6 i 6 k, let v[i]θ = (v[i − 1]θ)(v[i]ξ).

So vθ = v[k]θ = v[1]ξ...v[k]ξ = aml

1 ((aml

1 aml

2 )µ)l...((aml

1 aml

2 . . . aml

k )µ)l. By
construction, (vθ)τ = a1a2...ak = v.

Consider v,v′ ∈ F(A). Since τ preserves order, vθ 6 v′θ implies v 6 v′.
Suppose v 6 v′. By construction, vθ 6 v′θ.

Suppose v ∼ω v′. If |v| = |v′| 6 1, the condition (3) of the proposition is
satisfied. Hence assume |v| = |v′| > 2. Theorem 4.7 implies that lim

l→∞
Ψ(vθ)

= lim
l→∞

Ψ(vξ) and lim
l→∞

Ψ(v′θ) = lim
l→∞

Ψ(v′ξ). Since v is a permutation of v′,

lim
l→∞

Ψ(vξ) = lim
l→∞

Ψ(v′ξ). Hence lim
l→∞

Ψ(vθ) = lim
l→∞

Ψ(v′θ). Take ǫ > 0. The last

equality implies that there exists l such that ‖Ψ(vθ) − Ψ(v′θ)‖ < ǫ. Since the
monoid F(A) is finite, there exists l which satisfies the last inequality for any
two words v and v′ in F(A) such that v ∼ω v′.

Proposition is proved. ⊓⊔
We are ready to derive the linear inequalities that must be satisfied by S, if it
recognizes an R1 language L over alphabet A.

Consider x ∈ A∗. Suppose xτ = v = a1a2...a|v|. By construction used in
the proof of Proposition 6.1, vθ = (v[1]ξ)(v[2]ξ)...(vξ). Now x ∼τ v ∼τ vθ.
Therefore x ∈ L if and only if v ∈ L, and if and only if vθ ∈ L.

Let us observe how S processes the input word vθ = (v[1]ξ)(v[2]ξ)...(vξ).
By the definition of MM-BQFA, any input word is enclosed by end-markers #
and $. Let r0 be the probability that S has accepted the input (and halted) after
reading the initial end-marker #. For 1 6 i 6 |v|, let rv[i] be the probability that
S is in a mixed state before reading the first letter of v[i]ξ and has accepted the
input (and halted) after reading v[i]ξ, including the possibility of halting while
reading it. Let gv be the probability that S is in a mixed state after reading vξ
and has accepted the input after reading the final end-marker $. It follows that
S accepts vθ with probability pvθ = r0 + rv[1] + rv[2] + ...+ rv + gv. Note that



the values rv[i] and gv depend on the chosen function θ, which itself depends on
the parameter l.

We aim to prove that for any R1 language L over alphabet A it is possible
to define a linear system of inequalities L such that the system is consistent if
and only if L can be recognized by MM-BQFA. First of all, it is necessary to
define the system itself.

The probabilities rv[i] can be regarded as symbolic variables (let’s call them
s-variables) in the formal expression p̂vθ = r̂0 + r̂v[1] + r̂v[2] + ...+ r̂v + ĝv.

Definition 6.2. Two s-variables r̂v[i] and r̂v′[j], 1 6 i 6 |v|, 1 6 j 6 |v′|, are
called equivalent, r̂v[i] ∼ r̂v′[j], if v[i − 1] ∼ω v′[j − 1] and v[i] ∼ω v′[j]. Two
s-variables ĝv and ĝv′ are called equivalent, ĝv ∼ ĝv′ , if v ∼ω v′.

The s-variable r̂0 is defined to be the only element of the equivalence class [r̂0].
The relation∼ is an equivalence relation in the two sets {r̂v[i] | v ∈ F(A) and 1 6

i 6 |v|} and {ĝv | v ∈ F(A)}.
If two s-variables r̂v[i] and r̂v′[j] are equivalent then i = j. Moreover, let’s

formulate the following

Proposition 6.3. For any ǫ > 0 there exists a function θ from Proposition 6.1
such that for any v,v′ ∈ F(A) and any prefixes v[i], v′[i]

(1) if r̂v[i] ∼ r̂v′[i] then |rv[i] − rv′[i]| < ǫ;

(2) if ĝv ∼ ĝv′ then |gv − gv′ | < ǫ.

Proof. Suppose v[i−1] ∼ω v′[i−1] and v[i] ∼ω v′[i]. In that case, v[i]ξ = v′[i]ξ.
Proposition 6.1 implies that for any ǫ′ ‖Ψ(v[i− 1]θ)−Ψ(v′[i− 1]θ)‖ < ǫ′. Hence
after reading v[i − 1]θ or v′[i − 1]θ the automaton S comes to essentially the
same scaled mixed state. Within a particular step, the probability of accepting
the input (and halting) in the future depends only on the current mixed state
and the remaining part of the input word. So reading afterwards the word v[i]ξ,
which is equal to v′[i]ξ, implies that for any ǫ |rv[i] − rv′[i]| < ǫ.

Suppose |v| = |v′| and v ∼ω v′. Again, after reading the both words vθ and
v′θ the automaton S is in essentially the same scaled mixed state. So reading
the final end-marker yields that for any ǫ |gv − gv′ | < ǫ. ⊓⊔
Recall that F(A) can be viewed as an automaton that recognizes an R1 language
L, provided Lτ is its set of final states. By Proposition 6.3, all s-variables in the
same equivalence class may be replaced by a single variable. Now define a linear
system of inequalities L as follows:

Definition 6.4. The construction of the linear system of inequalities L = L(L)
for a given R1 language L.

(1) Take the formal expressions p̂vθ = r̂0 + r̂v[1] + r̂v[2] + ... + r̂v + ĝv for all
v ∈ F(A);

(2) Obtain linear expressions L(v) from {p̂vθ | v ∈ F(A)} in the following way;
all s-variables in the same equivalence class [r̂] are replaced by a single
variable denoted L(r̂), while any two s-variables in different equivalence
classes are replaced by different variables;



(3) Introduce yet another variables p1 and p2. For any v ∈ F(A), if v ∈
Lτ , construct an inequality L(v) > p2, otherwise construct an inequality
L(v) 6 p1;

(4) Append the system by an inequality p1 < p2.

If a MM-BQFA S recognizes an R1 language L, then the linear system of in-
equalities L is consistent. Thus we have established the following result.

Theorem 6.5. Suppose L is an R1 language. If the linear system L is not
consistent, then L cannot be recognized by any MM-BQFA.

Therefore, if the linear system L is not consistent, then L cannot be recognized
by any MM-QFA, DH-PRA or EQFA as well.

Corollary 6.6. L(MM-BQFA) ( ER.

Proof. Consider an R1 language L = {ab,bac} over alphabet A = {a, b, c}.
Among others, the system L has the following inequalities:

L(ab) = x0 + xa + xab + yab > p2
L(bac) = x0 + xb + xba + xabc + yabc > p2
L(ba) = x0 + xb + xba + yab 6 p1
L(abc) = x0 + xa + xab + xabc + yabc 6 p1

p1 < p2

The above inequalities define a system that is not consistent. Hence L is not
consistent as well. So by Theorem 6.5 L cannot be recognized by any MM-
BQFA. Therefore Theorem 5.3 implies that L(MM-BQFA) ( ER. ⊓⊔
To prove the statement converse to Theorem 6.5, we need to indicate some of
the properties of the obtained system L. The converse statement itself will be
proved in Section 7 (Theorem 7.2).

Consider the inequalities in the system. Let yA be the unique variable L(ĝw),
such that wω = A. Except for the inequality p1 < p2, the left-hand side of any
inequality has the form L(v) = x0+xv[1]+xv[2]+ ...+xv+yv, where v ∈ F(A),
x0 = L(r̂0), xv[j] = L(r̂v[j]), 1 6 j 6 |v|, and yv = L(ĝv).

The only possible coefficients of variables in any linear inequality are −1, 0
and 1. Denote by Z = {x0, z1, ..., zs, y1, ..., yt, p1, p2} the set of all the variables
in the system L, where zi are variables of the form xv[j], and yi are variables of
the form yv. Denote by N the total number of variables.

Let M = |A|+2, which is the maximal number of variables (with nonzero co-
efficients) in any expression L(v). Each expression L(v) has exactly one variable
yi. If two expressions L(v) and L(v′) share the same variable yi, then v ∼ω v′,
so L(v) and L(v′) have the same number of variables. So it is possible to de-
note by n(yi) the number of variables in any corresponding expression L(v). Let
d(yi) = M − n(yi) + 1.

Proposition 6.7. The system L is consistent if and only if it has a solution
where all the variables are assigned nonnegative real values.



Proof. Let c0, ..., cN−1 be some real numbers. Let C be any real constant. Any
inequality in the system can be written in one of the three forms, namely,

x0 + xv[1] + xv[2] + ...+ xv + yv > p2, (1)

x0 + xv[1] + xv[2] + ...+ xv + yv 6 p1, (2)

p1 < p2. (3)

The inequalities above are satisfied if and only the following inequalities are
satisfied;

x0 + xv[1] + xv[2] + ...+ xv + yv + CM > p2 + CM, (4)

x0 + xv[1] + xv[2] + ...+ xv + yv + CM 6 p1 + CM, (5)

p1 + CM < p2 + CM. (6)

Note that

x0 + xv[1] + xv[2] + ...+ xv + yv + CM = (x0 + C) + (xv[1] + C) +

+(xv[2] + C) + ...+ (xv + C) + (yv + Cd(yv))

Therefore the system L has a solution

{x0 = c0,
z1 = c1, . . . , zs = cs,
y1 = cs+1, . . . , yt = cN−3,
p1 = cN−2, p2 = cN−1}

(7)

if and only if it has a solution

{x0 = c0 + C,
z1 = c1 + C, . . . , zs = cs + C,
y1 = cs+1 + Cd(y1), . . . , yt = cN−3 + Cd(yt),
p1 = cN−2 + CM, p2 = cN−1 + CM}.

(8)

Suppose the system L is consistent and has a solution (7). Let cmin =
min{0, c0, ..., cN−1}. Take C = −cmin. By construction, C is a nonnegative real
number, such that for all i, ci + C is also nonnegative. Now (8) is the solution
of the system L such that all the variables are assigned nonnegative values. ⊓⊔

Proposition 6.8. The system L is consistent if and only if it has a solution
where all the variables are assigned nonnegative real values and x0 = 0, yA = 0.

Proof. Suppose L is consistent. By Proposition 6.7, the system has a solution
(7), where for all i ci > 0. We first prove that there exists a solution where
x0 = 0.

If L 6= A∗, there exists v ∈ F(A) such that the inequality L(v) 6 p1 is part
of the system L. Since x0 is part of L(v), c0 6 cN−2 < cN−1. So the system has a
solution {x0 = 0, z1 = c1, . . . , zs = cs, y1 = cs+1, . . . , yt = cN−3, p1 = c′N−2, p2 =



c′N−1}, where c′N−2 = cN−2 − c0 and c′N−1 = cN−1 − c0. Otherwise, if L = A∗,
take the solution {x0 = 0, z1 = 0, . . . , zs = 0, y1 = 1, . . . , yt = 1, p1 = 0, p2 = 1}.

Next, we prove that there exists a solution where x0 = 0, yA = 0. The
left-hand side of any inequality that contains the variable yA is of the form
x0 + xv[1] + xv[2] + ... + xv + yA, where vω = A. Any inequality in the system
either contains the variable yA and a single variable xv, such that vω = A, or
contains none of them. Assume that yt is the variable yA and zs−|A|+1, ..., zs
are all the variables of the form xv, such that vω = A. Since the system has
a solution {x0 = 0, z1 = c1, . . . , zs−|A| = cs−|A|, zs−|A|+1 = cs−|A|+1, . . . , zs =
cs, y1 = cs+1, . . . , yt−1 = cN−4, yt = cN−3, p1 = c′N−2, p2 = c′N−1}, it also has a
solution where zs−|A|+1 = cs−|A|+1+ cN−3, . . . , zs = cs + cN−3, yt = 0 and other
variables keep their previous values. ⊓⊔

Proposition 6.9. The system L is consistent if and only if it has a solution
where all the variables are assigned real values from 0 to 1 and x0 = 0, yA = 0.

Proof. Suppose L is consistent. By Proposition 6.8, the system has a solution
(7), where for all i ci > 0 and x0 = 0, yA = 0. Assume that yt is the variable yA.
Let D = max{ci}. Since p1 < p2, D > 0. So the solution (7) may be divided by
D and the system L has a solution

{x0 = 0,
z1 = c1/D, . . . , zs = cs/D,
y1 = cs+1/D, . . . , yt−1 = cN−4/D, yA = 0
p1 = cN−2/D, p2 = cN−1/D}.

(9)

The solution (9) assigns to all the variables real values from 0 to 1. ⊓⊔

Proposition 6.10. The system L is consistent if and only if it has a solution
where x0 = 0, yA = 0, 0 6 p1, p2 6 1 and all the other variables z1, ..., zs, y1, ...,
yt−1 are assigned real values from 0 to 1/|A|.

Proof. Suppose L is consistent. By Proposition 6.9, the system has a solution (9),
where for all i 0 6 ci 6 1. For any i, let c′i = ci/D. Let c = max{c′1, ..., c′N−4}.
If c′N−1 < c|A| then the solution is divided by c|A|. Otherwise, if c′N−1 > c|A|
then c 6 1/|A| and no scaling is necessary. ⊓⊔

7 Construction of DH-PRA for R1 languages

In this section, a method will be provided that allows to construct a DH-PRA
for any R1 language L that generates a consistent system of linear inequalities.
Since MM-BQFA is a generalization of DH-PRA, this implies the construction of
MM-BQFA as well. Recall σ is a natural morphism from F(A) to P(A), defined
in subsection 3.3.

Preparation of a linear programming problem. Consider an R1 language L
over alphabet A. Construct the respective system of linear inequalities L. Obtain
a system L1 by supplementing L with additional inequalities that enforce the



constraints expressed in Proposition 6.10, according to which L is consistent if
and only if L1 is consistent. Obtain a system L′

1 by replacing in L1 the inequality
p1 < p2 by p1 6 p2. The linear programming problem, denoted P, is to maximize
p2 − p1 according to the constraints expressed by L′

1.
Since L′

1 is homogenous, it always has a solution where p1 = p2. Since the
solution polytope of L′

1 is bounded, P always has an optimal solution. Obviously,
if the optimal solution yields p1 = p2, then L1 is not consistent and therefore,
by Theorem 6.5, a DH-PRA that recognizes L does not exist. Otherwise, if the
optimal solution yields p1 < p2, then L1 is consistent.

Automata derived from the free semilattice P(A). Assume L1 is consistent,
so we are able to obtain a solution of P where p1 < p2. Given any expression
Z of variables from L1, let P(Z) - the value which is assigned to Z by solving
P. First, we use the obtained solution to construct probabilistic automata Ai,
1 6 i 6 |A|. Those automata are not probabilistic reversible. Similarly as in the
”decide-and-halt” model, the constructed automata have accepting, rejecting
and non-halting states. Any input word is appended by the end-marker $. The
initial end-marker # is not used for those automata themselves. Any automaton
Ai is a tuple (Qi, A ∪ {$}, si, δi), where Qi is a set of states, si - an initial state
and δi - a transition function Q×A×Q −→ [0, 1], so δi(q, a, q

′) is a probability
of transit from q to q′ on reading input letter a. Ai is constructed as follows.

(1) Take the deterministic automaton (P(A), A, ∅, · ), remove all the states at
level greater or equal to i. The remaining states are defined to be non-
halting. The state ∅ is initial, it is the only state of Ai at level 0. For any
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Fig. 3. An automaton A over alphabet {a, b, c}, the rejecting states are not shown.



a in A and state s at levels {0, . . . , i− 2}, δi(s, a, s· a) = 1. For any state s

at level i− 1 and any a in s, δi(s, a, s) = 1.

(2) For any non-halting state s at levels {0, . . . , i − 2}, add a rejecting state
(s$)rej. Let δi(s, $, (s$)rej) = 1.

(3) For any state s at level i− 1, add |A|− |s|+1 accepting states (sa)acc, a ∈
(A\s)∪{$}. Also add |A|−|s|+1 rejecting states (sa)rej , a ∈ (A\s)∪{$}.

(4) If a ∈ A \ s, any element s′a in (sσ−1)a defines s-variables in the same
equivalence class [r̂s′a]. Let xs′a = L(r̂s′a) and cs′a = B(xs′a). Any element
s′ in sσ−1 defines s-variables in the same equivalence class [ĝs′ ]. Let ys′ =
L(ĝs′) and ds′ = B(ys′).

(5) Define missing transitions for the states at level i − 1. For any state s

at level i − 1 and any a in A \ s, let ts′a = δi(s, a, (sa)acc) = cs′a|A|
and δi(s, a, (sa)rej) = 1 − ts′a. Let vs′ = δi(s, $, (s$)acc) = ds′ |A| and
δi(s, $, (s$)rej) = 1− vs′ .

(6) Formally, we would need the transitions outgoing the halting states, those
are left undefined.

Consider an automaton A (Figure 3), which with the same probability 1/|A|
executes any of the automataA1, ...,A|A| (i.e., it uses the initial end-marker # to
transit to initial states of any of those automata). By construction of A1, ...,A|A|,
the automaton A accepts any word u ∈ A∗ with probability P(L(uτ)). Since
for any word u ∈ L, P(L(uτ)) > P(p2), and for any word w /∈ L, P(L(wτ)) 6
P(p1), the automaton A recognizes the language L.

Construction of a DH-PRA. In order to construct a DH-PRA recognizing L,
it remains to demonstrate that any of the automata A1, ...,A|A| may be simu-
lated by some DH probabilistic reversible automata, that is, for any automaton
Ai, it is possible to construct a sequence of DH-PRA Si,n, where n > 1, such
that pw,Si,n

converges uniformly to pw,Ai
on A∗ as n → ∞.

An automaton Ai = (Qi, A ∪ {$}, si, δi) is used to construct a DH-PRA
Si,n = (Qi,n, A ∪ {$}, si, δi,n) as described next. Initially Qi,n is empty. Do the
following.

(1) For any non-halting state s at level j, 0 6 j 6 i− 1, supplement Si,n with
non-halting states denoted sk, where 1 6 k 6 nj .

(2) For any non-halting state s at level j, 0 6 j < i− 1, supplement Si,n with
rejecting states (s$)rej,k, where 1 6 k 6 nj .

(3) For any non-halting state s at level i − 1, accepting state (sa)acc and
rejecting state (sa)rej , where a ∈ (A \ s) ∪ {$}, supplement Si,n with
accepting states (sa)acc,k and rejecting states (sa)rej,k, where 1 6 k 6

ni−1.

It remains to define the transitions. For any non-halting state s of Ai at level
j, 1 6 j 6 i − 1, the states in {sk} are grouped into nj−1 disjoint subsets
with n states in each, so that any state in {sk} may be denoted as sl,m, where
1 6 l 6 nj−1 and 1 6 m 6 n.

For any letter a in A, consider all pairs of non-halting states s, t of Ai such
that s 6= t and δi(s, a, t) = 1. For any fixed k and any l and m, 1 6 l,m 6 n,



define δi,n(sk, a, sk) = δi,n(sk, a, tk,m) = δi,n(tk,m, a, sk) = δi,n(tk,l, a, tk,m) =
1/(n+ 1).

For any non-halting state s ofAi at level j, 0 6 j < i−1, δi,n(sk, $, (s$)rej,k) =
1, δi,n((s$)rej,k, $, sk) = 1. For the same (s$)rej,k and any other letter b in A∪{$},
define δi,n((s$)rej,k, b, (s$)rej,k) = 1.

For any non-halting state s of Ai at level i − 1 and a ∈ (A \ s) ∪ {$}, the
transitions induced by a among sk, (sa)acc,k, (sa)rej,k are defined by the matrix


0 0 1
r1 r2 0
r2 r1 0


, where r1 = δi(s, a, (sa)acc), r2 = δi(s, a, (sa)rej). The first, second

and third rows and columns are indexed by sk, (sa)acc,k, (sa)rej,k, respectively.
Note that r1 + r2 = 1. For the same (sa)acc,k, (sa)rej,k and any other letter b in
A ∪ {$}, define δi,n((sa)acc,k, b, (sa)acc,k) = δi,n((sa)rej,k, b, (sa)rej,k) = 1.

We have defined all the non-zero transitions for Si,n. By construction, the
transition matrices induced by any letter a in A ∪ {$} are doubly stochastic.

Lemma 7.1. For any i, 1 6 i 6 |A|, pw,Si,n
converges uniformly to pw,Ai

on
A∗ as n → ∞.

Proof. Let w ∈ A∗ and p = pw,Ai
. Assume w = uy, where |uω| = i − 1 and

|y| > 0. After reading u, Si,n with the same probability 1/(n+ 1)i−1 is in one
of the (n + 1)i−1 non-halting states in {xk | 1 6 k 6 n|x|, x ⊆ uω}. Among
them, there are

(
i−1
l

)
nl states corresponding to the states of Ai at level l. So

Si,n has ni−1 such states at level i − 1. Therefore pw,Si,n
> ( n

n+1 )
i−1

p. Also,

w is rejected with probability qw,Si,n
> ( n

n+1 )
i−1

(1 − p). Hence ( n
n+1 )

i−1
p 6

pw,Si,n
6 1− ( n

n+1 )
i−1

(1 − p). If |wω| < i− 1, pw,Si,n
= p = 0.

Since for any j, 0 6 j 6 |A|, lim
n→∞

( n
n+1 )

j = 1, pw,Si,n
converges uniformly to

pw,Ai
. ⊓⊔

Now it is possible to construct a DH-PRA S = (Q,A ∪ {#, $}, s, δ), which with
the same probability 1/|A| executes the automata S1,n, . . . ,S|A|,n. The set of
states Q is a disjoint union of Q1, ..., Q|A|. Take the initial state si of any Si,n as
the initial state s. For any a ∈ A∪{$} and q1, q2 ∈ Qi, δ(q1, a, q2) = δi(q1, a, q2).
For any initial states si and sj of Si,n and Sj,n, δ(si,#, sj) = 1/|A|. For any
other state q, δ(q,#, q) = 1. So the transition matrices of S induced by any
letter are doubly stochastic. By Lemma 7.1, S recognizes L if n is sufficiently
large.

Hence we have established the main result of this section:

Theorem 7.2. Suppose L is an R1 language. If the linear system L is consis-
tent, then L can be recognized by a DH-PRA.

Therefore, if the linear system L is consistent, then L can be recognized by a MM-
BQFA as well. Moreover, since all of the transition matrices of the constructed
DH-PRA are also unitary stochastic, by [15, Theorem 5.2] L can be recognized
by an EQFA.



Corollary 7.3. The class L(MM-BQFA) is not closed under union and inter-
section.

Proof. Consider the R1 language L = {ab,bac} over alphabet A = {a, b, c}. By
Corollary 6.6, L can’t be recognized by MM-BQFA.

On the other hand, consider the languages L1 = {ab} and L2 = {bac}.
Systems L(L1) and L(L2) have the same variables as L(L). The system L(L1) has
a solution where xa = 1/2, yab = 1/2, p1 = 1/2, p2 = 1, and all the other variables
equal to 0. The system L(L2) has a solution where xb = 1/2, xabc = 1/2, p1 =
1/2, p2 = 1, and all the other variables equal to 0. Therefore by Theorem 7.2
the languages L1, L2 are recognized by MM-BQFA. Hence L(MM-BQFA) is not
closed under union. The non-closure under intersection is now implied by closure
under complement (Theorem 5.4). ⊓⊔

8 Construction of MM-QFA for R1 languages

The construction of MM-QFA forR1 languages has some peculiarities which have
to be addressed separately. Specifically, contrary to DH-PRA, EQFA and MM-
BQFA, there exist semilattice languages that MM-QFA do not recognize with
probability 1− ǫ [4, Theorem 5] and therefore they can’t simulate with the same
accepting probabilities the automata A1, ...,A|A| from Section 7. Nevertheless,
MM-QFA still recognize any semilattice language and so a modified construction
is still possible.

For any m ∈ N, let α(m) be the least common multiple of {1, 2, ...,m}. Also
define α(0) = 0. Let On - n × n zero matrix. Let Mn = (mrs) = ( 1

n
) and

Un = (urs) = 1√
n
(e

2πirs
n ), where 0 6 r, s 6 n − 1. Mn is a doubly stochastic

matrix and Un is a unitary matrix that represents the discrete Fourier transform.
Obtain an n × (n − 1) matrix Vn from Un by removing in Un its first column.
Let V ∗

n - the conjugate transpose of Vn. The following lemma will be useful in
the construction of MM-QFA.

Lemma 8.1. The (2n− 1)× (2n− 1) matrix Hn =

(
Mn Vn

V ∗
n On−1

)
is unitary.

Suppose L is an R1 language over alphabet A such that L(L) is consistent. As
prescribed in Section 7, we construct the automata A1, ...,A|A|, which are the
components of the probabilistic automaton A recognizing L.

Construction of a MM-QFA. For any automaton Ai, we construct a sequence
of MM-QFA Ui,n, where n > 1, such that nα(|A|−1)pw,Ui,n

converges uniformly
to pw,Ai

on A∗ as n → ∞.
An automaton Ai = (Qi, A ∪ {$}, si, δi) is used to construct a MM-QFA

Ui,n = (Qi,n, A ∪ {$}, si, δi,n) as described next. If i > 1, let c = α(|A|−1)
i−1 ,

otherwise let c = 0. Initially Qi,n is empty. Do the following.

(1) For any non-halting state s at level j, 0 6 j 6 i− 1, supplement Ui,n with
non-halting states sk, where 1 6 k 6 ncj. If |s| > 0, new rejecting states
s′k, 1 6 k 6 ncj, are added to Ui,n as well.



(2) For any non-halting state s at level j, 0 6 j < i− 1, supplement Ui,n with
rejecting states (s$)rej,k, where 1 6 k 6 ncj .

(3) For any non-halting state s at level i − 1, accepting state (sa)acc and
rejecting state (sa)rej , where a ∈ (A \ s) ∪ {$}, supplement Ui,n with
accepting states (sa)acc,k and rejecting states (sa)rej,k, where 1 6 k 6

nc(i−1).

It remains to define the transitions. For any non-halting state s of Ai at level
j, 1 6 j 6 i − 1, the states in {sk} are grouped into nc(j−1) disjoint subsets
with nc states in each, so that any state in {sk} may be denoted as sl,m, where
1 6 l 6 nc(j−1) and 1 6 m 6 nc. The states in {s′k} are grouped in the same
way, so that any state in {s′k} may be denoted as s′l,m.

For any letter a in A, consider all pairs of non-halting states s, t of Ai such
that s 6= t and δi(s, a, t) = 1. For any fixed k and any m, 1 6 m 6 nc, the
transitions induced by a among the states tk,m, t′k,m and the state sk are defined
by the matrix Hnc+1; the first row and column is indexed by sk, the next nc

rows and columns by tk,m, and the last nc rows and columns by t′k,m.

For any non-halting state s ofAi at level j, 0 6 j < i−1, δi,n(sk, $, (s$)rej,k) =
1, δi,n((s$)rej,k, $, sk) = 1. For the same (s$)rej,k and any other letter b in A∪{$},
define δi,n((s$)rej,k, b, (s$)rej,k) = 1.

Consider any non-halting state s of Ai at level i−1 and a ∈ (A\s)∪{$}. Let
r1 = δi(s, a, (sa)acc), r2 = δi(s, a, (sa)rej). If i = 1, let u1 = r1(

1
n
)α(|A|−1) and

u2 = 1−u1. Otherwise, if i > 1, let u1 = r1, u2 = r2. Note that u1+u2 = 1. The
transitions induced by a among sk, (sa)acc,k, (sa)rej,k are defined by the matrix


0 0 1√
u1

√
u2 0√

u2 −√
u1 0


. The first, second and third rows and columns are indexed by

sk, (sa)acc,k, (sa)rej,k, respectively. For the same (sa)acc,k, (sa)rej,k and any other
letter b in A∪{$}, define δi,n((sa)acc,k, b, (sa)acc,k) = δi,n((sa)rej,k, b, (sa)rej,k) =
1.

We have defined all the non-zero transitions for Ui,n. By construction, the
transition matrices induced by any letter a in A ∪ {$} are unitary.

Lemma 8.2. For any i, 1 6 i 6 |A|, nα(|A|−1)pw,Ui,n
converges uniformly to

pw,Ai
on A∗ as n → ∞.

Proof. Let w ∈ A∗ and p = pw,Ai
. If i = 1, pw,U1,n

= ( 1
n
)α(|A|−1)p.

Consider the case i > 1. Assume w = uy, where |uω| = i − 1 and |y| > 0.
After reading u, Ui,n has rejected the input with probability 1−1/(nc+1)i−1 and
with the same amplitude 1/(nc + 1)i−1 is in one of the (nc + 1)i−1 non-halting
states in {xk | 1 6 k 6 nc|x|, x ⊆ uω}. Among them, there are

(
i−1
l

)
ncl states

corresponding to the states of Ai at level l. So Ui,n has nc(i−1) such states at

level i−1. Therefore pw,Ui,n
> ( nc

(nc+1)2 )
i−1

p. Also, w is rejected with probability

qw,Ui,n
> ( nc

(nc+1)2 )
i−1

(1 − p) + 1 − ( 1
nc+1 )

i−1. Hence ( nc

(nc+1)2 )
i−1

p 6 pw,Ui,n
6

( nc

(nc+1)2 )
i−1

p+( 1
nc+1 )

i−1−( nc

(nc+1)2 )
i−1

. Note that nα(|A|−1) = nc(i−1), therefore



( nc

nc+1 )
2(i−1)

p 6 nα(|A|−1)pw,Ui,n
6 ( nc

nc+1 )
2(i−1)

p + ( nc

nc+1 )
i−1 − ( nc

nc+1 )
2(i−1)

. If
|wω| < i− 1, pw,Ui,n

= p = 0.

Since lim
n→∞

( nc

nc+1 )
i−1 = 1, nα(|A|−1)pw,Ui,n

converges uniformly to pw,Ai
. ⊓⊔

Construct a MM-QFA Un = (Q,A∪{#, $}, s, δ), which with the same amplitude
1/

√
|A| executes the automata U1,n, . . . ,U|A|,n. The set of states Q is a disjoint

union of Q1, ..., Q|A|. Take the initial state si of any Ui,n as the initial state s.
For any a ∈ A ∪ {$} and q1, q2 ∈ Qi, δ(q1, a, q2) = δi(q1, a, q2). The transitions
induced by initial end-marker # among the initial states si of Ui,n, 1 6 i 6

|A|, are defined by the discrete Fourier transform U|A|. For any other state q,
δ(q,#, q) = 1. So the transition matrices of Un induced by any letter are unitary.

We are ready to state the main result of the section.

Theorem 8.3. Suppose L is an R1 language. If the linear system L is consis-
tent, then L can be recognized by a MM-QFA.

Proof. If the linear system L is consistent, it is possible to construct the corre-
sponding automaton Un from above. By Lemma 8.2, nα(|A|−1)pw,Un

converges
uniformly to pw,A on A∗ as n → ∞.

Take z = 1
3 (P(p2) − P(p1)). If n is sufficiently large, for any word u ∈ L

nα(|A|−1)pu,Un
> P(p2)−z and for any word w /∈ L nα(|A|−1)pw,Un

6 P(p1)+z.
Hence for all u ∈ L pu,Un

> n−α(|A|−1)(P(p2) − z) and for all w /∈ L pw,Un
6

n−α(|A|−1)(P(p1)+ z). So for any u ∈ L and w /∈ L pu,Un
− pw,Un

> n−α(|A|−1)z
Therefore for a sufficiently large fixed n, Un recognizes L with bounded error.

⊓⊔
In summary, we have obtained the following two results:

Theorem 8.4. Suppose L is an R1 language. L can be recognized by MM-QFA
if and only if the linear system L(L) is consistent.

Proof. By Theorems 6.5 and 8.3. ⊓⊔
Theorem 8.5. MM-QFA, DH-PRA, EQFA and MM-BQFA recognize exactly
the same R1 languages.

Proof. By Theorems 6.5, 7.2 and 8.3. ⊓⊔

9 ”Forbidden Constructions”

In [5, Theorem 4.3], Ķikusts has proposed ”forbidden constructions” for MM-
QFA; any regular language whose minimal deterministic finite automaton con-
tains any of these constructions cannot be recognized by MM-QFA. It is actually
implied by Theorem 4.7 that the same is true for MM-BQFA and other ”decide-
and-halt” models from Table 1. Also, by Theorem 5.3 any language that is
recognized by a MM-BQFA is contained in ER. Therefore it is legitimate to ask
whether all the ER languages that do not contain any of the ”forbidden con-
structions” can be recognized by MM-BQFA. In this section, we give a negative



answer to this question; we provide an example of an R1 language that does not
contain any of the ”forbidden constructions” and still cannot be recognized by
MM-BQFA (and by other ”decide-and-halt” models from Table 1).

First, we need a lemma.

Lemma 9.1. An R1 language L has a ”forbidden construction” with n+1 levels
if and only if there exist m,n and words wi, xi,k, 1 6 i 6 2m, 1 6 k 6 n, such
that

(1) w1, ...,wm ∈ L;

(2) wm+1, ...,w2m /∈ L;

(3) for any i, wi = xi,1...xi,n;

(4) for any i, k xi,k = xi,kτ ;

(5) for any i, j, k, if 1 6 k < n then xi,k ∼ω xj,k;

(6) for any i wi = wiτ ;

(7) for any k the tuple (x1,k, ...,xm,k) is a permutation of (xm+1,k, ...,x2m,k).

Proof. Assume an R1 language L has a ”forbidden construction” of n+1 levels.
Let lk - the number of different labels (words) for transitions between levels k
and k + 1. Let z1,k, ..., zlk,k - the words labeling the transitions from the states
at level k to the states at level k + 1. If k < n there exist transitions labeled
z′1,k, ..., z

′
lk,k

between the states at level k to the states at level k + 1 such that
z′1,k ∼ω ... ∼ω z′lk,k and for all i z′i,kτ = z′i,k. If k = n there exist transitions
labeled z′1,n, ..., z

′
ln,n

between the states at level n to the states at level n+1 such
that for all i z′i,nτ = z′i,n. The states at level n+1 are a disjoint union of the sets
D1,n, ..., Dln,n. Therefore the last level has m accepting and m rejecting states,
where m > 0. Hence there are m words w′

i in L, 1 6 i 6 m, and m words w′
j not

in L, m+1 6 j 6 2m. For any i, 1 6 i 6 2m, w′
i = x′

i,1...x
′
i,n, where x

′
i,k is equal

to some label z′s,k, where 1 6 s 6 lk. So the wordsw
′
i satisfy the conditions (1-5).

Consider the set Ds,k. Since it has the same number of accepting and rejecting
states, z′s,k occurs the same number of times in the tuples (x′

1,k, ...,x
′
m,k) and

(x′
m+1,k, ...,x

′
2m,k). This implies the condition (7). For all i, let wi = w′

iτ . Since
for all i, j and for all k less than n x′

i,k ∼ω x′
j,k, the application of τ to the words

w′
i will delete for any k the same letters in x′

1,k, ...,x
′
2m,k, thus producing words

x1,k, ...,x2m,k. So for any i wi = xi,1...xi,n. The words w1, ...,w2m satisfy all
the conditions (1-7).

Now suppose the language L satisfies the conditions (1-7). It is possible to
construct a following ”forbidden construction”. Level 1 consists of a state q1 and
the words x1,1, ...,x2m,1. Level 2 consists of states q1,2, ..., q2m,2, such that for any
i, j q1xi,1 = qi,2, qi,2xj,1 = qi,2. Level 2 also has the words x1,2, ...,x2m,2. Level k,
3 6 k 6 n, consists of states q1,k, ..., q2m,k, such that for any i, j qi,k−1xi,k−1 =
qi,k, qi,kxj,k−1 = qi,k. Level k also has the words x1,k, ...,x2m,k. Level n + 1
consists of states q1,n+1, ..., q2m,n+1, such that for any i qi,nxi,n = qi,n+1. (Within
a ”forbidden construction”, two states may represent the same state in a minimal
deterministic automaton, so it is legible to have the same label in two transitions
outgoing a single state.) The states q1,n+1, ..., qm,n+1 are accepting and the states
qm+1,n+1, ..., q2m,n+1 are rejecting. ⊓⊔



Theorem 9.2. There exists an ER language that does not contain any of the
”forbidden constructions” and still cannot be recognized by MM-BQFA.

Proof. Consider an R1 language L = {aedbc, beca, beda, bedac, eacb,
eacbd, eadbc, ebca} over alphabet A = {a, b, c, d, e}. Among others, the sys-
tem L has the following inequalities:

L(aedbc) = x0 + xa + xae + xaed + xadeb + xabdec + yabcde > p2
L(beda) = x0 + xb + xbe + xbed + xbdea + yabde > p2
L(eacbd) = x0 + xe + xea + xaec + xaceb + xabced + yabcde > p2
L(ebca) = x0 + xe + xeb + xbec + xbcea + yabce > p2
L(aecb) = x0 + xa + xae + xaec + xaceb + yabce 6 p1
L(becad) = x0 + xb + xbe + xbec + xbcea + xabced + yabcde 6 p1
L(eadb) = x0 + xe + xea + xaed + xadeb + yabde 6 p1
L(ebdac) = x0 + xe + xeb + xbed + xbdea + xabdec + yabcde 6 p1

p1 < p2

Let a1 = x0 + xa + xae, b1 = xaed + xadeb, c1 = xabdec + yabcde,
a2 = x0 + xb + xbe, b2 = xbed + xbdea, c2 = yabde,
a3 = x0 + xe + xea, b3 = xaec + xaceb, c3 = xabced + yabcde,
a4 = x0 + xe + xeb, b4 = xbec + xbcea, c4 = yabce.

We obtain inequalities a1 + b1 + c1 > p2, a1 + b3 + c4 6 p1, p1 < p2,
a2 + b2 + c2 > p2, a2 + b4 + c3 6 p1,
a3 + b3 + c3 > p2, a3 + b1 + c2 6 p1,
a4 + b4 + c4 > p2, a4 + b2 + c1 6 p1,

which define a system that is not consistent. Hence L is not consistent as well.
So by Theorem 6.5 L cannot be recognized by MM-BQFA.

Let us check if L contains any of the ”forbidden constructions” from [5,
Theorem 4.3]. Since L is R-trivial idempotent and |A| = 5, if L contains some
”forbidden construction”, by Lemma 9.1, it also must contain a construction with
number of levels not larger than 6. Therefore it remains to check the conditions
of Lemma 9.1 against constructions with number of levels equal to 3, 4, 5 and
6. In case of 3 levels, it is sufficient to verify that any subset of {aedbc, beca,
beda, bedac, eacb, eacbd, eadbc, ebca} with at least two elements does not
form the wordsw1, ...,wm satisfying all the conditions of Lemma 9.1. Actually, it
is sufficient to check only the subsets of {aedbc, eacb, eacbd, eadbc}, {beca,
beda, bedac, ebca}, {aedbc, beda, bedac, eadbc} and {beca, eacb, eacbd,
ebca}. None of these subsets satisfy the conditions of the lemma. The cases with
4, 5 and 6 levels are checked in the same way. So L does not contain any of the
”forbidden constructions”. ⊓⊔
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