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Abstract. We study the streaming complexity of the membership problem of 1-turn-Dyck2 and Dyck2
when there are a few errors in the input string.

1-turn-Dyck2 with errors: We prove that there exists a randomized one-pass algorithm that given x
checks whether there exists a string x′ ∈ 1-turn-Dyck2 such that x is obtained by flipping at most k
locations of x′ using:
– O(k log n) space, O(k log n) randomness, and poly(k log n) time per item and with error at most

1/nc.
– O(k1+ǫ + log n) space for every 0 ≤ ǫ ≤ 1, O(log n) randomness, O((logO(1) n + kO(1))) time per

item, with error at most 1/8.
Here, we also prove that any randomized one-pass algorithm that makes error at most k/n requires at
least Ω(k log(n/k)) space to accept strings which are exactly k-away from strings in 1-turn-Dyck2 and
to reject strings which are exactly k + 2-away from strings in 1-turn-Dyck2. Since 1-turn-Dyck2 and
the Hamming Distance problem are closely related we also obtain new upper and lower bounds for
this problem.

Dyck2 with errors: We prove that there exists a randomized one-pass algorithm that given x checks
whether there exists a string x′ ∈ Dyck2 such that x is obtained from x′ by changing (in some restricted
manner) at most k positions using:

– O(k log n+
√
n log n) space, O(k log n) randomness, poly(k log n) time per element and with error

at most 1/nc.
– O(k1+ǫ +

√
n log n) space for every 0 ≤ ǫ ≤ 1, O(log n) randomness, O((logO(1) n + kO(1))) time

per element, with error at most 1/8.

1 Introduction

The data streaming model was introduced in the seminal work of Alon et al. [3]. This model naturally arises
in situations where the input data is massive and rereading the input bits is expensive. The main parameters
that play a role in designing algorithms in such situations are: the space used by the algorithm, and the
number of passes made over the input. An algorithm is said to be an efficient data streaming algorithm, if
the space used by the algorithm is substantially lesser than the length of the input (sublinear in the length
of the input) and the number of passes is independent of the length of the input. Many variants of this basic
model have been studied. (See for example [15] for a survey.)

The membership testing for well-paranthesises strings has been considered in the past. We denote the
set of words with balanced parentheses of l different types by Dyckl. It is known that there is a O(log n)
space deterministic algorithm for testing membership in Dyckl. (In fact the problem is known to be in TC0

[6].) The problem has been considered from property testing perspective (see for example [2], [17]). Recently,
the problem was considered in the streaming model by Magniez et al. [14]. It was proved that there is
a randomized one-pass streaming algorithm that takes space O(

√
n logn) and tests membership in Dyckl.

They also gave an efficient O(log2 n) space algorithm which makes bidirectional pass (one forward and one
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backward pass) on the input. They also proved a lower bound of Ω(
√
n) for any randomized streaming

algorithm that makes a single unidirectional (only forward) pass. Chakrabarti et al. [8] and Jain et al. [12]
considered the lower bound problem for unidirectional multi-pass randomized algorithms. In [8] it was proved
that any T -pass (all passes made in the same direction) randomized algorithm requires Ω(

√
n/T log logn)

space. Whereas [12] proved Ω(
√
n/T ) space lower bound for the same. In [5] membership testing for other

classes of languages was considered. In [4] it was proved that any randomized T pass algorithm (passes made
in any direction) for testing membership in a deterministic context-free language requires Ω(n/T ) space.

We consider a slightly general version of the membership testing problem for Dyckl. Let Σl denote a
set of l pairs of matching parentheses. We say that an opening parenthesis is corrupted if it is replaced by
another opening parenthesis. Similarly, a closing parenthesis is corrupted if it is replaced by another closing
parenthesis. For a language L ∈ Σ∗

l , let ∆
≤k(L) be defined as the set of words over Σ∗

l obtained by corrupting
at most k indices of any word in L. In this paper, we consider the membership problem for ∆≤k(Dyckl) and
∆≤k(1-turn-Dyckl), where

1-turn-Dyck2 = {wwR | w ∈ {(, [}n n ≥ 1}
Here, w is the string obtained from w by replacing an opening parenthesis by its corresponding closing
parenthesis and wR is the reverse of w.

Accepting strings with at most k errors is a well-studied problem in many models of computation. In the
streaming model, the problem has been studied in the past (see for example Cao et al. [7]). But we believe
that the problem needs further investigation; this being the primary goal of this paper.

We observe that the membership testing problem for ∆≤k(Dyckl) (∆≤k(1-turn-Dyckl)) reduces to the
membership testing problem of ∆≤k(Dyck2) (∆

≤k(1-turn-Dyck2), respectively). We give a simple fingerprint-
ing algorithm for ∆≤k(1-turn-Dyck2) that uses O(k logn) bits of space and randomness. The space require-
ments of this algorithm are nearly optimal (because of a communication complexity lower bound of [11]) but
the randomness requirements are not. We consider the question of derandomizing the above. The question
of derandomizing streaming algorithms has been considered in the past (see for example [10],[16],[18],[20]).
We show that the algorithm can be modified to work with just O(log n) bits of randomness, incurring a
small penalty in the amount of space used. We then consider similar questions for the more general problem
∆≤k(Dyck2). The following table summarizes our algorithmic results:

One-pass
Problem Algorithm Space Randomness Error Time (per element)

1 O(k logn) O(k logn) inverse poly poly(k logn) 4

1-turn-Dyck2 2 for all 0 < ǫ < 1:

O(k1+ǫ + logn) O(log n) 1/8 O((log n)O(1) + kO(1))
Dyck2 3 O(k logn+

√
n logn) O(k logn) inverse poly poly(k logn) 4

4 for all 0 < ǫ < 1:

O(k1+ǫ +
√
n logn) O(log n) 1/8 O((log n)O(1) + kO(1))

In all the algorithms in the table above, we assume that the length of the input stream is known.
Using Algorithm 1, we can deduce the number of errors as well as their locations. Using a combination of

the algorithm for membership testing of 1-turn-Dyck2 due to [14] (which we refer to as MMN algorithm) and
Algorithm 1, it is easy to get a membership testing algorithm for ∆≤k(Dyck2). However, such an algorithm
uses O(k

√
n logn) space. In order to achieve the claimed bound, we modify their algorithm for testing

membership in Dyck2 and use that in conjunction with Algorithm 1. In our algorithm, we do not need to
store the partial evaluations of polynomials on the stack.

Algorithms 2 and 4 are inspired by the communication complexity protocols of Yao [22] and Huang
et al. [11]. A mere combination of their ideas, however, is not enough to get the required bounds. The
crucial observation here is that Yao’s protocol can be derandomized by using a combination of small-bias

4 In the case of ∆≤k(1-turn-Dyck
l
), this is the exact time per item. However, for ∆≤k(Dyck

l
) it is the time per item

on average. In the latter case, the algorithm first reads a block and then uses O(poly(k log n)) time per element of
the block. Therefore, the time per block is O(poly(k log n)

√

n/ log n). Both algorithms use an extra post-processing

time of nk+O(1).
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distributions and distributions that fool DNF formulae. As this requires very few random bits, we get the
desired derandomization. These algorithms are also better as compared to Algorithm 1 and 3 in terms of
their time complexity. For Algorithm 2, we first prove that it suffices to give an efficient algorithm for Hamn,k,
where Hamn,k(x, y) for x, y ∈ {0, 1}n is 1 if and only if the Hamming distance between x and y is at most k.

Finally, we consider the question of optimality. We prove that any algorithm that makes k/n error requires
Ω(k log(n/k)) space to test membership in ∆≤k(1-turn-Dyck2) by proving a lower bound on Hamn,k. The
two problems are related as follow: Let w ∈ Σ2n and let w = uv where u ∈ {(, [}n and v ∈ {), ]}n. If ( and )
are both mapped to 0 and [ and ] are both mapped to 1 to obtain x, y from u, v then it is easy to see that
uv ∈ ∆≤k(1-turn-Dyck2) if and only if Hamn,k(x, y) = 1.

The problem Hamn,k was considered in [22], [11], in simultaneous message model. In [11], a lower bound
(in fact, a quantum lower bound) of Ω(k) was proved for the problem. Their lower bound holds even for
constant error protocols. To best of our knowledge no better lower bound is known for the problem. We
improve on their lower bound by a log(n/k) factor under the assumption that the communication protocol
is allowed to make small error. Our lower bound can be stated as follows:

Theorem 1. Given two strings x, y ∈ {0, 1}n such that either the Hamming distance between x, y is exactly
k or exactly k+2, any randomized one-pass algorithm that makes error k/n requires space Ω(k log(n/k)) to
decide which one of the two cases is true for the given x, y pair.

For the lower bound, we use the result of Jayram et al. [19]. Intuitively, the hardest case seems to be
to distinguish between exactly k and exactly k + 2 errors. The main advantage of our lower bound proof is
that it formalizes this intuition. Moreover, as our algorithm in Section 3 shows, this bound is tight up to a
constant factor for n ≥ k2 (indeed, for n ≥ k1+ǫ for any ǫ > 0). This bound is not tight in all situations
though, for example when n≫ k but the error is constant. Also, it does not apply to multi-pass algorithms.
However, this is better than the earlier bounds [11] by a factor of log(n/k) for small error.

The rest of the paper is organized as follows: in the next section we give some basic definitions which will be
used later in the paper. In Section 3 we give the two randomized one-pass algorithms for testing membership
in ∆≤k(1-turn-Dyck2). In 4 we discuss our results regarding testing membership in ∆≤k(Dyck2). Our lower
bound result is presented in Section 5.

2 Definitions and Preliminaries

2.1 ℓ-wise independent hash families

Definition 1. Given positive integers ℓ, n,m, and s, a function F : {0, 1}s → [m]n is an ℓ-wise independent
hash family if given any distinct i1, i2, . . . , iℓ ∈ [n] and any (not necessarily distinct) j1, j2, . . . , jℓ ∈ [m], we
have

Pr
r∈{0,1}s

[F (r)(i1) = j1 ∧ F (r)(i2) = j2 ∧ · · · ∧ F (r)(iℓ) = jℓ] =
1

mℓ

where F (r) is interpreted as a function mapping [n] to [m] in the obvious way.

Lemma 1. [21] For any ℓ, n,m, there is an ℓ-wise independent hash family F : {0, 1}s → [m]n, with
s = O(ℓ log(n+m)) with the property that there is a deterministic algorithm which, on input r ∈ {0, 1}s and
i ∈ [n], computes F (r)(i) in time poly(s) using space O(s).

2.2 Some pseudorandom distributions for restricted tests

Given m ∈ N, we will denote by Um the uniform distribution on {0, 1}m.

Definition 2. Given any class F of boolean functions defined on {0, 1}m, distributions D1, D2 over {0, 1}m
and δ ∈ [0, 1], we say that D1 δ-fools F w.r.t. D2 if for all f ∈ F , we have

∣

∣

∣

∣

Pr
z∼D1

[f(z) = 1]− Pr
z∼D2

[f(z) = 1]

∣

∣

∣

∣

≤ δ
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The above concept has been widely studied for many classes of functions, especially in the case when D2

is the uniform distribution Um. When D2 is the uniform distribution, in many cases, we know of distributions
D1 with very small support that are nonetheless able to fool some interesting class of functions F w.r.t. D2.
We note two such results below, since we will need them later.

Definition 3. Given two vectors x, y ∈ {0, 1}m, denote by 〈x, y〉 the F2-inner product between x and y: that
is, 〈x, y〉 = ⊕

i xiyi. For w ∈ {0, 1}m, define the function Lw : {0, 1}m → {0, 1} as follows: Lw(x) = 〈w, x〉.
The class of Linear tests on {0, 1}m is defined to be the class of functions {Lw | w ∈ {0, 1}m}.

Lemma 2 (Small bias spaces). [1] Given any δ ∈ R
>0 and m ∈ N, there exists an explicit function G1 :

{0, 1}s→ {0, 1}m for s = O(log(m/δ)) such that the distribution G1(r) for a randomly chosen r ∈ {0, 1}s δ-
fools the class of Linear Tests w.r.t. the uniform distribution Um. Moreover, there is a deterministic algorithm
A that, given r ∈ {0, 1}s and i ∈ [m], computes the ith bit of G1(r) in time poly(s) and space O(s).

The existence of the algorithm A as stated in Lemma 2 is not formally stated in [1] but easily follows
from Construction 3 of such spaces in the paper. We call a G1 as described above a δ-biased space over
{0, 1}m. The distribution G1(r) for a randomly chosen r is said to be a δ-biased distribution.

The second class of tests we will need to fool is the class of read-once DNF formulae over {0, 1}m. It
has been proved recently that δ′-biased distributions for small enough δ′ can be used to δ-fool the class of
read-once DNFs w.r.t. the uniform distribution.

Lemma 3 (Fooling read-once DNFs). [9] Given any δ ∈ R
>0 and m ∈ N, any δ′-biased distribution δ-

fools the class of read-once DNFs over {0, 1}m w.r.t. the uniform distribution Um, as long as δ′ ≤ 1
mO(log(1/δ)) .

By Lemmas 2 and 3, we have

Corollary 1. Given any δ ∈ R
>0 and m ∈ N, there exists an explicit function G2 : {0, 1}s → {0, 1}m for

s = O(logm log(1/δ)) such that the distribution G2(r) for a randomly chosen r ∈ {0, 1}s δ-fools the class
of Linear Tests w.r.t. the uniform distribution Um. Moreover, there is a deterministic algorithm that, given
r ∈ {0, 1}s and i ∈ [m], computes the ith bit of G2(r) in time poly(s) and space O(s).

3 Equivalence with errors

In this section, we consider the problem of testing membership in ∆≤k(1-turn-Dyckl). Magniez et al. [14],
showed that it suffices to design efficient streaming algorithms for testing membership in Dyck2 in order to
get efficient streaming algorithms for testing membership in Dyckl. Formally,

Lemma 4 ([14]). If there is a one-pass streaming algorithm for testing membership in Dyck2 that uses space
s(n) for inputs of length n, then there is a one-pass streaming algorithm for testing membership in Dyckl
that uses space O(s(n log l)) for inputs of length n.

We first prove a lemma similar to Lemma 4, to state that it suffices to design an efficient streaming
algorithm for ∆≤k(1-turn-Dyck2) (∆

≤k(1-turn-Dyck2)) in order to get an efficient streaming algorithms for
∆≤k(1-turn-Dyckl) (respectively, ∆

≤k(Dyckl)).

Lemma 5. If there is a one-pass streaming algorithm for testing membership in ∆≤2k(1-turn-Dyck2)
(∆≤2k(Dyck2)) that uses space s(n) for inputs of length n, then there is a streaming algorithm for test-
ing membership in ∆≤k(1-turn-Dyckl) (∆

≤k(Dyckl)) that uses space O(s(nl)) for inputs of length n.

Proof. We use a distance preserving code for this. We encode an opening parenthesis of type (i by (i−1 [ (l−i.
And we encode a closing parenthesis of type )i by )l−i ] )i−1. Now given a string w ∈ Σn

l , the new string w′

is over the alphabet Σ = {(, [, ), ]}. And |w′| = nl. Also for every mis-match in w, w′ has two mis-matches.
Thus the lemma. ⊓⊔
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Let D≤k(1-turn-Dyck2) be the set of string obtained by changing at most k symbols of words in
1-turn-Dyck2. Assuming that the length of the string is known, the membership testing forD≤k(1-turn-Dyck2)
(which is more general than ∆≤k(1-turn-Dyck2)) can also be handled by the techniques introduced in the
paper. If the input string has opening parenthesis in the first half of the string, then it is considered to be
an error. It is easy to keep track of such errors.

We now note that ∆≤k(1-turn-Dyck2) on inputs of length n reduces to the problem Hamn/2,k.

Lemma 6. There is a deterministic one-pass streaming algorithm that uses space O(log n) and time O(n),
which given as input a string w ∈ {(, [, ), ]}n, outputs a pair of strings x, y ∈ {0, 1}n/2 and either accepts
or rejects. If the algorithm rejects, we have w 6∈ ∆≤k(1-turn-Dyck2). Otherwise, we have ∆(x, yR) ≤ k iff
w ∈ ∆≤k(1-turn-Dyck2).

Proof. Given an input of length n, the algorithm scans its input from left to right, and outputs 0 on seeing
“(” and 1 on seeing “[” in the first n/2 symbols of its input w; similarly, on the second half of w, the algorithm
outputs 0 on seeing “)” and 1 on seeing “]”. The algorithm rejects either if it sees the closing braces in the
first half of its input or the opening braces in the second half of its input (in this case, an opening brace has
been corrupted by a closing brace or vice versa) and accepts otherwise. If the algorithm accepts, we see that
∆(x, yR) is exactly the distance of the input from a string in 1-turn-Dyck2. The lemma follows. ⊓⊔

The above lemma shows that it suffices to come up with a streaming algorithm for the Hamming distance
problem to solve the problem ∆≤k(1-turn-Dyck2). Once we have such an algorithm, we simply run the above
reduction on an input w ∈ {(, [, ), ]}n, and obtain strings x, yR, which we feed in as input to the algorithm for
Hamn/2,k (of course, if the reduction rejects, we reject the input). Though Hamn,k is only a minor restatement

of ∆≤k(1-turn-Dyck2), we prefer to work with this problem because of its cleaner definition.

Theorem 2. For any k and any constant c > 0, there is a one-pass randomized streaming algorithm which,
when given as input strings (x, yR) ∈ {0, 1}n × {0, 1}n, that accepts with probability 1 if ∆(x, y) ≤ k and
rejects with probability 1 − 1/nc if ∆(x, y) > k. The algorithm also detects the locations where x and y
differ with probability at least 1 − 1/nc if ∆(x, y) ≤ k. The algorithm uses O(k log n) space and O(k logn)
randomness. The time required by the algorithm is poly(k logn) per item plus nk+O(1) for post-processing.

Proof. The algorithm uses a fingerprinting strategy and is directly inspired by the standard randomized
communication complexity protocol for the Equality problem (see [13], for example). Fix a field F2ℓ , where
the exact value of ℓ will be determined later. We call a polynomial p(z) ∈ F2ℓ [z] boolean if all of its coefficients
are 0 or 1. The weight of a boolean polynomial p will be the number of non-zero coefficients of p.

We think of w ∈ {0, 1}n as defining a boolean polynomial pw(z) ∈ F2ℓ [z] as follows: pw(z) =
∑n

i=1 wiz
i−1,

where wi denotes the ith bit of w. Note that the polynomial qx,y(z) := px(z)+py(z) is a boolean polynomial
of weight exactly ∆(x, y). We check that ∆(x, y) ≤ k by evaluating qx,y(z) at a random α ∈ F2ℓ . More
formally, the algorithm is:

– Pick α ∈ F2ℓ uniformly at random.
– Check if qx,y(α) = p(α) for any boolean polynomial p of degree less than n and weight at most k. If not,

REJECT.
– If the above does hold for some boolean polynomial of weight at most k, ACCEPT and pick any such

polynomial p(z) =
∑

i piz
i. Let S = {i | pi 6= 0} be the support of p. Output S as the estimate of

points where x and y differ.

Let us first establish the correctness of the above algorithm (assuming ℓ is large enough). Clearly, if
∆(x, y) ≤ k, then qx,y(z) is a polynomial of weight at most k and the algorithm always accepts. The
algorithm can only err if: (a) ∆(x, y) > k or (b) ∆(x, y) ≤ k but the algorithm outputs the wrong set of
indices as its estimate of where x and y differ. In either case, there is a boolean polynomial p(z) of degree
less than n and weight at most k such that qx,y(z) 6= p(z) but qx,y(α) = p(α). For any fixed polynomial p(z),
this happens with probability at most n/2ℓ by the Schwartz-Zippel Lemma. Since the number of polynomials
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of weight at most k is at most nk, the probability that there exists any such polynomial p is bounded by
nk+1/2ℓ. Choosing ℓ = O(k logn), we can reduce this error to 1/nc as claimed.

Computing qx,y(α) can easily be done in a one-pass fashion using space O(ℓ) = O(k logn) and time
poly(k logn) per item. After reading the stream, we need to cycle through the nk boolean polynomials p
of weight at most k and compute the values they take at input α ∈ F2ℓ , which can also be done in space
O(k logn+ ℓ) = O(k logn) and time nkpoly(k logn) = nk+O(1), as claimed above. This completes the proof
of the theorem. ⊓⊔

3.1 A randomness-efficient streaming algorithm for Hamming Distance

Above, we showed that Hamn,k can be computed using space O(k logn) and O(k logn) random bits. Are
these parameters optimal? As we will show later in Section 5, the bound on space is nearly optimal. However,
we show in this section that the number of random bits can be significantly reduced, if one is willing to use
a small amount of additional space. The ideas in this section go back to the results of Yao [22] and Huang et
al. [11], who designed efficient randomized communication complexity protocols for the two-party problem
of checking if the Hamming Distance between x and y is at most k.

Let PHamn,k,l : {0, 1}n × {0, 1}n → {0, 1} be a partial function, defined as follows: On input (x, yR) it
evaluates to 0 if the hamming distance between x and y is greater than or equal to l, it evaluates to 1 if the
distance is less than or equal to k and is not defined on other inputs.

Theorem 3. For every constant 0 ≤ ǫ ≤ 1 there is a randomized one-pass streaming algorithm that computes
Hamn,k using O(k1+ǫ + logn) space and O(log n) randomness and errs with probability bounded by 1/8. The
time taken by the algorithm is O(log n)O(1) + kO(1)) per item.

Proof Strategy: In order to prove the above theorem, we divide the problem into two parts. Assuming
there are at most 2k errors, we design an algorithm that computes Hamn,k correctly with high probability.
We call this the inner algorithm. We design another randomized algorithm to compute PHamn,k,2k with high
probability. We call this algorithm the outer algorithm.

We output 1, that is we declare that the number of indices where x and y differ is at most k, if and only
if both the inner and the outer algorithms output 1. If x and y differ on more than 2k indices, then the outer
algorithm will output 0 with high probability. The answer of the inner algorithm will not be reliable in this
case. Where as if they differ on more than k but less than 2k places then the inner algorithm will output 0
with high probability. Let γ1, γ2 be errors in inner and outer algorithms respectively. Then the overall error
γ is bounded by γ1 + γ2. We prove that both γ1 and γ2 are bounded by γ/2 for a small constant γ.

Inner algorithm

Definition 4. Given, k, n ∈ N, we say that an element w ∈ ([k] × {0, 1})n is an XOR representation of
length n of a string a ∈ {0, 1}k if for each j ∈ [k], we have aj =

⊕

i:wi=(j,ui)
ui.

We think of the XOR representation as streaming updates of a structure over F2.

Lemma 7. There is a randomized one-pass streaming algorithm which given input x, yR ∈ {0, 1}n such that

∆(x, y) ≤ 2k computes an XOR representation of length n of a, b ∈ {0, 1}16k2/γ such that with probability
1 − γ/4, Hamn,k(x, y) = Ham16k2/γ,k(a, b) The algorithm uses O(log n) bits of randomness, O(log n) space,

and (log(n/γ))O(1) time per item.

Proof. The proof is simple. We pick a random hash function h from a pairwise independent hash family of
functions mapping [n] to [16k2/γ]. We think of h as dividing the n indices of x and y into 16k2/γ buckets.

Given x, y such that ∆(x, y) ≤ 2k, call index i good if xi 6= yi. Given two good indices i 6= j, the
probability that h maps both of them to the same bucket is at most γ/16k2. A simple union bound tells us
that with probability 1− γ/4, all the good indices are mapped to different buckets.

6



After having picked h, the streaming algorithm computes the XOR representations of a, b defined as
follows: for any j, aj is the XOR of the bits of x whose indices are in the jth bucket; formally, aj =
⊕

i:h(i)=j xi; the string b is similarly related to y. Clearly, if h maps the good indices to different buckets,

then aj 6= bj iff the jth bucket contains a good index and hence ∆(a, b) = ∆(x, y). On reading the input bit
xi, the algorithm computes the bucket j = h(i) and writes down (j, xi) which in effect updates the jth bit
of a. In a similar way, when scanning y, the algorithm updates b.

The space and randomness requirements are easily analyzed. Picking a random hash function h from
a pairwise independent family as above requires O(max{logn, log(k2/γ)}) = O(log(n/γ)) random bits by
Lemma 1. The algorithm needs to store these random bits only. Computing h(j) for any j only requires
space O(log n/γ). Finally, the processing time per element is O(poly(log(n/γ)). ⊓⊔

We will use the above algorithm as a streaming reduction and solve the problem using the algorithm of
Lemma 8.

Lemma 8. For any n, k and every constant 0 < ǫ < 1 and γ ≥ 1
kO(1) , there is a randomized one-pass

streaming algorithm which, on inputs a, b ∈ {0, 1}16k2/γ accepts iff ∆(a, b) ≤ k with error probability at most
γ
4 . The algorithm uses O(log k) bits of randomness, O(k1+ǫ + logn) space, and time per element is kO(1).
The algorithm expects its inputs a, b to be given in terms of XOR representations of length n.

Proof. First, we present the algorithm for the special case when n = k and the input is simply the pair of
strings a, b in the natural order of increasing indices. We will then explain the simple modifications that are
necessary for the case when the input is a pair of XOR representations of length n.

Fix a positive constant δ < ǫ. Let h : [16k2/γ] → [k1+δ] be a function picked at random. Let j ∈ [k1+δ]
be a fixed bucket. We have Pr[h(i) = j] = 1

k1+δ .
Define a set I of indices as follows: if ∆(a, b) ≤ k, then let I be the indices where a and b differ; otherwise,

let I be any set of k + 1 indices where a and b differ. Let u be the size of a subset U of I. We have

Pr[h(U) = j] ≤ 1
(k1+δ)u

. By a union bound over U of size u, Pr[∃U : h(U) = j] ≤ (k+1
u )

(k1+δ)u
≤ (k+1)u

(k1+δ)u
≤ 1

kδu/2 .

Therefore, since there are at most k2 buckets, Pr[∃U ∃ a bucket j : h(U) = j] ≤ 1/kδu/2−2.

We want this probability to be less than γ/8. Therefore we select u = O(1/δ + log(1/γ)
log k ) = O(1), where

the last equality uses γ ≥ 1
kO(1) and δ is a constant.

Note that the above argument works if we used a function from a u-wise independent family of functions
rather than a random function. This requires only O(u log(k/γ)) = O(log k) bits of randomness and space
O(log(k/γ)) by Lemma 1. Hereafter, we assume that we have picked a hash function h from this family so
that each bucket j ∈ [k1+δ] contains at most u indices from I. Let Ba

j and Bb
j be the buckets formed by

hashing a and b respectively, where 1 ≤ j ≤ k1+δ.
Given boolean strings a′, b′ of the same length, define ∆u(a

′, b′) to be min{∆(a′, b′), u}. We will compute
the function F (a, b) =

∑

j∈[k1+δ ]∆u(B
a
j , B

b
j) and accept if the value computed is at most k. It can easily be

seen, using the properties of h, that this computes Ham16k2/γ,k(a, b).

Computing ∆u(B
a
j , B

b
j) for any j is easily done using the ideas of the algorithm of Theorem 2. We work

over the field F2ℓ where ℓ is a parameter that we will fix shortly. Given a polynomial p ∈ F2ℓ [z] with only
0-1 coefficients, we denote by the weight of p the number of non-zero coefficients of p. Given c ∈ {a, b}
and j ∈ [k1+δ], the bucket Bc

j defines for us the polynomial pj,c(z) =
∑

i∈h−1(j) ciz
i over F2ℓ . Define the

polynomial qj(z) = pj,a(z)+pj,b(z). The weight of qj is exactly ∆(Ba
j , B

b
j ). The algorithm to compute F (a, b)

is the following:

1. Pick α ∈ F2ℓ uniformly at random.
2. For each j, compute qj(α) and check if it evaluates to the same value as some polynomial p of weight at

most u. If so, let wj be the weight of an arbitrary such p; if not, let wj = u.
3. Output

∑

j wj .

The above algorithm errs on bucket j only if there is a polynomial p 6= qj of weight at most u such

that p(α) = qj(α). This occurs with probability at most O( k2

γ2ℓ
) for a fixed polynomial p and hence with
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probability at most (k/γ)O(u)

2ℓ
for some polynomial p of weight at most u after a union bound. After taking a

union bound over buckets, we get a failure probability of at most (k/γ)O(u)

2ℓ
(with different constants in the

exponents). Choosing ℓ = O(u log( kγ )) = O(log k), we can reduce the error to γ/8.

The overall error of the algorithm is at most γ/4. The space used per bucket and the number of random
bits used is at most O(log k). Adding up over all buckets, the space used is bounded by O(k1+δ log k), which
is at most O(k1+ǫ). The time taken by the algorithm to compute the values {qj(α) | j ∈ [k1+δ]} is kO(1).
Finally, checking if each qj(α) evaluates to the same value as a polynomial of weight at most u takes time
kO(u) = kO(1).

Now for the case when the input is given as a pair of XOR representations of length n. We simply
note that the polynomials pj,a and pj,b are still easy to compute. For example, on reading the ith element
wi = (ji, ui) of the XOR representation of a, the algorithm simply updates the current value of ph(ji),a(α)
by adding uiα

ji to it; this works as intended since F2ℓ is a field of characteristic 2. The algorithm only needs
an additional counter that counts up to n so that it knows when the XOR representation of a ends. ⊓⊔

Setting γ to be 1/8 in the Lemmas 7 and 8, we see that the space taken by the Inner algorithm overall is
O(k1+ǫ + logn), the amount of randomness used is O(log n) and the time taken per item is O((log n)O(1) +
kO(1)).

Outer algorithm Given x, y ∈ {0, 1}n, we denote by 〈x, y〉 the F2-inner product of x and y. Formally,
〈x, y〉 = ⊕n

i=1 xiyi.

Lemma 9. There is a randomized one-pass streaming algorithm that computes PHamn,k,2k correctly
with probability 1 − γ/2 using O(log n log(1/γ)) bits of space and randomness and time per item
(logn)O(1) log(1/γ).

Proof. For simplicity, we will assume that k is a power of 2. All the results carry through in the general case,
with only superficial changes.

We use a protocol of Yao [22]. Yao devised a one-way5 randomized communication complexity protocol
using which two players Alice and Bob, given inputs x and y respectively, can decide PHamn,k,2k(x, y) using
O(log(1/γ)) bits of communication. A brief sketch follows. Let u denote x⊕y. Using public randomness, Alice
and Bob pick random strings z1, . . . , zℓ ∈ {0, 1}n for ℓ = O(log(1/γ)) such that each bit of each zi is set to
1 independently with probability 1/4k — we call this distribution D1/4k. Alice computes 〈x, z1〉, . . . , 〈x, zℓ〉
and sends them to Bob who uses them to compute 〈u, z1〉, . . . , 〈u, zℓ〉.

Let zi be picked from D1/4k. It is easily checked that if ∆(x, y) ≤ k, then 〈u, zi〉 takes value 1 with

probability at most p1 = (1−1/
√
e+ok(1))
2 . On the other hand, if ∆(x, y) ≥ 2k, then 〈u, zi〉 takes value 1 with

probability at least p2 = (1−1/e+ok(1))
2 . Thus, by performing a suitable threshold on the number of i such

that 〈u, zi〉 = 1 — say by checking if the number of 1s is at least p1+p2

2 — Bob can compute PHamn,k,2k(x, y)
correctly with error probability at most γ

2 .
Using the above ideas, we wish to come up with a streaming algorithm for this problem that is also

randomness efficient. Both these constraints require us to change the original protocol. (Note that the
obvious implementation of the above protocol in the streaming setting will require Ω(nℓ) bits of space and
randomness.) To reduce the amount of randomness, we run Yao’s protocol with pseudorandom z from a
distribution D that fools the linear test defined by the string u (see Section 2 for the definition of a “linear
test”). Formally, we want a distribution D over {0, 1}n such that for any w ∈ {0, 1}n

∣

∣

∣

∣

Pr
z∼D

[〈w, z〉 = 1]− Pr
z∼D1/4k

[〈w, z〉 = 1]

∣

∣

∣

∣

≤ 1/100

That is, we want a distribution D that 1/100-fools linear tests w.r.t. D1/4k. Furthermore, we would like
to be able to sample from D using a small number of random bits.

5 Actually, Yao’s protocol works in the more restrictive simultaneous message model, but this fact is not relevant
here.
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Fix w ∈ {0, 1}n. Let fw be the following related test, defined on {0, 1}nt:

fw(z
′
11, z

′
12, . . . , z

′
1t, z

′
21, z

′
22, . . . , z

′
2t, . . . , z

′
n1, z

′
n2, . . . , z

′
nt) =

⊕

i:wi=1

(

l
∧

j=1

z′ij)

where 2t = 4k. Note that Prz∈D1/4k
[〈w, z〉 = 1] = Prz′∈Unt [fw(z

′) = 1], where Ur denotes the uniform
distribution on {0, 1}r.

We will first design a distribution D′ over {0, 1}nt that 1/100-fools the family of tests {fw | w ∈ {0, 1}n}
w.r.t. the uniform distribution Unt.

Now, we describeD′. We break the variables {z′ij} into two blocks:B1 := {z′i1 | i ∈ [n]} and B2 := {z′ij | i ∈
[n], j 6= 1}. Consider the test fw evaluated at a random input z′ ∈ {0, 1}nt. It is helpful to view this evaluation
as a two-step process: In the first step, we substitute a uniform random string z′2 for the tuple of variables in
B2. After this substitution, fw(·, z′2) becomes a linear function on the variables in B1. If this linear function
is the zero linear function, then fw(z

′
1, z

′
2) cannot evaluate to 1 on any setting z′1 of the variables in B1. On

the other hand, if this linear function is non-zero, then fw(z
′
1, z

′
2) evaluates to 1 with probability exactly 1/2

over the choice of z′1. Putting things together, we see that Prz′ [fw(z
′) = 1] = (1/2)Prz′

2
[gw(z

′
2) = 1], where

gw is the following read-once DNF formula on the variables in B2 that tells us exactly when fw becomes a
non-zero linear function on the variables in B1: gw =

∨

i:wi=1

∧l
j=2 z

′
ij

This tells us that we only need to fool read-once DNFs and linear tests w.r.t. the uniform distribution
to fool fw-tests w.r.t. the uniform distribution. We will generate z′ ∈ D′ as follows: z′1 will be sampled from
an explicit δ1-biased space D′

1 and z′2 will be independently sampled from an explicit space D′
2 that δ2-fools

read once DNFs. We have:
∣

∣

∣

∣

Pr
z′∼D′

[fw(z
′) = 1]− Pr

z′∼Unt

[fw(z
′) = 1]

∣

∣

∣

∣

=

∣

∣

∣

∣

Pr
z′

2∼D′

2

[gw(z
′
2) = 1] · Pr

z′

1∼D′

1

[fw(z
′
1, z

′
2) = 1 | gw(z′2) = 1]−

Prz′

2∼Un(t−1)
[gw(z

′
2) = 1]

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

Pr
z′

2∼D′

2

[gw(z
′
2) = 1]− Pr

z′

2∼Un(t−1)

[gw(z
′
2) = 1]

∣

∣

∣

∣

+

∣

∣

∣

∣

Pr
z′

1∼D′

1

[fw(z
′
1, z

′
2) = 1 | gw(z′2) = 1]− 1

2

∣

∣

∣

∣

≤ δ1 + δ2

where the first inequality uses the fact that |pq−rs| ≤ |p−r|+|q−s| for any p, q, r, s ∈ [0, 1], and the second
inequality follows from the definitions of D′

1 and D′
2. Choosing δ1 and δ2 to be small enough constants, we

obtain a pseudorandom distribution D′ that 1/100-fools fw-tests w.r.t. the uniform distribution. By Lemma
2 and Corollary 1, the amount of randomness required for the above is O(log n). Using D′, we can define a
distribution D that fools linear tests w.r.t. D1/4k as follows: to pick z ∼ D, we pick z′ ∼ D′ and output z
defined by zi = ∧tj=1z

′
ij for each i. It is easily seen from the definition of the tests fw that the distribution D

1/100-fools all linear tests w.r.t. D1/4k. Since no additional randomness is used to generate D, the amount
of randomness used is O(log n). Moreover, by Lemma 2 and Corollary 1, given a random seed r of length
O(log n) and j ∈ [n], the jth bit of the output of D on this random seed can be generated using O(log n)
bits of space in time poly(log n).

With the pseudorandom distribution D in place, we can run Yao’s protocol in the streaming setting with
independent random strings z1, . . . , zℓ picked from the distribution D. Exactly as above, for suitably chosen
ℓ = O(log(1/γ)), this algorithm computes PHamn,k,2k(x, y) with error probability at most γ/2. The space
and randomness used are both O(log n log 1/γ) and the time taken is npoly(logn) log(1/γ). Setting γ = 1/8,
this proves the lemma and also concludes the proof of Theorem 3. ⊓⊔

4 Accepting Dyck
2
with errors

In this section we consider the membership problem of ∆≤k(Dyck2). We assume that disregarding the type
of the brackets the string is well-matched. We only consider the kind of errors where an opening(closing)
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parenthesis of one type is replaced by an opening(closing, respectively) parenthesis of the other type. We
prove the following theorem:

Theorem 4. For any k there exists a constant c > 0, there is a randomized one-pass algorithm such that,
given a string w ∈ Σn, if w ∈ ∆≤k(Dyck2) then with probability at least 1 − 1/nc it accepts w and if
w /∈ ∆≤k(Dyck2), then with probability 1− 1/nc it rejects w. The algorithm uses O(k logn+

√
n logn) space

and takes poly(k logn) time per item and nk+O(1) time for post-processing.

It is easy to see that combining the ideas from [14] and from the previous section, we can accept
∆≤k(Dyck2) using O(k

√
n logn) space. But for the bound stated in Theorem 4, we need more work.

In [14] a one-pass randomized streaming algorithm was given for the membership testing of Dyck2. We
refer to that as the MMN algorithm. We make one change to the MMN algorithm. We use the stack only to
store indices from the set [n], and do not store the partial evaluations of a polynomial on the stack.

Divide the input into
√

n/ logn blocks of length
√
nlogn each. In each block, check for balanced paren-

theses and if there are less than or equal to k − Err mis-matches, then reduce the remaining string to a
string (possibly empty) of closing parentheses followed by a string (possibly empty) of opening parentheses.
Here, Err is a counter that maintains the number of mismatches found so far. If Err exceeds k, then halt
the algorithm and reject.

Let x denote the reduced string obtained by matching parentheses within each block. (Note that this can
be done in a streaming fashion.) For the reduced string x we say that the opening parenthesis at position i
has an index hx,i if it is the hth opening parenthesis in x. We say that the closing parenthesis has index hx,i

if it is the the closing parenthesis that closes an opening parenthesis having index hx,i in x. We drop x when
it is clear from the context.

Observation 1 Note that no two opening (or two closing) parentheses have the same index.
Also, an opening parenthesis has the same index as another closing parenthesis if and only if they form

a matching pair in the string obtained from the input string by disregarding the type of the parentheses.
For example in the input (([])[]) the indices of the opening parentheses would be (1(2[3])[4]) and the indices

of the opening and closing parentheses would be (1(2[3]3)2[4]4)1. If we reorder the input such that all opening
parentheses are in the first half with ascending index and the closing parentheses are in the second half with
descending input we get (1(2[3[4]4]3)2)1.

We now describe the procedure for computing the index. The index of an opening parenthesis is easy to
compute. It is a monotonically increasing quantity and can be stored in a O(log n) bit counter say copen. It
is initialized to 0 and incremented by 1 every time an opening parenthesis is encountered. To compute the
index of a closing parenthesis we use the stack. The stack is only being used to compute the index. At any
stage during the algorithm we maintain the intervals of yet to be matched open parentheses on the stack.

The first block consists of only opening parentheses (assuming we have already reduced the block). After
processing the first block we push [1, copen] on the stack to remember the interval of indices yet to be matched.
(In the case that all parentheses of the first block are matched within the first block, the next block is treated
as the first block).

Now suppose we process the next block (also assume that this block is already reduced). A reduced
block will consist of a sequence of closing parentheses (possible empty) followed by a sequence of opening
parentheses (possible empty). Recall we maintain the intervals yet to be matched on the stack, say the
stack-top is [m,m′].

If the block begins with a (non-empty) string of closing parentheses, m′ is the index of the first closing
parenthesis, and is decremented after reading the closing parenthesis. As long as m′ ≥ m, this continues. If
m′ < m we get the next interval of unmatched parenthesis from the stack. (If the stack is empty the input
is not well matched disregarding the type of parentheses and we reject the input). If the string of closing
parentheses ends while m ≥ m′, we push the remaining interval to the stack.

When reading the string of opening parentheses we let m = copen at the beginning, process all opening
parentheses, and before moving on to the next block we push [m, copen] (where copen is updated value after
reading the string of opening parentheses).
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While processing closing parentheses, the stack is, if at all, popped but never pushed. While processing
opening parentheses, a new stack element may be pushed. However, this happens at most once per block, and
therefore at most

√

n/ logn times. Also the elements of the stack are tuples of indices so they are O(log n)

bits. Therefore, the total space needed to compute indices is O(log n
√

n/ logn) = O(
√
n logn).

So we can compute the index of the parentheses, and now we show how to use this to compute∆≤k(Dyck2).
Now assume that, at any stage i, we have the index of the input symbol xi. Let the sign of the opening
parentheses be +1 and that of closing parentheses be −1. We think of the reduced string x ∈ {(, [, ), ]}∗ as a
string over {0, 1}∗ by replacing every occurrence of ‘(’ and ‘)’ by a 0 and every occurrence of ‘[’ and ‘]’ by a 1.
We think of this string defining a Boolean polynomial px(z) =

∑

i sign(xi)xiz
index of xi . Due to Observation

1, it is easy to see that the weight of the polynomial px is at most k − Err if and only if w ∈ ∆≤k(Dyck2).
We now check whether w ∈ ∆≤k(Dyck2) by evaluating px at a random α ∈ F2l . Assuming that we know how
to compute index of xi at step i, we can evaluate px as in the proof of Theorem 2.

Given below is the algorithm that uses the index finding procedure as described above, and evaluates
polynomial px at a random location to test membership of w in ∆≤k(Dyck2). In addition to th space required
for computing the indices, O(l) bits are required to store evaluation of px. But this does not need to be stored
multiple times on the stack. Therefore, the algorithm uses O(l +

√
n logn) = O(k logn+

√
n logn) space.

The proof of correctness and the error analysis are similar to the proof of Theorem 2. Thus we get
Theorem 4. The detailed algorithm is given below.

1: pick α ∈R Fp, set sum← 0, set copen ← 0, set Err ← 0,
2: for each block do
3: read the word y consisting of the next

√
n logn letters (or less if the stream becomes empty),

4: check that matching pairs within y have at most k−Err errors (if not, reject: mismatched parentheses),
if so, update Err to this value,

5: simplify y into uv , where u has only closing parentheses and v has only opening parentheses,
6: for i = 1 to |u| do
7: pop [m,m′] from the stack (reject if nothing to pop),
8: sum← sum− αm′

if u[i] = ‘]′ (unchanged otherwise)
9: m′ ← m′ − 1,

10: if m ≥ m′, push [m,m′],
11: end for
12: sum← sum+

∑copen+|v|−1
j=copen

vjα
j ,

(by abuse of notation, vj = 1 if vj =‘[’ and is 0 otherwise)
13: push [copen, copen + |v|],
14: set copen ← copen + |v|,
15: end for
16: Check sum = p(α) for any polynomial p with 0-1 coefficients of degree less than n and weight at most

k. If not, REJECT.

Reducing the randomness The ideas used in reducing randomness for ∆≤k(1-turn-Dyck2) also work for
reducing randomness in the membership testing of ∆≤k(Dyck2). Here, instead of hashing the input positions,
we hash the indices using the random hash functions. For computing the indices, we use the procedure
described above. Instead of computing polynomials, we compute hashes and follow the steps as in Sections
3.1, 3.2, and 3.3.

We get the following theorem:

Theorem 5. For every constant 0 ≤ ǫ ≤ 1, there is randomized one-pass algorithm that tests membership
in ∆≤k(Dyck2) using O(k1+ǫ +

√
n logn) space, O(log n) randomness, O(logO(1) n + kO(1)) time and errs

with probability 1/8.
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5 Lower bound

We will show a lower bound for PHamn,k,k+2 by reducing the augmented indexing problem INDa
U (see [19])

to it.
Let U ∪ {⊥} denote a large input domain, where ⊥/∈ U . Define the problem INDa

U as follows: Alice and
Bob receive inputs x = (x1, x2, . . . , xN ) ∈ UN and y = (y1, y2, . . . , yN) ∈ (U ∪ {⊥})N , respectively. The
inputs have the following promise: There is some unique i ∈ [N ], such that yi ∈ U , and for k < i: xk = yk,
and for k > i: yk =⊥. The problem INDa

U is defined only over such promise inputs and INDa
U (x, y) = 1 if and

only if xi = yi.
In [19, Corollary 3.1] they proved the following result:

Theorem 6 ([19]). Any randomized one-way communication protocol that makes δ = 1/4|U| error requires
Ω(N log 1/δ) bits of communication.

We use this result and prove a lower bound for PHamn,k,k+2.

Let |U| = n/k. Let fA : U → {0, 1}3n/k, and fB : (U ∪ {⊥})→ {0, 1} 3n
k be encoding functions defined as

follows:

fA : ui 7→ A1A2 . . . An/k, where Aj =

{

110 if j = i
000 otherwise

fB : ui 7→ B1B2 . . . Bn/k, where Bj =

{

011 if j = i
000 otherwise

fB(⊥) = 03n/k.
On promise inputs x, y ∈ Uk, let FA(x) and FB(y) be defined as fA(x1)fA(x2) . . . fA(xk) and
fB(y1)fB(y2) . . . fB(yk), respectively.

Under this encoding, it is easy to see that PHam3n,2k,2k+2(FA(x), FB(y)) = 1 if and only if INDa
U (x, y) = 1.

Suppose i + 1 is the first position where ⊥ appears in y. For each j < i we have xj = yj so the Hamming
distance of FA(xj) and FB(yj) is 2. Also for every position j > i we have yj = ⊥ and hence FB(yj) = 03n/k,
which results in a Hamming distance of 2 between FA(xj) and FB(xj). So the Hamming distance between
FA(x) and FB(y) is 2(k − 1) plus the Hamming distance between fA(xi) and fB(yi), which is 2 iff xi = yi
and 4 iff xi 6= yi (since xi, yi ∈ U).

Therefore we get the following lower bound:

Theorem 7 (Theorem 1 restated). Any randomized one-way protocol that makes at most k/n error
and computes PHam3n,2k,2k+2, requires Ω(k log(n/k)) bits. In fact the lower bound holds for distinguishing
between the case ∆(x, y) = 2k and ∆(x, y) = 2k + 2.

By Theorem 2 this bound is optimal when n ≥ k2 (and in fact when n ≥ k1+ǫ, for constant ǫ > 0).
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