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Abstract. Sand pile models are dynamical systems describing the evo-
lution from N stacked grains to a stable configuration. It uses local rules
to depict grain moves and iterate it until reaching a fixed configuration
from which no rule can be applied. The main interest of sand piles re-
lies in their Self Organized Criticality (SOC), the property that a small
perturbation — adding some sand grains — on a fixed configuration has
uncontrolled consequences on the system, involving an arbitrary number
of grain fall. Physicists L. Kadanoff et al inspire KSPM, a model present-
ing a sharp SOC behavior, extending the well known Sand Pile Model.
In KSPM(D), we start from a pile of N stacked grains and apply the
rule: D−1 grains can fall from column i onto the D−1 adjacent columns
to the right if the difference of height between columns i and i+1 is
greater or equal to D. This paper develops a formal background for the
study of KSPM fixed points. This background, resumed in a finite state
word transducer, is used to provide a plain formula for fixed points of
KSPM(3).
Keywords: Discrete dynamical system, self-organized criticality, sand
pile model, transducer.

1 Introduction

Sand pile models were introduced in [1] as systems presenting a critical self-
organized behavior, a property of dynamical systems having critical points as
attractors. In the scope of sand piles, starting from an initial configuration of N
stacked grains the local evolution of particles is described by one or more iteration
rules. Successive applications of such rules alter the configuration until it reaches
an attractor, namely a stable state from which no rule can be applied. SOC
property means those attractors are critical in the sense that a small perturbation
— adding some more grains — involves an arbitrary deep reorganization of the
system. Sand pile models were well studied in recent years ([8],[4],[5],[15]).
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≥ D

Fig. 1: KSPM(D)
transition rule.

In [11], Kadanoff proposed a generalization of classical
models closer to physical behavior of sand piles in which
more than one grain can fall from a column during one it-
eration. Informally, Kadanoff sand pile model with param-
eter D and N grains is a discrete dynamical system, which
initial configuration is composed ofN stacked grains, mov-
ing in discrete space and time according to a transition
rule : if the height difference between column i and i + 1
is greater or equal to D, then D − 1 grains can fall from column i to the D − 1
adjacent columns on the right (see figure 1).

In [10], the authors show that the set of reachable configurations endowed
with the order induced by the successor relation has a lattice structure, in par-
ticular it has a unique fixed point.

More formally, sand pile models we consider are defined on the space of
ultimately null decreasing integer sequences. Each integer represents a column
of stacked sand grains and transition rules describe how grains can move from
columns. Let h = (h0, h1, h2, . . . ) denote a configuration of the model, where
each integer hi is the number of grains on column i. Configurations can also be
given as height difference σ = (σ0, σ1, σ2, . . . ), where for all i ≥ 0, σi = hi−hi+1.
We will use this latter representation throughout the paper, within the space of
ultimately null non-negative integer sequences.

Definition 1. The Kadanoff sand pile model with parameter D, KSPM(D), is
defined by:

– A set of configurations, consisting in ultimately null non-negative integer
sequences.

– A set of transition rules : we have a transition from a configuration σ to a

configuration σ′ on column i, and we note σ
i→ σ′ if

• σ′
i−1 = σi−1 +D − 1 (for i 6= 0)

• σ′
i = σi −D,

• σ′
i+D−1 = σi+D−1 + 1

• σ′
j = σj for j 6∈ {i− 1, i, i+D − 1}.

Remark that according to the definition of the transition rules, a condition
for σ′ to be a configuration is that σi ≥ D. We note σ → σ′ when there exists

an integer i such that σ
i→ σ′. The transitive closure of → is denoted by

∗→. A
strategy is a sequence of nonnegative integers s = (s1, . . . , sT ). We say that σ′

is reached from σ via s when σ
s1→ σ′′ s2→ . . .

sT→ σ′, and we note σ
s→ σ′. We

also say, for each integer t such that 0 < t ≤ T , that the column st is fired at
time t in s (informally, the index of the sequence is interpreted as time). For any
strategy s and any nonnegative integer i, we state |s|i = #{t|st = i}. Let s0,

s1 be two strategies such that σ
s0→ σ0 and σ

s1→ σ1. We have the equivalence:
[∀ i, |s0|i = |s1|i] ⇔ σ0 = σ1.

We say that a configuration σ is stable, or a fixed point if no transition is
possible from σ. A basic property of the KSPM model is the diamond property.
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If there exist two distinct integers i and j such that σ
i→ σ′ and σ

j→ σ′′,

then there exists a configuration σ′′′ such that σ′ j→ σ′′′ and σ′′ i→ σ′′′. From
this property, one can easily check that, for each configuration σ, there exists
a unique stable configuration, denoted by π(σ), such that σ

∗→ π(σ). Moreover,

for any configuration σ′ such that σ
∗→ σ′, we have the convergence property:

π(σ′) = π(σ) (see [10] for details).
Let N be a fixed integer. This paper is devoted to the structure of π((N, 0ω))

(where 0ω stands for an infinity of 0’s. π((N, 0ω)) is denoted π(N), for simpli-
fication). Informally, our goal is to know what finally happens, starting from a
configuration where all grains are in the first column.

The main interest of our approach is to provide a new tool to study fixed
points: a deterministic finite state word transducer. (a transducer is essentially
a finite state automaton, which outputs a word during each transition). The
idea is the following, we concentrate on a set I of D − 1 consecutive columns
and constructs a set of states, according to the possible values of configurations
on I. We then study how the way grains fall from the left part into I (input
word) is related to the way grains fall from I to the right part (output word).
The word transducer is formally defined in section 2.3. Using this transducer, an
application to the case D = 3 is also proposed in section 2.3. This application
leads to:

Theorem 1. In KSPM(3), there exists a column number i(N) in O(logN) such
that:

π(N)[i(N),∞[ = (2, 1)∗[0](2, 1)∗0ω

where σ[i,j] is the subsequence (σi, . . . , σj), and [0] stands for at most one 0.

This result can be interpreted as a kind of spatial emergence in a complex
system. On a short length, the structure of the sand pile is complex, but a very
regular shape is issued from the complexity.

Describing and proving regularity properties, for models issued from basic
dynamics is a present challenge for physicists, mathematicians, and computer
scientists. there exists a lot of conjectures, issued from simulations, on discrete
dynamical systems with simple local rules (sandpile model [3] or chip firing
games, but also rotor router [12], the famous Langton ant[6][7]...) but very few
results have actually been proved.

As regards KSPM(D), the prediction problem (namely, the problem of com-
puting the fixed point) has been proven in [13] to be in NC3 for the one di-
mensional case (the model of our purpose), which means that the time needed
to compute the fixed point is in O(log3 N) where N is the number of grains,
and P-complete when the dimension is ≥ 3. In this paper we give a straight-
forward characterization, describing asymptotically completely fixed points. A
recent study ([9]) showed that in the two dimensional case the avalanche prob-
lem (given a configuration σ and a column i on which we add one grain, does
it have an influence on index j?) is P-complete, which points out an inherently
sequential behavior.
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2 Avalanches and transducer

2.1 Previous results about avalanches

Let σ be a configuration, σ↓0 is the configuration obtained by adding one grain on
column 0. In other words, if σ = (σ0, σ1, . . . ), then σ↓0 = (σ0+1, σ1, . . . ). Clearly,

for any strategy s, if σ
s→ σ′, then we have σ↓0 s→ σ′↓0. In particular, since we

have: (N, 0ω)
∗→ π(N), we get: (N, 0ω)↓0

∗→ π(N)↓0, i.e. (N + 1, 0ω)
∗→ π(N)↓0.

The model is convergent, therefore we get the inductive formula:

π(π(N)↓0) = π(N + 1).

In the following, we will use the inductive approach described above, which
consists in computing π(N + 1) by first computing π(N), then adding a grain
on the origin column, and process all possible transitions until a fixed point is
reached. For initialization, π(0) = 0ω.

The convergence property also allows to only consider leftmost strategies. A
strategy s such that σ

s→ σ′ is called leftmost if it is the minimal strategy from
σ to σ′ according to lexicographic order. A leftmost strategy is such that at
each iteration, the leftmost possible transition is performed. The kth avalanche
sk is the leftmost strategy from π(k − 1)↓0 to π(k). For our iterative approach,
we need to describe avalanches. In a previous work [14], we provide a simplified
description of an avalanche. This description is a core result toward the construc-
tion of the transducer in section 2.3. A first insight shows that any column is
fired at most once within an avalanche. The formal statement of the avalanche
description requires one more definition, even though it is graphically simple.
For any sequence x = (x1, . . . , xn) and any integers i, j with 1 ≤ i ≤ j ≤ n, we
denote x[i,j] = (xi, . . . , xj).

Given an avalanche sk = (sk1 , . . . , s
k
T ), a column skt is a peak if and only if

skt > max sk[1,t−1]. Intuitively, peaks are columns where an avalanche progresses
rightward.

Proposition 1. [14] Let s = (s1, . . . , sT ) be the kth avalanche and (p1 . . . , pq)
be its sequence of peaks. Assume that there exists a column l, such that for each
column i with l ≤ i < l + D − 1, i ∈ s. Then for any column p such that
p ≥ l+D − 1,

p is a peak of s ⇐⇒ π(k − 1)p = D − 1 and ∃i s.t. pi < p ≤ pi +D − 1

Furthermore, let pi = st, with pi ≥ l +D − 1, be a peak. Then

T ≥ t+ pi − pi−1 − 1 and for all t′ s.t. t < t′ ≤ t+ pi − pi−1 − 1, st′ = st′−1 − 1

A graphical representation of this statement is given on figure 2.
The theorem and therefore the simplified description applies starting from

a certain column l which depends on parameters of the model D and N . We
say that the kth avalanche sk is dense starting at l and ending at m when m is
the greatest fired column (∀ i > m, i /∈ sk) and any column between l and m
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l

Fig. 2: Illustration of Proposition 1 withD = 6. Surrounded columns l to l+D−2
are supposed to be fired. Black column is the greatest peak strictly lower than
ℓ+D− 1 before the avalanche. A column is grey if and only if its value is D− 1.
Following arrows depicts the avalanche.

included has been fired (∀ l ≤ i ≤ m, i ∈ sk). A consequence of Proposition 1
is that the avalanche sk considered is dense starting at l, where l denotes the
parameter in the statement of Proposition 1. We define the global density column
L(D,N) as the minimal column such that for any avalanche sk, with k ≤ N , sk

is dense starting at L(D,N). When parametersD and N are fixed, we sometimes
simply denote L.

Proposition 2. [14] The global density column L(3, N) is in O(logN).

In KSPM(3), a trivial bounding of the maximal non empty column of π(N)
shows that it is in Θ(

√
N), so proposition 1 describes asymptotically completely

avalanches used to construct the fixed point. We come back on this point in
section 3.

2.2 Successive avalanches

When the kth avalanche is dense starting at l and ending at m, for each column i
such that l+D−1 ≤ i < m, columns i−D+1, i and i+1 are fired within the kth

avalanche. Therefore, π(k)i = π(k−1)↓0i = π(k−1)i. Moreover, π(k)j = π(k−1)j
for j > m+D− 1. An intuitive consequence is that two consecutive avalanches
are similar. This intuition is formally stated in this section.

Let sk denote the kth avalanche of KSPM(D). We recall that the global
density column L(D,N) of KSPM(D) is the minimal column such that for
any avalanche sk, with k ≤ N , sk is dense starting at L(D,N). We also de-
fine Φ(D,N) = (φ1, . . . , φn), the subsequence of (s1, . . . , sN) reaching column
L(D,N)+D− 1. Formally, sk ∈ Φ(D,N) ⇐⇒ L(D,N)+D− 1 ∈ sk. Φ(D,N)
is called the sequence of long avalanches up to N of KSPM(D).

We also define the sequence (µ0, µ1, ....., µn) of configurations such that µ0 =
π(0) = 0ω, and for each integer k such that φk = sm, we have µk = π(m).

The definition of long avalanche is motivated by the property above, which
says that the effect of such an avalanche is easy to compute on the right of the
global density column.

Remark 1. In KSPM(D), if sk is a long avalanche, whose sequence of peaks is
denoted by P k (the largest peak being maxP k), from proposition 1 we have:

– π(k)maxPk = π(k − 1)maxPk −D + 1 = 0,
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– π(k)i = π(k − 1)i for L(D,N) +D − 1 ≤ i < maxP k,
– π(k)i = π(k − 1)i + 1 for maxP k < i ≤ maxP k +D − 1,
– π(k)i = π(k − 1)i for i > maxP k +D − 1.

This result is a clear application of transition rules (for each considered col-
umn i we know which columns of the set {i−D+1, i, i+1} are fired in sk, so we
can update the configuration). In other words, the main element that we need
to compute (the right part of) π(k) from π(k − 1) is maxP k.

Lemma 1. In KSPM(D), let L be the global density column of N , and Φ =
(φ1, . . . , φn) its sequence of long avalanches up to N . Let k < n, and P k (resp.
P k+1) be the sequence of peaks i of φk (resp. φk+1) such that i ≥ L+ 2(D− 1).
The largest peak of P k is denoted by maxP k. We have:

P k \ {maxP k} = P k+1 ∩ JL + 2(D − 1),maxP kJ

The lemma above can be seen as follows: |P k+1| ≥ |P k|− 1, and the |P k|− 1
first elements of P k+1 and P k are equal. Informally, the peak sequence can
increase in arbitrary manner, but can decrease only peak after peak.

Proof. Let κ, κ′ be two integers such that φk is the κth avalanche, and φk+1 is
the κ′th avalanche. For each column i such that i ∈ JL + D − 1, maxP kJ, we
have i −D + 1, i, i+ 1 ∈ φk and therefore π(κ)i = π(κ− 1)i.

By definition of long avalanches, any avalanche s between φk and φk+1 stops
before L +D − 1, i.e. for all i ≥ L +D − 1, i /∈ s. Combining it with previous
remark, we have for all κ′′ such that κ ≤ κ′′ < κ′

for all i ∈ JL+D − 1, L+ 2(D − 1)J , π(κ′′)i ≥ π(κ− 1) (1)

for all i ∈ JL+ 2(D − 1),maxP kJ , π(κ′′)i = π(κ− 1) (2)

because columns within interval JL + D − 1, L + 2(D − 1)J can gain height
difference when a column within JL,L+D−1J is fired. This is in particular true
for κ′′ = κ′ − 1. We now study the κ′th avalanche φk+1. From relation (1) and
since π(κ′ − 1) is a fixed point, for all i ∈ JL+D− 1, L+2(D− 1)J, π(κ− 1)i =
D − 1 ⇒ π(κ′ − 1)i = D − 1. Let Qk (resp. Qk+1) be the sequence of peaks i of
φk (resp. φk+1) such that L+D− 1 ≤ i < L+2(D− 1) Using proposition 1, we
therefore get

Qk ⊆ Qk+1 (3)

Let I = JL + 2(D − 1),maxP kJ. From relation (2)

for all i ∈ I, π(κ− 1)i = D − 1 ⇐⇒ π(κ′ − 1)i = D − 1 (4)

We now eventually prove the conclusion of the lemma. Let pi = min{i ∈ P k},
from proposition 1 we equivalently have pi = min{i′ ∈ I|π(κ − 1)i = D − 1}
(the existence of pi is a hypothesis of the lemma). Let p′i′ = min{i′ ∈ P k+1} =

min{i′ ∈ I|π(κ′ − 1)i′ = D − 1} (the existence of p′i′ is given by subset relation

(3)), using relation (4) we have p′i′ = pi.

Other peaks within I are obviously equal from proposition 1 and relation (2)
with κ′′ = κ′ − 1. ⊓⊔
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2.3 Transducer

N

size

L(4,N)

I3 I4

Fig. 3: D=4. Long avalanches
up to 500, one by line. The
global density column is lined
in bold black. A light grey
square is a fired column, a
dark grey square is a peak.
The sequence of types of 4-
influent subsequences up to
500 is 0, 1, 2, 0, 1, 2, 0, 2, 1, 0.

We now exploit the similarity between successive
avalanches. Informally, we will cut configurations
into intervals I1, I2, . . . of size D − 1 and study
each of them and their interactions when consid-
ering an avalanche. Given three successive inter-
vals Ii−1, Ii and Ii+1, we construct a finite state
word transducer which computes the influence
of Ii on Ii+1, knowing the influence of Ii−1 on
Ii and the value of the configuration in Ii. The
main idea to use transducers is that the value
of any interval Ii with i > 0 in π(0) is 0D−1,
so we can relate temporally emergent patterns
arising from transduction iterations to spatially
emergent patterns on stable configurations.

The interval Ii is the column sequence ((D−
1)i, (D − 1)i + 1, ..., (D − 1)i + D − 2)). We
call state of an interval Ii of a fixed point
π its value (π(D−1)i, π(D−1)i+1..., π(D−1)i+D−2).
Hence, each interval state is an element of the
set S = {0, 1, ...., D − 1}D−1. .

We fix an interval Ii such that (D − 1)i ≥
L(N) + 3(D− 1). The largest peak j of φk, such
that j < (D−1)i, is denoted by p(i, k). The type
α(i, k) of the long avalanche φk on Ii is defined
as follows.

– if p(i, k) ∈ Ii−1, then α(i, k) = p(i, k)
mod [D − 1];

– if p(i, k) /∈ Ii−1, then α(i, k) = ǫ.

Therefore, the set of possible types is
T = {ǫ, 0, 1, ..., D − 2}. We say that two long
avalanches are i-similar if they have the same
type for i. Note that if a long avalanche φk

changes the state of Ii, then from remark 1 there
necessarily exists a peak of φk in the interval
Ii−1.

We now divide the sequence Φ of long
avalanches up to N into maximal length subse-
quences of the type (φk, φk+1, ...., φk′′

) such that,
for each integer k′ such that k ≤ k′ < k′′, φk′

and φk′+1 are i-similar. Such a subsequence is called an i-subsequence. An i-
subsequence is said of type α for i when the type of each avalanche of the
subsequence is α. When α is not the empty word ǫ, we say that the subsequence
is i-influent. Remark that, from Lemma 1, each (i + 1)-influent subsequence is
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contained in an i-influent subsequence. See figure 3 for an example of i-influent
subsequence.

Lemma 2. Let Φ[k,k′′ ] = (φk, φk+1, ...., φk′′

) be a subsequence of type α for i,
with k′′ ≤ n, and with Ii an interval whose columns are greater than L+3(D−1).
Given the state (a0, a1, ..., aD−2) of Ii in the configuration µk−1, and α, one can
compute, with no need of more knowledge:

– the state (a′0, a
′
1, ..., a

′
D−2) of Ii in the configuration µk′′

,

– the sequence of types of the successive i+ 1-influent subsequences contained
in Φ[k,k′′ ]

Proof. This is obvious when the type of the subsequence is ǫ, since there is no
change and the i+ 1-subsequence contained in (φk, . . . , φk′′

) is also ǫ.
The computation is simple when there is no integer m such that 0 ≤ m ≤ α
and am = D − 1. In this case, the peak p(i, k) is the last peak of φk, thus
µk
p(i,k) = 0, which gives that p(i, k) is not a peak of φk+1, thus the subsequence

is reduced to a singleton which is not i + 1-influent (second part of the result).
For (D−1)i ≤ j ≤ p(i, k)+D−1, we have µk

j = µk−1
j +1, and for p(i, k)+D−1 <

j < (D−1)(i+1), we have µk
j = µk−1

j . Thus, we have a′m = am+1 for 0 ≤ m ≤ α
and a′m = am for α < m ≤ D − 2 (first part of the result).

Otherwise, φk contains a peak in Ii. Let q(i, k) denote the largest one. The
column q(i, k) is the largest j such that µk−1

j = D − 1 and j < (D − 1)(i + 1).

Thus q(i, k) mod D− 1 is the largest m such that am = D− 1. In this case, φk

starts an i+1-subsequence of type q(i, k). Consider the following long avalanches.
From Lemma 1, while q(i, k) remains a peak of φk′

, p(i, k) also remains a peak
of φk′

. From Remark 1, while q(i, k) is not the last peak of φk′

, the state of
Ii remains invariant. So the first avalanche φk′

that changes the state of Ii is
the one whose last peak is q(i, k) (this avalanche exists from the hypothesis:
k′′ < n). We have µk′

q(i,k) = 0, which closes the i+ 1-subsequence of type q(i, k).

We also have µk′

j = µk
j + 1 for q(i, k) < j < (D − 1)(i + 1), and µk′

j = µk
j for

p(i, k) ≤ j < q(i, k). This gives the state of Ii for µk′

(as in the previous case,
this can be rewritten to show that this state can be expressed only from α and
(a0, a1, ..., aD−2)) and proves that p(i, k) = p(i, k′ + 1).

The argument above can be repeated as long as we have a column j of Ii
whose current value isD−1. When there is no more such column, the peak p(i, k)
is deleted (its value becomes 0) by the next long avalanche which is necessarily
φk′′

from the maximality of i-similar subsequences. ⊓⊔

The algorithm below gives the exact computation. From the state of an in-
terval Ii and an avalanche type on Ii, f returns the greatest fired peak in Ii,
and g computes the new state of Ii and appends the result of f to a sequence
of types on interval Ii+1. g recursively calls itself, anticipating the i-similarity of
successive avalanches when maxP k lies on the right of interval i.
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Input: a non empty type α and an interval state A = (a0, . . . , aD−2).

Data structure: a sequence w of types.

Functions:
f : S × T \ {ǫ} → T g : S × T \ {ǫ} × T ∗ → S × T ∗

f(A,α) :=
if

({m ≤ α|am = D − 1} 6=∅)
then

max{m|am = D − 1}
else

ǫ

g(A,α, w) :=
match f(A,α) with

|ǫ → (a0 + 1, . . . , aα + 1, aα+1, . . . , aD−2), w)
|p →

g((a0, . . . , ap−1, 0, ap+1 + 1, . . . , aD−2 + 1), α, w ::p)

Computation: (A,α) 7→ g(A,α, ǫ)

The algorithm above allows to define a deterministic finite state transducer
T (see for example [2]). T is a 5-tuple (Q,Σ, Γ, I, δ) where the set of states Q is
S, the input and output alphabets (resp. Σ and Γ ) are equal to A = T \ {ǫ} =
{0, . . . , D − 2}, the transition function δ has type Q × Σ → Q × Γ ∗ and is
defined by the algorithm above: δ(q, α) = Computation(q, α). The initial state
is (0, 0, ...., 0), and we do not need to define a final state. The image of a word u
by T is denoted by t(u).

21 11

a|ǫ

b|ab

12

b|b a|a

22

b|ba

a|ǫ

a|ba b|ǫ20

b|ǫ

a|ǫ10

b|ǫ

a|ǫ

00
b|ǫ

a|ǫ

Fig. 4: Transducer for D = 3 - Edges are labelled
x|u, where x ∈ A is the type to the current inter-
val (input) and u ∈ A∗ is the resulting sequence
of types applied to the next interval (output). For
example, t(abaaaaab) = abaab. Remark that, for
n > 0, we have: t((ab)n) = (ab)n−1.

If α is the type of
an i-influent subsequence
for a fixed integer i, then
the sequence of types of
the corresponding i + 1-
influent subsequences ( i.e.
subsequences where con-
sidered avalanches lie) is
t(α) . Thus, if u is the
sequence of types of con-
secutive i-influent subse-
quences for a fixed integer
i, then t(u) is the sequence
of types of the correspond-
ing i + 1-influent subse-
quences. Note that the last
considered avalanche may
not be the last one of the
last i + 1-influent subse-
quence.

For the lowest interest-
ing value, D = 3, the
transducer T can easily
be drawn. This diagram is
given on figure 4 . For read-
ability, we write a and b in-
stead of, respectively, 0 and 1, for the alphabet of the transducer, and we omit
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the drawing of states which are not connected with the initial one and are not
useful for the computation of t(u), for any word u.

The transducer has three transient states, (00, 10 and 20) and four recurrent
states (11, 12, 21 and 22) organized in a cycle. A non trivial analysis of this
transducer is given in appendix A. The result is stated on the lemma below.

Lemma 3. [D = 3] For any k there exists n in O(log k) such that for all u of
length k, tn(u) is a prefix of (ab)ω.

2.4 From words to waves

The lemma above can be used to describe fixed point configurations, noticing
that |u| ≤ N , as follows:

Proposition 3. In KSPM(D), let L be the global density column of N and Ii
be an interval whose columns are greater than L + 3(D − 1). Assume that the
sequence of types of i-influent subsequences of long avalanches up to N is

(0, . . . , D − 2)x(0, . . . , p), with x ≥ 0 and p ≤ D − 2.

Let y be the size of the last subsequence of type p. We have y ≤ x+ 1, and

π(N)[i,∞[ =
{

(p, . . . , 1)(D−1, . . . , 1)x−y0(D−1, . . . , 1)y0ω if y < x+ 1
(p+ 1, . . . , 1)(D−1, . . . , 1)x0ω if y = x+ 1

Proof (sketch). It is a trivial induction on avalanches. We concentrate on the
right part of fixed points: π(k)[i,∞[. Initially for k = 0, it is equal to 0ω. TheD−1
first i-influent subsequences lead to D− 1, . . . , 1, 0ω. Then from (D− 1, . . . , 1)x,
using lemma 1 to predict the size of each i-influent subsequence, we have that
a sequence of type (0, . . . , D − 2) corresponds to exactly (x + 1)(D − 1) long
avalanches, and the behavior verifies the following invariant : the ((x+1)p+y)th

long avalanche, 0 ≤ p < D − 1 and 0 < y ≤ x+ 1, has type p and lead to
{

p, p− 1, . . . , 1, (D − 1, . . . , 1)x−y0(D − 1, . . . , 1)y0ω if y ≤ x;
p+ 1, p, . . . , 1, (D − 1, . . . , 1)x0ω if y = x+ 1. ⊓⊔

3 Conclusion

Let us sum up results on KSPM(3). We introduced the finite state transducer
which, given a sequence of types (associated with a sequence of long avalanches)
on an interval Ii, outputs the sequence of types (associated with the same se-
quence of long avalanches) on interval Ii+1. We proved in a previous paper [14]
that the global density column L(3, N) is in O(logN), and therefore that to-
ward the study of the fixed point π(N), the word transducer applies starting
from an interval Ij with j in Ω(logN). Lemma 3 shows that iterating O(log |u|)
times the transducer function t outputs a prefix of (ab)ω, from any input se-
quence u. An upper bound for the size of any input word (sequence of types)
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in KSPM(3) is N . As a consequence, there exists an index k in O(logN) such
that the sequence of types associated with subsequences of long avalanches up
to N on interval Ij+k is a prefix of (ab)ω. Finally, proposition 3 converts the
temporal emergence of regularities when we iterate t into a spatial emergence
of a wave pattern. It points out that as soon as a sequence of types which is a
prefix of (ab)ω is applied on an interval, then on the right of that interval π(N)
is a wave. A simple framing of the maximal non-empty column of π(N) shows
that it is in Θ(N), therefore the wave (2, 1)∗[0](2, 1)∗ describes asymptotically
completely fixed points of KSPM(3) obtained starting from a finite number of
stacked grains. This concludes the proof of Theorem 1.

We hope a generalization of this result to any parameter D, confirming ex-
periments:

Conjecture 1. For a fixed parameter D, there exists a column number i(N)
in O(logN) such that: π(N)[i(N),∞[ = (D − 1, D − 2, . . . , 2, 1)∗[0](D − 1, D −
2, . . . , 2, 1)∗0ω

We name this pattern a wave for when your draw the corresponding sand
pile, it looks like waves. Toward this aim, a possible outline is decomposed into
two subproblems: one is to provide a general formula in O(logN) for the global
density column, allowing the use of transducers from that index; a second is a
general study of KSPM(D) transducers resulting in the experimentally checked
emergence of balanced outputs, then using proposition 3 we eventually conclude.
Unfortunately from D = 4, transducers lack of human-readability for their num-
ber of state is DD−1. Nevertheless, one may look for core properties on built
transducers in order to deduce regular pattern emergence.
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A Analysis of the transducer for D = 3.

In this appendix we provide an analysis of the transducer for D = 3, leading to a
proof of lemma 3. Note that though we consider maximal length subsequences of
long avalanches, input words for the transducer may contain arbitrary numbers of
successive occurrences of a and b since we consider only i-influent subsequences.

We need some notations. Let q and q′ be states of S and u be a word of
A∗. Consider, in the transductor, the path which starts in q, whose sequence of
successive edge (left) labels is given by u. We say that we have q u = q′ if this
path terminates in q′. A word u is an entry word if 00 u is a recurrent state and
for each prefix u′ of u, 00 u′ is a transient state. We denote by tq the transduction
obtained changing the initial state into q. Hence t00 = t. We extensively use t21,
so we state t21 = t′. A word u is basic for the state q if |tq(u)| ≥ 2 and for
each prefix u′ of u, |tq(u′)| < 2. For each current state q, the set of basic words
for q and their images by tq are given below (trees represent case disjunctions
according the beginning of u)

(1, 1) : aaaa → aba
aaab → aba
aab → ab
ab → ab
ba → ba
bb → ba

(2, 1) : aaa → aba
aab → aba
ab → ab
b → ab

(1, 2) : aa → ba
ab → ba
ba → ba
bbu → ab

(2, 2) : a → ba
b → ba

Each word u (such that t(u) 6= ǫ) admits a unique decomposition u =
u0u1...up such that u0 is an entry word, for 1 ≤ i < p, ui is a basic word
for the state 00 u0u1...ui−1, and up is a non-empty prefix of a basic word (for the
state 00 u0u1...up−1). The word u also admits a decomposition u = u′

1u
′
2...u

′
p′

http://arxiv.org/abs/1101.5940
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such that for 1 ≤ i < p, ui is a basic word for the state 21 u0u1...ui−1, and u′
p′

is a non-empty prefix of a basic word (for the state 21 u′
0u

′
1...u

′
p′−1).

A first result gives us a hint on the form of the sequence of types applied to
successive intervals:

Lemma 4. Let L be the language L = {abu, u ∈ A∗} ∪ {ǫ, a}.

– For each u ∈ A∗, we have t′(u) ∈ L.
– For each v ∈ L, we have t(v) ∈ L.
– For each u ∈ A∗ , we have t2(u) ∈ L

Proof. We prove the three items successively, using previous ones as hypothesis.

– Let u ∈ A∗ such that u 6= ǫ. Consider the second decomposition seen above:
u = u′

1u
′
2...u

′
p′ . We obtain t′(u) = t′(u′

1)tq(u
′
2...u

′
p′), where q denotes a recur-

rent state.

• For p′ ≥ 2, t′(u′
1) is the image of a basic word for 21, thus t′(u′

1) ∈
{ab, aba}, which gives t′(u) ∈ L.

• For p′ = 1, t′(u) = t′(u′
1) and t′(u′

1) is the image of non empty prefix a
basic word for 21, thus t′(u′

1) is a prefix of aba, which gives t′(u) ∈ L.
– Let v ∈ L. If v ∈ {ǫ, a}, then t(v) = ǫ. Otherwise v can be written abu. Thus

t(v) = t(ab)t′(u) = t′(u), and t′(u) ∈ L from the first item. This proves:
t(v) ∈ L.

– Let u ∈ A∗ such that u 6= ǫ. We consider the first decomposition above: u =
u0u1...up. We obtain t(u) = tq(u1)tqu1 (u2...up), where q denotes a recurrent
state.

• For p = 0, t(u) = ǫ, thus t2(u) = ǫ.
• For p = 1, t(u) = tq(u1), and tq(u1) is the image by tq of a prefix of
basic word for q, which gives that t(u) is a prefix of either aba or ba
(since possible images of basic words are ab, ba, and aba). This gives
that t2(u) ∈ {ǫ, a}.

• If p ≥ 2, then tq(u1) ∈ {ab, ba, aba}. If tq(u1) ∈ {ab, aba}, then t(u) ∈ L,
thus t2(u) ∈ L, from the second item. If tq(u1) = ba, then we can state
t(u) = bau′. Thus t2(u) = t′(u′). We have t′(u) ∈ L from the first item,
thus t2(u) ∈ L.

⊓⊔

Definition 2 (Height). The height h of a finite word u ∈ A∗ is h(u) = ||u|a −
|u|b| where |u|x is the number of occurrences of the letter x in u.

Lemma 5. For any finite word v ∈ L, we have: h(t(v)) ≤ h(v)
4 + 1

Proof. This is obvious if v ∈ {ǫ, a}. Thus, stating v = abu, it remains to prove

that, for any finite word u ∈ A∗, we have: h(t(′u)) ≤ h(u)
4 + 1.

Let us first consider the case when |u|a − |u|b ≥ 0. Assume that we remove
a pattern of the form ab or ba from u. This does not change the value of h(u).
Moreover, for each recurrent state q, tq(ab) and tq(ba) both are elements of
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{ab, ba} and qab = qba = q. This guarantees that pattern suppression does not
change the value of h(t′(u)).

Iterating this argument until there is no more pattern as above leads to the
following fact: if we state u′ = ah(u), then we have h(t′(u′)) = h(t′(u)).

The integer h(u) can be written as h(u) = 4i + r, with 0 ≤ r ≤ 3. We
have: t′(aaaa) = aba, and 21aaaa = 21. Thus t′(u′) = (aba)i t′(ar), which gives

h(t′(u′)) ≤ h((aba)i) + h(t(r)) ≤ i+ 1. Thus h(t′(u)) ≤ h(u)
4 + 1.

The other case, when |u|a − |u|b ≤ 0, is similar. By simplifications of factors
ba and ab, we obtain that h(t′(u′)) = h(t′(u)), for u′ = bh(u). The value h(u)
can be written as h(u) = 4j + s, with 0 ≤ s ≤ 3. We have: t′(bbbb) = abbab and
21bbbb = 21. Thus t′(u′) = (abbab)j t′(bs), which gives h(t′(u′)) ≤ h((abbab)j) +

h(t(s)) = j. Thus h(t′(u)) ≤ h(u)
4 + 1. ⊓⊔

Corollary 1. Given a word u ∈ A∗ of length l, there exists an n(l) in O(log l)
such that tn(l)(u) is a prefix of (ab)ω.

Proof. We first prove it restricting ourselves on words of L Given a finite word
v on L, we define the maximal height g(v) = max{|h(v′)| |v′ prefix of v}. The
previous lemma gives the result g(t(v)) ≤ 1 + g(v)

4 . We can now use a trick to
get the expected result. We define g′(v) = g(v)− 4

3 , then:

g(t(v)) ≤ 1 +
g(v)

4
⇐⇒ g′(t(v)) ≤ g′(v)

4

From lemma 4, t(v) is element of L. Thus we can iterate the inequality. By
this way, we obtain, for each positive integer n:

g′(tn(v)) ≤ g′(v)

4n

Thus, for n > log4(g
′(v))− log4(

2
3 ), we have: g′(tn(v)) < 2

3 , so g(t′n(v)) < 2
and, by integrity,

g(tn(v)) ≤ 1

This last inequality enforces that u admits a decomposition tn(v) = w1, w2...wq

such that, for 1 ≤ i < q, ui ∈ {ab, ba}, and wq ∈ {ǫ, a, b}. Thus tn+1(u) =
t(w1)t

′(w2), ......t
′(wq). Thus, t

n+1(u) is a prefix of the infinite word (ab)ω, since
t′(ab) = t′(ba) = ab and t(ab) = t(ba) = ǫ.

Now, if we take a finite word u on A∗, we have, from lemma 4, t2(u) ∈
L. On the other hand, |t2(u)| ≤ 4|u|and |t2(u)| + 4

3 ≥ g′(t2(u)), which gives
g′(t2(u)) ≤ 4|u|+ 4

3 . Therefore, for for n > log4(4|u| + 4
3 ) − log4(

2
3 ), we obtain

that tn+1(t2(u)) is a prefix of the infinite word (ab)ω. In other words, for m >
log4 (4|u|+ 4

3 )− log4(
2
3 ) + 3, tm(u) is a prefix of the infinite word (ab)ω. ⊓⊔

Let us remark that l < N for any input word u so corollary 1 apply for actual
sand pile behavior. We therefore have a strong property on words emerging from
iterations of the transducer function t : they are exponentially quickly prefixes
of (ab)ω.
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