arXiv:1104.3057v1 [cs.DS] 15 Apr 2011

Problems parameterized by treewidth tractable in single
exponential time: a logical approach

Michat Pilipczuk

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Poland
michal.pilipczuk@students.mimuw.edu.pl

Abstract. We introduce a variant of modal logic, dubbe”IETENTIAL COUNT-
ING MODAL LoGIc(ECML), which captures a vast majority of problems known
to be tractable in single exponential time when parametdri® treewidth. It ap-
pears that all these results can be subsumed by the thearemdtiel checking of
ECML admits an algorithm with such complexity. We extend ECM adding
connectivity requirements and, using the Cut&Count tegheiintroduced by
Cygan et al[[4], prove that problems expressible in theresite are also tractable
in single exponential time when parameterized by treewidtkvever, using ran-
domization. The need for navigationality of the introdudegic is justified by
a negative result that two expository problems involving+aayclic conditions,
C;-VERTEX DELETION and GRTH > | VERTEX DELETION for [> 5, do not
admit such a robust algorithm unless Exponential Time Hygsis fails.

1 Introduction

The notion of treewidth, introduced by Robertson and Seymimotheir proof of Wag-
ner’s Conjecture [20], in recent years proved to be an eswattbol for capturing char-
acteristics of certain graph classes. Of particular irsteage algorithmic applications
of treewidth. Many problems, while hard in general, becootaustly tractable, when
the input graph is of bounded treewidth — a usual technigeedan constructing
a dynamic programming algorithm on the tree decompositiéghen combined with
the graph-theoretical properties of treewidth, the apgiid@ads to a number of surpris-
ingly efficient algorithms, including approximatian([6,larameterized [[7,17] and ex-
act algorithms[[1IL,22]. In most cases, the dynamic progemwes as a subroutine that
solves the problem, when the treewidth turns out to be small.

The tractability of problems parameterized by treewidth ba generalized into
a meta-theorem of Courcellel [3]: there exists an algorithat, tgiven a MSO formula
¢ and a graphG of treewidtht, tests whethep is true inG in time f(|¢|,t)|G| for
some functionf. Courcelle’s Theorem can be viewed as a generalization afchier
and Wright Theorem about equivalence of MSO on finite treesteae automata; in
fact, in the proof one constructs an analogous tree autanvedoking on the tree de-
composition. Unfortunately, similarly to other theoremgarding MSO and automata
equivalence, the functiofi, which is in fact the time needed to process automaton’s
production, can depend very badly s and¢ [12[23]. Therefore, a lot of effort has

http://arxiv.org/abs/1104.3057v1

been invested in actual construction of the dynamic programg algorithms mim-
icking the behaviour of a minimal bottom-up automaton inesrtb obtain solutions
that can be considered efficient and further used as robbebstines. One approach,
due to Arnborg et all]2], is extending MSO by maximisatiomanimisation proper-
ties, which corresponds to augmenting the automaton wilitiadal counters. In many
cases, the length of the formula defining the problem can dhecesl to constant size,
yielding af(¢)|G|°™ time algorithm. Unfortunately, careful analysis of theaithm
shows that the obtained functighcan be still disastrous; however, for many concrete
problems the algorithm can be designed explicitly and thapexity turns out to be
satisfactory. For example, for the expositorg®TEx COVER problem, the book by
Kleinberg and Tardos gives an algorithm with running tisdgs|°™) [13], while the
book by Niedermeier contains a solution with complegityG|©(") [19].

Recently, Lokshtanov et al. [115] initiated a deeper studgwfently best dynamic
programming routines working in single exponential timgemms of treewidth. For
a number of problems they proved them to be probably optianfaster solution would
yield a better algorithm for CNF-SAT than exhaustive sea@te can ask whether the
phenomenon is more general: the straightforward dynantgramming solution re-
flecting the seemingly minimal automaton is optimal unddieved assumptions. This
question was stated by the same set of authors in [16] for @auof problems based
on connectivity requirements, likedBINECTED VERTEX COVER or HAMILTONIAN
PATH. For these, the considered routines work in ti2ét) |G|9(1) | and a match-
ing lower bound for one such problem|€0OINT PATHS, was already established [16].

Surprisingly, the answer turned out to be negative. Vergmdyg, Cygan et al[4]
introduced a technique called Cut&Count that yields sirgdponential in terms of
treewidth Monte-Carlo algorithms for a number of connettigroblems, thus breaking
the expected limitimposed by the size of the automaton. &belts also include several
intriguing lower bounds: while problems that include mimation of the number of
connected components of the solution are tractable inesigbonential time in terms
of treewidth, similar tractability results for maximizati problems would contradict
Exponential Time HypothesiRecall thatExponential Time Hypothes(&TH) states
that the infinimum of such that there exists a&* algorithm solving 3CNF-SAT is
the number of variables), is greater than

A natural question arises: what properties make a problaatable in single expo-
nential time in terms of treewidth? Can we obtain a logicalrelsterization, similar to
Courcelle’s Theorem?

Our contribution. We introduce a model of logic, dubbekEETENTIAL COUNTING
MoDAL LoGlic (ECML), which captures nearly all the problems known to admial-
gorithm running in single exponential time in terms of trédtv. The model consists of
a variation of modal logic, encapsulated in a framework fonfulating computational
problems. We prove that model checking of ECML formulasagtable in single ex-
ponential time, when parameterized by treewidth. In addito solving the decision
problem, the algorithm can actually count the number oftsmhs. The result general-
izes a number of explicit dynamic programming routines éeample[[1,5,9,10,21)),
however yielding significantly worse constants in the bagexponents.

Furthermore, we extend the ECML by connectivity requireta@morder to show
that the tractability result for ECML can be combined witle tBut&Count technique
of Cygan et al. Again, we are able to show similar tractapiiar all the problems
considered in[4], however with significantly worse conssan the bases of exponents.

Finally, we argue that the introduced logic has to be in soersa navigational
or acyclic, by showing intractability in time°®*)|G|°() under ETH of two model
non-acyclic problem¢;-VERTEX DELETION and GRTH > | VERTEX DELETION for
[> 5, wherep is the width of a given path decomposition.

Outline. In Sectiori 2, we introduce the notation and recall the webivkn definitions.
We try to follow the notation froni[4] whenever it is possiblie Sectio B, we introduce
the model of logic. Sectidi 4 contains the main tractabikityult, while Sectiohl5 treats
of combining it with the Cut&Count technique. The detailgloé dynamic program de-
scribed in Sectiohl4 can be found in Appendix B and the prodiiefractability result
for the connectivity extension (dubbed ECML+C) can be foiméippendiXC. In Ap-
pendiXD, we present ECML+C formulas for all the connedjiyitoblems considered
in [4]. The reader can treat this part as a good source of ebesnap formulas of the
introduced logic. In Sectidn 6, we prove the intractabitégults under ETH. Again, the
details of the presented reduction can be found in AppdnldBeetiori ¥ is devoted to
concluding remarks and suggestions on the further study.

2 Preliminaries and notation

2.1 Notation

Let G = (V, E) be a (directed) graph. BY'(G) and E(G) we denote the sets of
vertices and edges (arcs) @f respectively. LetG| = |V(G)| + |E(G)|. For a vertex
setX C V(@) by G[X] we denote the subgraph inducedX¥yFor an edge set C F,
by V(X) denote the set of the endpoints of the edges ffdmand byG[X] — the
subgraphiV'(X), X). Note that for an edge sé&f, V(G[X]) may differ fromV (G).

In a directed grapt by connected components we mean the connected components
of the underlying undirected graph. For a subset of verticesigesX of G, we denote
by cc(X) the number of connected component&6#].

A monoid is a semigroup with identity. The identity of a moth@di/ is denoted by
e, While the operations in monoids are denotedibyVe treat the natural numbess
(nonnegative integers) also as a monoid with operati@and identity0.

2.2 Treewidth and pathwidth

Definition 1 (Tree Decomposition,[[20]) A tree decompositioaf a (undirected or di-
rected) graphG is a treeT in which each vertex € T has an assigned set of ver-
ticesB, C V (called abag such that J, . B. = V' with the following properties:

— foranyuv € E, there exists an: € T such thatu, v € B,.
— if v € By andv € By, thenv € B, for all z on the path fromx toy in T.

Thetreewidthtw(T) of a tree decompositioffi is the size of the largest bag @f
minus one. The treewidth of a graghis the minimum treewidth over all possible tree
decompositions of7. A path decompositiois a tree decomposition that is a path. The
pathwidth of a graph is the minimum width over all path decosifions.

We use a modified version of tree decomposition from [4],echilice tree decom-
position which is more suitable for development of dynamic prografie idea of
adjusting the tree decomposition to algorithmic needs coinoen Kloks [14].

Definition 2 (Nice Tree Decomposition, Definition 2.3 of [4])A nice tree decompo-
sitionis a tree decomposition with one special bagplled therootwith B, = () and in
which each bag is one of the following types:

— Leaf bag: a leafz of T with B, = 0.

— Introduce vertex bag: an internal vertex: of T with one child vertexy for which
B, = B, U {v} for somev ¢ B,. This bag is said téntroducev.

— Introduce edge bag: an internal vertex: of T labeled with an edgev € F with
one child bagy for whichu,v € B, = B,. This bag is said tantroduceuv.

— Forget bag: an internal vertex: of T with one child bag, for whichB, = B, \ {v}
for somev € B,. This bag is said tdorgetw.

— Join bag: an internal vertex: with two child verticeg andz with B, = B, = B,.

We additionally require that every edge fhis introduced exactly once.

The main differences between standard nice tree decormpsiised by Kloks[[14]
and this notion are: emptiness of leaf and root bags and usageoduce edge bags.
As Cygan et al. observed inl[4], given an arbitrary tree dgmosition, a nice tree
decomposition of the same width can be found in polynonmaétiTherefore, we can
assume that all our algorithms are given a tree decompoditat is nice.
Having fixed the root, we associate with each nodeof a tree decompositiof
a setlV, C V, where a vertex belongs toV, iff there is a bagy which is a descendant
of z in T with v € B, (we follow convention that: is its own descendant). We also
associate with each bagof T a subgraph of7,. defined as follows:

G, = (V, E, = {e| eisintroduced in a descendantof) .
As every edge is introduced exactly once, for each joinbagth childreny, z, E, is

a disjoint sum ofy, andE,.

3 The model of logic

We begin with introducing a notion offanitely recognizable set

Definition 3. A setS C N is calledfinitely recognizabléff there exists a finite monoid
M, asetF C M and homomorphismg : N — M such thatS = ag'(F).

The notion of finitely recognizable sets coincides with demaar sets oveN. To
better understand the intuition behind it, let us stateofeilhg simple fact.

Lemma 4. A setS C N is finitely recognizable iff it is ultimately periodic, i.there
exist positive integerd/, k such thatn € S < n+k € Sforalln > N.

The fact can be considered a folklore, however for the sakepofpleteness the
proof can be found in AppendixIA.

Intuitively, the main property of finitely recognizable séhat will be useful, is that
one can represent the behaviour of a nonnegative integeraspect to the operation
of addition by one of finitely many values — the elements ofrti@oid.

Now, we are ready to introduce the syntax and semantics of EGN¢ will do this
in two steps. First, we introduce the inner, modal part ofdjxetax. Then, we explain
how this part is to be put into the context of quantificatiorelosubsets of vertices
and edges, thus creating a framework for defining compurakjroblems.

3.1 The inner logic

The inner logic will be called GUNTING MODAL Logic (CML). A formula ¢ of
CML is evaluated in a certain vertexof a (directed) graplix supplied by a vector of
subsets of verticeX and a vector of subsets of edgésof lengthp, ¢ respectively. If
1 is true in vertexy of graphG, we will denote it byG, X, Y, v |= 9. We begin with
the syntax of CML for undirected graphs, defined by the follmpgrammar:

Y= [YAY|YVY Y=Y ey | XY O5Y | 0%
X2:X1|X2| |Xp
Y=Y |Ya| ... |Y,

The boolean operators are defined naturally. Let us firsfgudis the modal quantifiers
&S and¥. By definition,S has to be a finitely recognizable set. We define the seman-
tics of > in the following manner: we say thét, X, Y, v = {4 iff the number of
neighboursw of vertexv satisfyingG, X,Y,w = ¢ belongs taS. The quantifief1°
is somewhat redundant, as we say thatX,Y,v = 0% iff G, X,Y,v E =05 —p.
To shorten notation we usg for <>N+ andC for ON', whereN™ is the set of positive
integers. Thus, the definitions ¢f andJ coincide with the natural way of introducing
these quantifiers in other modal logigsy means that) has to be true in at least one
neighbour, whiley) means that) has to be true in all the neighbours. Observe that
the evaluation of the formula can be viewed as a process dimgpbn the graph —
each time we evaluate a modal quantifier we move to a neighdfahie current vertex.
Thus, after the first modal quantification there is a well ffpEtedge that was used to
directly access the current vertex from his neighbour.

OperatorsX can be viewed as unary predicates, checking whether thexyent
which the formula is evaluated, belongs to a particidarFormally,G, X, Y, v = X;
iff v € X;. OperatorsY play the same role for edges — they check, whether the edge
that was used to directly access the vertex belongs to ecplatiy;. Therefore, we
narrow ourselves only to such formulas that use operatansder some quantification.

We extend the logic to directed graphs by defining the neightmbe a vertex that
is adjacent via an arc, with no matter which direction. Weadtice two new operators
belonging toY: | andt. The| operator is true iff the arc that was used to directly access

the current vertex is directed towards it, whitds true iff it is directed towards the
neighbour. Note that the new operators are significantfgidint from other operators
in Y, as they are not symmetrical from the point of view of the endis.

Remark 5.In order to define the semantics of CML properly, without awkeness of
edge operators, we could bind them to the model quantifietthis variation of CML,
modal quantifiers are defined 3’%?1#7 Dgzp for 8 being a boolean combination of op-
erators fromY. The lower indices of quantifiers are the only place opesafiam Y
can occur. The semantics of diamond is now defined as folh;w%}rﬁw is true inw iff
the number of edgesw satisfying/, such that) is satisfied inw, belongs taS. Dgw

is defined to be equivalent teogﬁw. It is not hard to transform a CML formula to
an equivalent formula of this form. Having expressed alldsy diamonds, in bottom-
up manner we transform every subform@#& +/; to a form¢~ /\511 (8; =), where
B; are conjunctions olf operators and their negations, expressing all possitge-ali
ments of the edge to seY§, while v; use onlyX operators and subformulas beginning
with quantification. Obtained formula is however equivatera formula

21 i
\V A 05

q i
(mj)2L, 3231, myer; J=1

for S = a; '(m;), whereS; = a; *(F;) for o; being a homomorphism mappitg
into a finite monoid\/;. The described variation is a cleaner form of CML, however it
is much less convenient for expressing actual computdtynalems.

3.2 The outer logic

Let aninstancebe a quadrupléG, FX, FY ,k): a (directed) graplt: = (V, E) to-
gether with a vector of fixed subsets of vertideX, a vector of fixed subsets of edges
FY and a vector of integer parametérdn most cases the fixed sets are not used, how-
ever they can be useful to distinguish subsets of verticesiges of the graph that are
given in the input, like, for example, terminals in th&eESNER TREE problem. LetX

be a class of instances: a set of instances with the samégeofvectorsF X, F'Y , k.

We say thatX is expressible in ECML iff belonging t& is equivalent to satisfying

a fixed formulay of the following form:

¢ =dxdv [qSAva,F JFY . X, Y, v E w} .
Here:

— X andY are vectors of quantified subsets of vertices and edgesatasgg;

— ¢is an arbitrary quantifier-free arithmetic formula over pla@gameters, cardinalities
of sets of vertices and edges@fand cardinalities of fixed and quantified sets;

— 1 is a CML formula evaluated on the graphsupplied with all the fixed and quan-
tified sets.

We say that such formulas belong t&IETENTIAL COUNTING MODAL LoGIC (ECML).

Example 6.The VERTEX COVER problem, given an undirected graghand an integer

k, asks whether there exists a set of at miogertices such that every edge has at least
one endpointin the set. This can be reformulated as follgwifra vertex is not chosen,
then all its neighbours have to be chosen. Thus, the clasg&S8filstances of ¥RTEX
CoVER can be expressed in ECML using the following formula:

Ixcv (1 X] < k) AVG, X, v = (=X = OX).

Example 7.Ther-DOMINATING SET problem, given an undirected graghand an in-
tegerk, asks whether there exists a set of at miostertices such that every vertex
is at distance at most from a vertex from the set. The class of YES instances-of
DOMINATING SET can be expressed in ECML using the following formula:

Ixcv (IX] S k) AVLG, X, v = (X VOXVOX V... X VOX)..).

r quantifications

4 Tractability of problems expressible inECML

We are ready to prove the main result of the paper, namelyrdwability of X-
RECOGNITION problem. The algorithm will base on the technique of predigtuseful
in the construction of more involved dynamic programmingtitees on various types
of decompositions. For an example, see the tractabilitylre$ Demaine et al. for-
DOMINATING SET [5] that is in fact a prototype of the constructed algorithm.

XK-RECOGNITION B
Input: Aninstancel = (G, FX,FY k)
Question: DoesI € X?

Theorem 8. If the class of instancek is expressible iECML, then there exists an al-
gorithm that, given an instandealong with a tree decomposition 6fof widtht, solves
K-RECOGNITIONin time ¢!|G|°™) for some constant. Moreover, the algorithm can
also compute the number of vectofs Y satisfying the formula definingX.

Proof. As was already mentioned in Sectibh 2, we may assume thatitba gee
decomposition is a nice tree decomposition.

Let o = I3y (¢ AV.G, FX, FY,X,Y,v |=¢| be the formula defining the
classX of instances of form{G, FX, FY, k). Denote bypg, qo, p1, ¢1 lengths of vec-
torsFX, FY, X, Y respectively. We show the algorithm for computing the nunafe
possible solution,Y; testing the outcome against zero solves the decision gmabl

Firstly, the algorithm counts the cardinalities of fixedssbm vectorsF X, F'Y .
Then it introduces these constants into the arithmetic fdarp along with the param-
eters and the numbers of vertices and edge&.dlow, the algorithm branches into
(1+|V|)P*(1+ |E|)?* subroutines: in each it fixes the expected cardinalitiesiahdj-
fied sets from vectorX , Y. The algorithm executes only the branches with cardiealiti
satisfyinge and at the end sums up obtained numbers of solutions. Thiatigeyields
only a polynomial blow-up of the running time, so we may assuhat the expected

cardinalities of all the quantified sets are precisely deieed. Let us denote by, ¥
vectors of expected cardinalities &f, Y respectively.

As 09 quantifier can be expressed By’ quantifier, we may assume thatuses
only &* quantifiers. Consider all subformulas, v, . . . , 4; of) beginning with a quan-
tifier, denotey); = ¢!, LetS; be defined a&gil(Fi) for homomorphisnas, : N —
M;, finite monoidM; andF; C M;. LetH = Hli:1 M; be a product monoid.

Let us denotél = {0,1}71, P = {0, 1}\. Furthermore, lef = H x P x X. Intu-
itively, J is a set of possible information that can be stored abouttex:€Fhe informa-
tion consists ofhistory, an element of(; prediction a binary vector fron® indicating,
which formulasy; are predicted to be true in a vertex; aaldynment a binary vector
from X indicating, to which quantified sefs; a vertex belongs.

Before we proceed to the formal description of the algoritlehus give some in-
tuition about what will be happening. The history is an elata# the product monoid,
used to count already introduced neighbours satisfyintaceformulasy;. The addi-
tive structure or{ enables us to update the history during introduce edge amsiEps.
However, while determining satisfaction of subformulasn vertices of the graph, for
the vertices in the bag we have to know their 'type’ in the vehgilaph, not just the in-
fluence of already introduced part. Therefore, we introgareéiction: the information,
which subformulas are predicted to be true in a vertex in thelergraph. When do-
ing updates while introducing edges we can access the peddialues, however when
forgetting a vertex we have to ensure that its history is istest with the prediction.

Let R be the set of solutions, i.e., pairs of vectdfsY for which ¢ is satisfied in
every vertex and satisfying constraints imposed on calitliesof the sets. For a node
of the tree decomposition lete J%= be aninformation evaluationWe denotes(v) =
(hy, Ty, by), Wherev € B,. LetT, & be vectors of integers of lengths, ¢; respectively,
satisfyingd < 7; < x; and0 < ¢; <y;foralll <i <p;,1<j <g.Letus define
R.(T,7,s): the set of partial solutions consistent with vect@rg and information
evaluations. By this we mean the set of pairs of vecto¥sY of subsets of vertices
and edges of7,. respectively, such that the following conditions are $igiis

— |X1'|:Tif0r1 §i§p1,|Yj|:ojf0r1 Sjﬁth

— Everyv € B, belongs to exactly thos¥;, for which thei-th coordinate ob,, is 1.

— Inallv € G, \ B, the formulay is satisfied, when evaluated @, supplied with
quantified and fixed sets. However, when evaluating someuiarg; in a vertex
w € B, we access the corresponding coordinate in the prediatipmstead of
actually evaluating it irG..

— Forallv € B, the number of neighbours ofin G, satisfying the formula), maps
in ag, to thei-th coordinate oh,,, wherey is evaluated in the neighbour as if it
was accessed directly from Again, boolean values of formulas in the vertices
of B, are taken from the prediction instead of truly evaluated.

Observe thalR = R,.(X,¥,). The number of possible vectorsz and information
evaluationss is bounded byJ|*|G|°(), so it suffices to show a dynamic program that
computesd,. (7,7, s) = |R. (7,7, s)| for all possible arguments in a bottom-up fashion.
It is not hard to implement the performance of the routinecfagry type of a bag. The
details of an algorithm running ii3|?*|G|°") time are described in AppendiX B.

5 Adding connectivity requirements

We extend ECML by connectivity requirements. We say that @dthraetic formula
&(T,y) is monotonevery iff ¢(T,y) = ¢(Z,y’) fory > y'. In ECML+C, the arith-
metic formulag can also depend dac(FX;)|, |cc(FY;)|, |cc(X;)], |cc(Y;)], vectors
of numbers of connected components of fixed and quantified $be dependence on
the quantified part, variablésc(X;)| and|cc(Y})], is however restricted to be mono-
tone, i.e., ify is the variable ofs that corresponds to the number of connected compo-
nents of some quantified set, thghas to be monotone ovgr The need of monotonic-
ity can be justified by a number of lower bounds for problemsiving maximization
of the number of connected components, due to Cygan &t al. [4]

It appears that we can combine the Cut&Count technique wiighdyynamic pro-
gramming routine described in Sectldn 4 in order to obtaimilar tractability of prob-
lems defined in ECML+C. Unfortunately, application of theheique gives us the
tractability of only the decision problem. To the best offaarts knowledge, extending
the Cut&Count technique to counting problems is an opentgregposted in[[4].

Theorem 9. If the class of instanceX is expressible iECML+C, then there exists
a Monte-Carlo algorithm that, given the instanéealong with a tree decomposition
of G of widtht, solvesK-RECOGNITION in time ¢!|G|°(") for some constant. The
algorithm cannot produce false positives and produce®fabgatives with probability
at mosts.

The proof is a quite straightforward translation of the grobTheoren(8 to the
language of Cut&Count. For the sake of completeness, it edound in AppendikT.

6 The necessity of acyclicity

We prove the intractability results for two expository nacyclic problems.
C;-VERTEX DELETION

Input: An undirected grapliz and an integek

Question: Is it possible to remove at mostvertices fromG so that the remaining
vertices induce a graph without cycles of len¢fth

GIRTH > [VERTEX DELETION

Input: An undirected grapls and an integek
Question: Is it possible to remove at mostvertices fromG so that the remaining
vertices induce a graph without cycles of length at ni@st

Theorem 10. Assuming ETH, there is ri29(*)||°()) time algorithm forC;-V ERTEX
DELETION nor for GIRTH > [VERTEX DELETION for any! > 5. The parametep
denotes the width of a given path decomposition of the infagthy

As a path decomposition of width is also a tree decomposition of width the re-
sult is in fact stronger than analogous for treewidth indtebpathwidth. Before we
proceed to the proof, note that both these problems admihple2C(*)|G|O() dy-
namic programming algorithm, whetes the width of a given tree decomposition. In

10

the state, one remembers for every pair of vertices of Bagwvhether inG,, they can
be connected via paths of lengtl®, . .., I — 1 disjoint with the solution.

We present a polynomial-time reduction that given a 3CNFFS#stance: a for-
mula ¢ in 3CNF overn variables and consisting of. clauses, produces a graph
along with its path decomposition of width(,/n) and an integek, such that

— if ¢ is satisfiable the(\G, k) is a YES instance of &TH > [VERTEX DELETION;
— if (G, k) is a YES instance of;-VERTEX DELETION theny is satisfiable.

As every YES instance of BTH > | VERTEX DELETION is also a YES instance
of C;-VERTEX DELETION, the constructed instandé, k) is equivalent to given in-
stance of 3SCNF-SAT both when considered as an instan€g-dfERTEX DELETION
and of GRTH > [VERTEXDELETION. Thus, existence of an algorithm f6f-VERTEX
DELETION or GIRTH > | VERTEX DELETION running in2°®*)|G|°() time would
yield an algorithm for 3CNF-SAT running i2°(™ (n 4+ m)°() time, contradicting
ETH. We can assume that each clauseioontains exactly three literals by copying
some of them if necessary.

Let us chooser = U‘le, 8= (“711. Thus, following conditions are satisfied:
2<a<fB,a+p=128>12a0+4>1I.

Now we show the construction of the instance. The proof ofaisndness and the
bound on pathwidth can be found in Appendix E.

(a) Variable gadgef) .. (b) Clause gadget's

Construction. We begin the construction by creating two sets of vertide®, each
consisting of[\/ﬁw vertices. As|A x B| > 2n, let us take any injective function
¥ : L — A x B, whereL is the set of literals over the variables of the formgla.e.,
symbolsz and—z for all variablesz.

For every variable: we construct avariable gadget?,. in the following manner.
Lety(x) = (u,v) andy(—z) = (v/,v") (uw andu’ or v andv’ may possibly coincide).
Connectu with v andw’ with v’ via paths of lengtlv. Denote the inner vertices of the
paths that are closesttoandu’ by ¢, andt_, respectively. Conneet with ¢_, via two
paths: one of length and one of lengtts. Note that these two paths form a cycle of
lengthi. The gadget consists of all the constructed paths alongusitticesu, v/, v, v’.

Now, for every claus& = ry V ro V r3, Wherery, o, r3 are literals, we construct
the clause gadgeCy in the following manner. Let)(r;) = (u;,v;) fori = 1,2,3

11

(u; orv; may possibly coincide). Far= 1, 2, 3 connectu; with v; via a path of length
B, and denote inner vertices of these paths that are closesbipsg ... Connect each
Pair (551, S8.rs)s (88,095 SS.r3), (Ss.745 85,0,) Via two paths: one of length and one
of length5. Thus, we connects ., ss.r,, Ss,r, DY @ triple of cycles of length. The
gadget consists of all the constructed paths together \eitticesu,;, v;.

We conclude the construction by settihg= n + 2m.

7 Conclusions and open problems

In this paper we introduced a logical formalism based on Hikydd XISTENTIAL
COUNTING MODAL Loaic, capturing majority of problems known to be tractable
in single exponential time when parameterized by treewidtd proved that testing,
whether a fixed ECML formula is true in a given graph, admitsafgorithm with
complexityct |G|, wheret is the width of given tree decomposition. We extended
ECML by connectivity requirements and obtained a similactability result using the
Cut&Counttechnique of Cygan et all [4]. The need of modalftthe logic was justified
by a negative result under ETH that two model problems with-acyclic requirements
are not solvable i°®")|G|°() wherep is the width of a given path decomposition.
One open question is to breach the gap in the presented veegadult. Foi = 3,
C;-VERTEX DELETION is solvable in single exponential time in terms of treewjdth
while for [> 5 our negative result states that such a robust solution ikaipl To the
best of author’s knowledge, fér= 4 there are no matching lower and upper bounds.
Secondly, there are problems that admit a single expornetgarithm when pa-
rameterized by treewidth, but are not expressible in ECMhe @xample could be
K;-VERTEX DELETION, that, given a graplir along with an integek, asks whether
there exists a set of at mostertices that hits all the subgrapis. A dynamic program
for this problem running in time!|G|°™) can be constructed basing on the observa-
tion, that for every subclique of a graph there has to be a bliygdontaining it. Can
we find an elegant extension of ECML that would capture alst $ype of problems?

Acknowledgments The author would like to thank Mikotaj Bojahczyk for invalble
help with the logical side of the paper, as well as Marek Cyddarcin Pilipczuk
and Jakub Onufry Wojtaszczyk for many helpful comments eratigorithmic part.

References

1. Jochen Alber and Rolf Niedermeier. Improved tree decaitipo based algorithms for
domination-like problems. IhATIN 2002: Theoretical Informati¢golume 2286 of.ecture
Notes in Computer Sciengaages 221-233. Springer Berlin / Heidelberg, 2002.

2. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Eableprs for tree-decomposable
graphs.J. Algorithms 12:308-340, April 1991.

3. Bruno Courcelle. The monadic second-order logic of gsaphrecognizable sets of finite
graphs.Information and Computatiqré5(1):12 — 75, 1990.

4. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michiéipezuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity proldeparameterized by treewidth
in single exponential timeCoRR abs/1103.0534, 2010.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Erik Demaine, Fedor Fomin, Mohammad Hajiaghayi, and Dios Thilikos. Fixed-
parameter algorithms for thig, r)-center in planar graphs and map graphs Automata,
Languages and Programmingolume 2719 ofLecture Notes in Computer Sciengages
190-190. Springer Berlin / Heidelberg, 2003.

. Erik D. Demaine and Mohammad T. Hajiaghayi. The bidimenaiity theory and its algo-

rithmic applications.The Computer Journab1(3):292—-302, 2008.

. Frederic Dorn, Fedor V. Fomin, and Dimitrios M. ThilikoBast subexponential algorithm

for non-local problems on graphs of bounded genus. In L. Ange R. Freivalds, editors,
10th Scandinavian Workshop on Algorithm Theory, SWAT ,2086me 4059 oflLecture
Notes in Computer Scienggages 172—-183. Springer, 2006.

. David Eppstein. Diameter and treewidth in minor-closeaph families. Algorithmica

27(3):275-291, 2000.

. Samuel Fiorini, Nadia Hardy, Bruce Reed, and Adrian Vet®danar graph bipartization

in linear time. Inln Proc. 2nd GRACO, Electronic Notes in Discrete Mathensaiages
265-271. Elsevier, 2005.

Jorg Flum and Martin Groh@arameterized Complexity Theorjexts in Theoretical Com-
puter Science. Springer, 2006.

Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Aex@tgpanov. On two techniques
of combining branching and treewidtAlgorithmicg 54(2):181-207, 2009.

Markus Frick and Martin Grohe. The complexity of firstler and monadic second-order
logic revisited. InAnnals of Pure and Applied Logipages 215-224, 2002.

Jon Kleinberg anfiva Tardos Algorithm Design Addison-Wesley, 2005.

Ton Kloks. Treewidth, Computations and Approximatipmelume 842 ofLecture Notes in
Computer ScienceSpringer, 1994.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh. Knalgorithms on graphs of
bounded treewidth are probably optimal. 28st Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2012011. Accepted for publication, to appear.

Daniel Lokshtanov, Daniel Marx, and Saket Saurabh.h8Jiguperexponential parameter-
ized problems. Ir22st Annual ACM-SIAM Symposium on Discrete Algorithms, /S 1
2011. Accepted for publication, to appear.

Daniel Molle, Stefan Richter, and Peter Rossmanitlunkgrate and expand: Improved algo-
rithms for connected vertex cover and tree coddreory of Computing Systend3(2):234—
253, 2008.

Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirat¥atching is as easy as matrix
inversion. Combinatorica 7(1):105-113, 1987.

Rolf Niedermeier.nvitation to Fixed-Parameter Algorithmsolume 31 ofOxford Lecture
Series in Mathematics and its Applicatior®xford University Press, 2006.

Neil Robertson and Paul D. Seymour. Graph minors. I&nRt tree-width. Journal of
Combinatorial Theory, Series,B6(1):49-64, 1984.

Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rasigm Dynamic programming
on tree decompositions using generalised fast subset leiovo In A. Fiat and P. Sanders,
editors,17th Annual European Symposium on Algorithms, ESA 288l@me 5757 olec-
ture Notes in Computer Scienqeges 566-577. Springer, 2009.

Johan M. M. van Rooij, Jesper Nederlof, and Thomas C. vgn IDclusion/exclusion meets
measure and conquer. In A. Fiat and P. Sanders, editdtis, Annual European Symposium
on Algorithms, ESA 200%olume 5757 ol ecture Notes in Computer Sciengages 554—
565. Springer, 2009.

Mark Weyer. Modifizierte parametrische Komplexitatstheorie Dissertation, Albert-
Ludwigs-Universitat Freiburg, 2007.

13

A Proof of Lemmald

Lemma 11 (Lemmd34, restated)A setS C Nis finitely recognizable iff it is ultimately
periodic, i.e. there exist positive integeh§ & such that for alln > N the following
holdssne S&n+ ke S.

Proof. Assume tha¥t is finitely recognizable. Led/ be a finite monoid andg : N —

M a homomorphism such th&t = ag'(F) for someF C M. Recall that for every

finite monoid N there exists such a number called theidempotent powerthat for

everya € N the element. + ... + ¢ is anidempotent,iee+...+a=a+ ...+ a.
———

w 2w w
Let w be the idempotent power il. We claim that we can tak = k = w. Indeed,
if n > w, then
asn)=as(l)+...+as(l)=as(l)+... +as(l)+as(l) +... + as(l) =

n w n—w

as()+...+as()+as(l)+... +as(l) =as(n +w).

2w n—w

Now assume that we have positive integdtsc such that € S < n + k € S for
n > N. TakeM to be a monoid ovef0,1,..., N + k — 1} with the operationtj,
defined as follows:

a+b ifa+b< N +Ek,
a+pyb= .
N+ ((a+b— N)modk) otherwise.
Itis easy to verify that it is indeed a monoid. Furthermoegpls define homomorphism
as : N — M by settingas(0) = 0,as(1) = 1 and extending it naturally. A straight-
forward check proves that = ag' ({0,1,...,N + k — 1} N S).

B Details of the dynamic program from the proof of Lemmal4

We present, how the computation of valugés(7, 7, s) should be performed for every
type of a bag in a bottom-up fashion, in order to obtajfi|#|G|°()) algorithm.

The lenghts binary representations of valugs7, 7, s) are bounded by a polyno-
mial in the size of input, hence arithmetic operations dytime computation can be
carried out in polynomial time. We follow convention thalt\aluesA, with improper
arguments, for example having negative coordinates, diredito be zeroes. For a con-
dition ¢, by [¢] we denotel if ¢ is true, and) otherwise. Moreover, for a functionby
s[v = a] we denote the function\ {(v, s(v))} U {(v, «)}. Note that this definition is
correct even whes is not defined on.

Leaf bag «:
A,(0,0,0) =1

0 is a vector of zeroes of appropriate length. All other valdgér, 7, () are zeroes.

14

Introduce vertex v bag x, with child y:
Ay (7,7, s[lv = (h,m,b)]) = [h = ex]Ay(T — b,7, 5)

Observe that the introduced vertex has no neighbours sedféts history must be void,
which is indicated by checking whether the assigned hiswey, the identity of the
product monoid. However, its prediction and alignment camibitrary.

Introduce edge (arc)uwv bag z, with child y:

A(F7,8)= Y. Y A(FT—d.s)

de{0,1}91 s'e€S’

The first summation corresponds to all possible ways of dhgake family of setg;

the introduced edge belongs to. In the second summation meosgar all information
evaluations’ such that’ differs froms only on histories of vertices, v in the follow-

ing manner. The historji,, of w in s is the historyh!, of w in s’, but with images of

1 added on precisely these coordinateg/hich correspond to formulas; satisfied in

v, when accessed from The symmetrical condition holds for the histdry of v in s

and the history:!, of v in s’. This condition corresponds to updating the history after
introducing the edge. Observe that given the predictions, eralong with the informa-
tion about the sets (fixed or quantified)v belong to and the information about the sets
(fixed or quantified) the edge (ara) belongs to, we can compute which formu

are satisfied in. when accessed fromand vice versa. The number of considered eval-
uationss’ is constant and they can be enumerated in constant timee smthputation

of a single value takes constant time.

Forget vertexv bag x, with child y:

A(F78)= Y. Ay77,sv— (h,m,b)])
(h,m,b)ES

The summation corresponds to possible information storélde vertex we are forget-
ting. In order to forget a vertex without violating the defion of R(7, 7, s) we have
to ensure that the prediction is consistent with the historg thaty is satisfied inv.
Therefore, the summation is carried out over aSef goodtriples (h, r, b), such that

— h; € Fg, iff m; =1, foralll <i </

— the alignmenb and the satisfaction of formulas on quantification deptb (stored
in prediction) make the formula true. Note that there are no unquantified edge
operators, sb along with knowledge of fixed sefsX suffices to compute this.

The setG can be determined in constant time, so the computation ofggesvalue takes
constant time.

Join bag z, with children y, z:

Ay (7,7, 8) = Z Z Z Ay (7,7,)AL (7", T, s")

?/+?//:?+£(Bm) o'+5!'=c s'+s''=s

15

s’ +s"” = s denotes that for all the verticese B, the predictions irs(v), s'(v), s (v)

are equal, the alignmentsé(w), s’(v), s (v) are equal and the historiesdf{v) ands” (v)
sum up to the history in(v). The first summation corresponds to splitting the expected
cardinalities of setX in solution, however we have to take care of double countieg t
elements of the ba@, by adding to the right sidé(B,), the sum of the alignments

in s over the bagB,.. The second summation corresponds to splitting the exgeete
dinalities of set” in the solution. As every edge is introduced exactly once stts

E, and E, are disjoint and sum td&,, so there is no problem with double counting
the edges. Note that the number of summands consideredispfaynomial. The last
summation corresponds to splitting the information. Inesrth be able to merge two
partial solutions built under bags z, the alignments has to be the same in both bags
By, B, as well as the predictions. However, the histories are défiesing on num-
bers of neighbours satisfying appropriate conditions ddefore should be added.
As (E,, E,) is a partition ofE,;, we avoid problems with double counting the neigh-
bours. Observe that we can compute all the needed valy@s 7, s) in |7]%|G|°0) at
once. For every paifs’, s”') there exists at most one information evaluatissuch that

s’ +s” = s. Having computed it in polynomial time for every pdi’, s”), for every

s we can iterate through all the contributing pairs in ordeevaluate the presented
formula on A, (7,7, s). Thus, having fixed splitting of the acumulators, each pair i
considered at most once.

The computation of a single value takes constant time in latbduce, introduce
edge and forget steps, while the join step can be carriedd@itt| G|°(). As in every
step the algorithm computéd*|G|°()) values and there are polynomially many steps,
the whole algorithm runs iff|?¢|G|°™) time.

C Proof of Theorem[9

Let us recall that the crucial probabilistic tool used in @&&Count technique is the
Isolation Lemma.

Definition 12. A functionw : U — Z isolatesa set familyF C 2V if there is a unique
S e Fwithw(S") = minges w(S).

ForX C U,w(X)denotes) .y w(u).

Lemma 13 (Isolation Lemma, [18]).LetF C 2V be a set family over a univergé
with |F| > 0. For eachu € U, choose a weight:(u) € {1,2,..., N} uniformly
and independently at random. Then

. U
problw isolates¥] > 1 — %

We will now merge the deterministic result from Theorgin 8hwtite Cut&Count
technique in order to prove Theoréin 9. We follow notatiomffd] in order to make the
proof easier to understand for the reader already familidr the basics of Cut&Count.
The algorithm will be an extension of the algorithm given bye®reni 8, therefore we
will constantly refer to the details of its proof.

16

Theorem 14 (Theoreni®, restated)f the class of instancek is expressible it CML+C,
then there exists a Monte-Carlo algorithm that, given th&tancel along with a tree
decomposition oy of width ¢, solvesK-RECOGNITION in time ¢!|G|°(") for some
constantc. The algorithm cannot produce false positives and prodfiiss negatives
with probability at most.

Proof. As was already mentioned in Sectibh 2, we may assume thatitba gee
decomposition is a nice tree decomposition.

We will follow the same notation as in the proof of Theorlemt& tlassK is de-
fined by the formulap = 3535 [¢ AV,G, FX,FY, XY, v |=] and we are given
an instancgG, FX, FY, k) together with the tree decomposition &f of width ¢.

Do, o, P1, ¢1 are lengths of vectorBX, FY, X, Y respectively.

Firstly the algorithm computes cardinalities and numbéanected components
of fixed setsF X, F'Y. These constants along with the parameters and the numibers o
vertices and edges of the graph are introduced into thenaetib formulag. Then, the
algorithm branches intol + [V|)P* (1 + |E|)% - (14 |V])P* (1 + |V])9* subroutines, in
each fixing the expected cardinalities and numbers of caademmponents of all the
quantified sets. The algorithm executes only these branfdreshich the formulap is
satisfied. Thus, the number of branches is polynomial. Ebeagch will return a false
negative with probability at mos%. Therefore, we independently run every branch
a logarithmic number of times in order to reduce the prolitghilf a false negative
to at most%, whereK is the number of branches executed. Using the union bound we
can bound the probability of a false negative of the wholewdtgm by%.

Let us fix a branch. Lex, y be the vectors of expected cardinalities of sEtsY”
respectively, an@x, ¢y be the vectors of expected numbers of connected components
of X, Y respectively. Observe that the algorithm instead of dagidihether there exist
setsX;, Y; satisfying|cc(X;)| = cx;, [cc(Yj)| = cy; forall 1 <i <p;, 1 <j < py,
can decide whether there exist séig Y; satisfying|cc(X;)| < cx; and|cc(Y;)]| <
cy,. Indeed, by the monotonicity of the formujaif the algorithm finds out that the
answer to this (easier to satisfy) question is positiven the answer to the whole task
is positive as well. Therefore, we can relax the constramtdsed on the numbers of
connected components of quantified sets to inequalitiesnFrow on we focus only
on the case, when all the expected cardinalities of quanhtffets are fixed and the
expected number of connected components of every quargéigd bounded by some
fixed number.

We proceed to the description of the dynamic programmingimeu By cut of
agraphz = (V, E) we mean a paifV;, V») such thal’; UV, = V andVi NV, = 0. Let
us recall the notion afonsistently cut subgrapthe main ingredient of the Cut&Count
technique.

Definition 15 (Definition 3.2 of [4]). A cut (4, V4) of an undirected graplG =

(V,E) is consistenif u € V; andv € V, impliesuv ¢ E. A consistently cut sub-

graphof G is a pair (X, (X1, X2)) such that X, X5) is a consistent cut af[X].
Similarly, for a directed graptD = (V, A) a cut(V1, V») is consistent ifVy, V5) is

a consistent cut in the underlying undirected graph. A cstesitly cut subgraph d is

apair (X, (X1, X2)) such tha{ X1, X>) is a consistent cut of the underlying undirected

graph of D[X].

17

Observe that in this definitioA’ can be a subset of vertices as well as a subset of edges.
In both case$X;, X») is a cut ofV(G(X)), which can be a proper subsetiof

The Cut part. We will use the concept of markers, used in more involvediaptibns
of the Cut&Count technique. Let us define the familyoaihdidate solutiorR as the
set of quadruple€X, Y, MX, MY), where lengths aVX, MY arep,, ¢1 respectively,
such that

— 1 is satisfied in every vertex @ supplied with set§" X, FY, X,Y;

— setsX,Y satisfy the imposed conditions on their cardinalities ¢mittnecessarily
on the numbers of connected components);

- M¥ C X, [IMX| < ex; foreveryl <i < py;

- M) C Y, IM)| < cy; foreveryl <j < qu.

SetsM;*, M) are calledmarker sets

Suppose that we are given aweight function(V'x{0, 1, 2}?")U(Ex{0,1,2}%) —
{1,2,...,N}for N = 2|(V x {0,1,2}"*) U (E x {0,1,2}9)|. This weight function
will be fixed throughout the whole proof. Given a candidateson (X, Y, MX, MY)
we can define weight of a vertex agv,), where:x; = 0if v ¢ X;; x; = 1if
v € X; butv ¢ MX; andy; = 2if v € MX. Similarly we define the weight of an edge
(arc). Let us define the weight of a candidate solution asuheaf weights over all the
vertices and edges (arcs) of the graph. Ret be the set of candidate solutions with
weight exactlyi?’. Observe that the maximal value®f is O(N (|V| + |E])), which is
polynomial in terms of the input size.

Now we define the family a$olutionsS C R by requiring from a candidate solution
that

— each connected component®fX;] contains at least one vertex frawf;* ;
— each connected component®@fY;] contains at least one edge (arc) frmfrj/.

As [M;¥| < ex; and|MY| < cy;, these conditions imply the constraints on the num-
bers of connected components of s&tsY. Of course, as every pak,Y satisfying
all the imposed conditions can be marked appropriatelys#t8 is nonempty iff the
answer to the problem we are solving is true.

Our goal is to counfSy, | modulo2 for all possible weight$V. In order to do this,
we define the family obbjectsCy as the family of tuples

(X,Y,MX,MY),C1,Cy,...,Cp, D1, Ds,...,Dy),
where

- (Y,?,W,W) € Rw;

—forl < i < p, C; = (Vx, 1, Vx, 2) is such that X;, C;) is a consistently cut
subgraph of¥ andM;* C Vx, 1;

—forl < j < q, Dj = (W, 1, Vv, 2) is such thatY;, D;) is a consistently cut
subgraph of7 and every edge from'[}/ has both endpoints Wy, ;.

18

Intuitively, an object is a candidate solution togethetwvettuple of cuts consistent with
the quantified sets, such that all the markers are on one Ettle out. Observe that in
particularVx, 1 U Vx, 2 = X; forall 1 <i < p; andVy, 1 U Vy, » = V(Y;) for all
I1<j<aq.

The Count part. We begin with the observation that the algorithm can cdGnt|
(mod 2) instead of S| (mod 2).

Lemma 16. |Cw | = |Sw/| (mod 2) for all weightsiV.

Proof. Let us consider a candidate solutigh = (X,Y,MX,MY). For1 < i <
p1 let us denote byc(X;, M;¥) the number of connected components#fX;] not
containing a vertex fromM:* (called furtheunmarkegl. Similarly, cc(Y7, M}/) is the

number of connected components@f’;] not containing an edge (arc) from}” for
1 <i < ¢,. Observe that there are exacflf", 2¢<(X:-M) I, 2e<(Y;: M) opjects

associated witld): for every setX; we have2es(X:-M5) choices of including unmarked
connected components 6fX;] to the sides of the cuf;, and the analogous holds for
setsY;. Therefore,

ewl= Y e [[a0ie),
j=1

(X, Y MX MY)eRy =1

Take both sides modul®. Observe that the product under the sum is odd exactly for
those candidate solutions, where there are no unmarkedctathcomponents of the
quantified sets. Therefore, when considered mo#guloe summands are ones for these
candidate solutions that are in fact solutions, and zertieswise. The claim follows.

We now present a dynamic programming routine that comg@Gig$ modulo2 for
all possible weight$V. We begin with adjusting the information stored in a vertx t
our needs. We will follow the notation from the proof of Theon(8:v; = Sig)!
are the subformulas af that begin with quantification, for < ¢ < [. Furthermore,
S; = agf (F;) for homomorphismses, : N — M; mappingN into finite monoids\/;,
and setd"; C M;. Let

— K = []'._, M; be the history monoid;

— P = {0, 1}! be the set of possible predictions;

— X ={0,1,,15}?* be the set of vectors indicating belonging to the sétsinclud-
ing the side of the cut® means not belongind,; means belonging t¥x, 1, 12
means belonging toy, »;

- Y =1{0,11,1,}% be the set of vectors indicating existence of neighbouréuges
from the sets’;. 0 on j-th coordinate means that there is no incident edge frpm
introduced so far]; means that some incident edges have been introduced and the
vertex has been chosen to belig, 1, 1. means the analogous but the vertex has
been chosen to be Wy, .

Observe that in spite of syntactical similarities betweetis¥ andy, their role is quite
opposite. While information frori is being guessed in the introductory step of a ver-
tex, and then is constant during considering possible sidan of a partial solutiory
acts more like history, remembering the types of so far thiced adjacent edges.

19

Let us define the set of possible information stored aboutreexeas) = H x
P x X x Y. We will refer to corresponding parts ashistory, prediction X-alignment
andy-alignment

Let us fix a bagB,.. As in the proof of Theorerhl 8, we define the set of partial
objectsC, (W, 7,7, 7, T, s) for information evaluation € JP=, as the family of tuples
(X,Y,MX,MY),C4,Cs,...,Cp,, Dy, Do, ..., D,) such that following conditions
are satisfied.

— The sum of weights of edges frof), and vertices fronV,, \ B, is exactlylV’.
— Forall1 < i < p; the following holds:
e (X;, ;) is aconsistently cut subgraph Gf;;
e M¥ CVx,1\ By CX; CVy;
[|Xl| = Ti, |Mf(| = V;.
— Foralll < j < ¢ the following holds:
o (Y;,D;) is aconsistently cut subgraphGf;;
e MY CY; C E, and every edge (arc) INC)” has both endpoints iy, 1;
o Y| =0;, [M}| = py.

— TheX, Y-alignments froms(v) for v € B, are consistent with set§, Y and cuts
Cl,Cg,...,Cpl,Dl,Dg,...,Dql.

— Inevery vertexob € V. \ B, the formulay is true, when evaluated i, supplied
with setsF X, F'Y, X,Y. However, when trying to evaluate the boolean value of
some formulay; in a vertex fromB,,, we access the value in the prediction instead
of actually evaluating the formula.

— For everyv € B,, the number of neighbours ef in G, satisfying formulai;

(1 <4 <), when accessed directly from maps inas, to thei-th coordinate of
the history froms(v). Again, when evaluating formulas in vertices fromB,,, we
access the value from the prediction instead of actuallgrdghing the outcome in
Gy.

Note that according to this definition, the vertex markes &eitve to be disjoint with the
bag and summation of weights is carried out over verticasatteenot in the bag. The al-
gorithm will guess the alignment of a vertex to marker setbugrdate the weight during
its forget step. If we chose otherwise, namely to performatigsl during introduction,
the problem with double counting would arise during the join

Letusdenoted, (W, 7,7,7, 1, s) = |C. (W, T,7,7, T,)| (mod 2). From now on,
all the computations over the valugls, will be carried out inZ,. Observe that we
need to COMPU_,. , oy, D i <cy, Ar(W.X, ¥, 7,7, 0) for all possiblelV. Thus,
it suffices to show a dynamic programming routine that willngpaute all the values of
A, for possible arguments in a bottom-up fashion. We now pitabersteps that have
to be carried out during computation for every type of a bag fallow convention that
all valuesA, with improper arguments, for example having negative cioattds, are
defined to be zeroes. For a conditigrby [¢] we denotdl if ¢ is true, and) otherwise.
Moreover, for a function by s[v — «] we denote the function\ { (v, s(v))}U{(v, @) }.
Note that this definition is correct even wheis not defined om. Also, we treat vectors
over{0,1,,1-} also as vectors ovg0, 1} by mappingd — 0 and1;,15 — 1.

20

Leaf bag «:
A,(0,0,0,0,0,0) =1

0 denotes vector of zeroes of appropriate length. All othkresof A, (W, 7,7, 7, 1, 0)
are zeroes.

Introduce vertex v bag x with child y:
Ax(W. 7,7, 7,70, s[v = (h, 7, b,e)]) = [= eg][e = 0] Ay (W, T — b,7, 7,0, 5)

This step is almost the same as in the algorithm from the Bm&: The new vertex has
no neighbours so far, therefore its history must be voidchlis indicated by checkng
whether the assigned history is equalktg, the identity of H. For the same reason,
its side of the cut for any séf; is not decided yet, hence the second check. However,
prediction and thél-alignment can be arbitrary. Note that the new vertex dods no
contribute to the weight of the partial object and does ntirgeto any marker sets.

Introduce edge (arc)uv bagz with child y:
Letb(u), e(u),b(v), e(v) be theX- andY-alignments ins(u), s(v) respectively.

(W, 7,5, 5,10, 8) = Vi (b(w)s = 0V b(v)s = 0V b(u)s = b(v)s)]
> Ydj =1) = (e(u); = e(v); #0))]

de{0,1}n

> Vi(d; =0) = (mj =0) A
me{0,1}91
(mj =1) = (e(u); = e(v); =11))]

Z Ay(W —w(uv,d +m), 7,0 —d, 7, i —m, ")
s'eS’

Before we start any summations, we need to ensure that theagsvis consistent with
the cuts(;, otherwise the whole outcome is zero. The first two summatimnrespond

to all possible ways of choosing the alignment of the newtoiduced edge to sels

and marker setM}/. Again, having fixed these alignments we have to ensureltlet t
are consistent with the cuf3;. As the edge already contributes both to the cardinalities
of marker sets and the weight of the partial object, we neett¢ess the precomputed
values with updated weight and cardinalities of SEtsMY". In the third summation
we sum over all information evaluatiorSsuch that’ differs froms only on histories
andY-alignments of vertices, v. As in the proof of Theorei 8, histories sifu), s(v)
have to be histories ig’(u), s’(v) but updated with respect to the introduced edge by
possibly adding an image of one on a coordinate, whenevernauta ¢} is true in

the neighbour when accessed directly from the considenge@ his can be resolved

in constant time knowing vectaf and the predictions an@i—alignments inu, v. In
addition, we need to ensure that thalignment is properly updated: in both vertices
u,v, for every indexi, thei-th coordinate of thé(-alignment has to be at least the
same ins as ins’ (it may change fron® to 1; or 15, or stay the same). Similarly as
in the proof of Theoreml8, the number of contributing infotima evaluationss’ is

21

constant and the algorithm can enumerate them in constaet fihus, the computation
of a single value can be performed in constant time.

Forget vertexv bag x with child y:
Letb(v) denote théC-alignmentins(v).

AW R E o) = > Mm=1)=0b);=1) Y,
me{0,1}P1 (h,m,b,e)€S
A,(W —w(v,b(v) +m), 7,7, 7 —m, T, slv = (h,m,b,e)])

The first summation corresponds to possible choices of vectmdicating belonging
of v to the marker se3(X. If v is to be contained itV;X, then it has to be contained
in Vx, 1, so thei-th coordinate of vectob has to bel,. For a particular vectom al-
ready satisfying this condition, vectéfv) + m (over{0, 1, 2}) exactly indicates the
belonging ofv to X andMX in the sense of the definition of weight functian Thus
w(v,b(v) +m) is the precise weight of vertexin this partial object and can be used to
access precomputed value with updated weight. The secomehation is the same as
in the corresponding step of the algorithm from Theokém 8.sWfa over all possible
information that could be stored in the vertex we forget, having the history consis-
tent with the prediction and making the formulasatisfied. Similarly to the proof of
TheoreniB, the computation of a single value can be carrieth@onstant time.

Join bag z with children y, z:

A WFT T s = > > > X > X

W/+W//:W ?/+?//:?+E(BI) E/JFE//:E yl+v//:§ p/er//:p S/+SH:S
! = = = =/ !/ "= = = - 1
Ay(W,T,O',I/,/,L,S)AZ(W,T,O’,I/,/,L,S)

The step is a generalization of the corresponding from tbefpsf Theoreni B. Here,
s’ + s” = s denotes that for all the verticesc B,:

— the predictions ins(v), s’ (v), s”(v) are the same;

— theX-alignments ins(v), s’ (v), s (v) are the same;

— the histories iy’ (v) ands” (v) sum up to the history in(v) (in the history monoid);

— the Y-alignments ins’(v) ands”(v) sum up toY-alignment ins(v). By this, we
meanthab+a =aforalla € {0,1;,15},11 +1; = 11, 12+ 15 = 15, however
addition1; + 1, cannot be carried out and such a pair is forbidden to occungn a
coordinate of added vectors.

The first summation corresponds to splitting the weight agnauo partial solutions, the
next two correspond to splitting the cardinalities of sEtsY’, the next two correspond
to splitting the numbers of so far used markers and the lasitrgtion corresponds
to splitting the information evaluations. As the markessate disjoint with the bags,
weights of the partial solution are not summed over the balyfanis a disjoint sum

of E, andE,, the problem with double counting can possibly occur onlthmsecond

sum. It can be however solved by adding to the right side ofetingation the vector
&(B,) — the sum over the ba@, of X-alignments ins. Similarly as in the proof

22

of TheoreniB, for every pair of information evaluatio@$, s”) the algorithm can de-
termine the (at most one) information evaluatioit contributes to. Then, for every
information evaluatiors we consider only contributing pairs, thus considering gver
pair only once. Therefore, the computation of the whole stpbe performed in time
|j|2t|G|O(1),

The computation of a single value in leaf, introduce, introeledge and forget steps
takes constant time, while the whole join step can be pearin |7/2¢|G|°™) time.

As there areJ|*|G|°(V) values to be computed at each step and the number of steps is
polynomial, the whole dynamic programming routine rung|#|G|°() time.

The whole algorithm works as follows. Firstly, choose raméipthe weight func-
tion, each value independently with uniform distributi@hen, for every possible weight
W computeSy, | modulo2 using described dynamic programming routine and Lemma
[I8. If at least one of the computed values jsnswer YES, otherwise answer NO.

In order to prove soundness of the described algorithm,rgbgbat if at least one
|Sw | is odd then it is a sufficient proof of existence of at least solation. Therefore,
the algorithm can safely answer YES without risking a falgsifive. On the other hand,
the Isolation Lemma assures that in case of existence ofi@od i.e. the se$ being
nonempty, with probability at Iea%tthere exists a unique solution with minimal weight
Wp. As1is odd,|Sw,| is odd as well and the algorithm will answer YES.

D ECML+C formulas for problems considered in [4]

We present logical formulas of ECML+C for problems provebéaractable in single
exponential time when parameterized by treewidth by Cydaa. ewhen introducing
the Cut&Count techniqué [4]. All of them are of quantificaticank at mosti, which
explains why Cygan et al. did not need to use the predictionrtigue in their proofs.
The exact problem definitions can be foundih [4].

The formulas do not use fixed sets, unless it is explicitedyest. The vectors of
parameters always consist of one paramkter

STEINER TREE
(T, the terminals, is a fixed set of vertices)

Axcv(ec(X)| < TA|X| <k+|T) AVG, T, X,v = (T = X)

FEEDBACK VERTEX SET

IxcvIzevIvee(lcc(Y)| + Y]+ [Z] + [X] < VA |X] < E)A
V.G, X, Z,Y,v = [(Z & (~X AOX)) A (X = O0-Y) A (<X = O(-X = Y))]

CONNECTEDVERTEX COVER

Axcv(ec(X)| < LA |X] < k) AV,G, X, v = (=X = OX)

23

CONNECTEDDOMINATING SET

v (ec(X)] < 1A X] € k) AVG, X, v b (-X = OX)

CONNECTEDFEEDBACK VERTEX SET

Ixcv3zevIver(lce(Y)|[+ Y|+ [Z] + | X[< [V Afec(X)| S TAX] < k)A
VoG, X, Z,Y,0 = [(Z & (=X ADX)) A (X = O-Y) A (=X = O(=X = Y)]

CONNECTEDODD CYCLE TRANSVERSAL
ngvﬂLgvﬂRgvﬂcc(X” <1A |X| <]{) /\VUG,X,L,R,’U):
(LVRVX)A-(LAR)A-(RAX)AN-(X AL)A
(L=0RVX)AN(R=0OLVX))

Undirected MN CycLE COVER

Jycu(lcc(Y)| < k) AYG, Y, v E Oy

Directed MN CycLE COVER

Aycn(lecV)] < k) AVG,Y,v k= [(0UHYA D) A (O (VA L)

Undirected lONGESTPATH
EAgvﬂygEGCC(Yﬂ <1A |A| =2A |Y| > k) /\VUG,A,Y,U ':
[(A = WY)A (-4 = Q{OvQ}Y)}

Directed LONGESTPATH
TucvIpcyIyer(cc(Y) S LA|A =1A|B|=1A Y| > k) AV.G, A, B,Y,v £
(A = [ﬂB AT Y A ST YA ¢))D A
(B = {ﬁA ASTY A ST YA T))D A
((Gan-B) = [(=oV) v (@A) A O Y A))

Undirected IONGESTCYCLE

Jycr(lcc(Y)| < TA|Y| > k) AY,G,Y,v = 02y

Directed LONGESTCYCLE

Fycp(lec(Y)| S1AY] > k) AVG Y, v [(ﬂ<>Y> V(O YA L) A M IA)

24

EXACT k-LEAF SPANNING TREE

rcvIrce(ce(T)| S IAIL| = kA |T| = V]| = 1) AYWG, L, T,v = (OT) A (L & ST

EXACT k-LEAF OUTBRANCHING
(R, the singleton of the root, is a fixed set)

HLgvﬂTgEOCC(T” <1A |L| =kA |T| = |V| —1A |R| = 1) AY,G, R, L, T,v):
[(OT) A (R = =0(TA 1) A (SR = GUHTAD) A (L & =0(TA L))

MAXIMUM FULL DEGREESPANNING TREE

EpgvﬂTgEOCC(T)l <1A |F| > kA |T| = |V| - 1) AV,G,F,T,v ': (<>T) AN (F<:> DT)

GRAPH METRIC TRAVELLING SALESMAN PROBLEM
(2N denotes the set of even nonnegative integers)

JycrIviceIvacr(lcc(Y)] < TA VI +2[Ys| < k) AVLG,Y, Y1, V2,0 =
(O & (Y1 VY2))) A(O(=Y1V=Y2)) A (OY) A (O]

E Correctness of the reduction from the proof of Theoren{ 1D

Soundness.Let G be the graph obtained in the construction. Dedte A U B. We
prove the soundness of the construction in two steps, asesasided in Sectidn 6. We
also follow convention introduced there.

Lemma 17. If ¢ is satisfiable, thedG, k) is a YES instance dBIRTH > | VERTEX
DELETION.

Proof. We need to show thaf contains a seX of n + 2m vertices that hits all the
cycles of length at most Let ¢ be an assignment satisfying For every variable
x, take intoX the vertext, if ¢(z) = TRUE, andt_, otherwise. For every clause
S =1 Vry Vrs letr; be any literal that satisfie$. Take intoX two vertices-;, where
j # 4. Thus|X| = n + 2m. We now verify thatG \ X contains no cycle of length at
mostl.

Let C be any cycle inG. We need to prove that eithéft contains a vertex fronX
or is of length greater thah Observe that the parts of gadgets not containel are
pairwise independent. Therefore, we can distinguish tbases:

— C'is fully contained in one gadget;
— C'is not contained in one gadget and passes through exactlyaxtioes frompP;
— C'is not contained in one gadget and passes through three ervadices fromP.

25

Regarding the first case, observe that after deleXingvery gadget becomes a for-
est, so in this cas€' has to contain a vertex froot. Note that this is true also when
some of vertices, v, u’, v’ (in case of the vertex gadget) oy, v; (in case of the clause
gadget) coincide.

Regarding the latter cases, observe that two vertice$rom P in G are in distance
aif (u,v) = 9(r) for some literal-, and are in distance at least- 2 otherwise. IfC
passes through two vertices frafhthat are in distance at least+ 2, then its length
is at leasa + 4 > [. This immediately resolves the third caseCifpasses through
at least three vertices from, then there is a pair of them contained either botilin
or both in B, thus not contained in the image ¢f As a result, in the third case the
length ofC is greater than.

We are left with the second case. Moreover, we can focus antii@subcase, when
the two vertices fronP thatC passes through are suehw that(u, v) = v (r) for some
literal r, equal tar or —2. Observe that paths connectingndv in G \ X not passing
through other vertices fron®?, can only be paths built while constructing gadgets
or Cs,, for clausesS containingr, of lengtha and 3 respectively. A5 > [, C could
possibly not pass through vertices froxhand have length at moétif it consisted of
the path fromQ), and a path fronC , for someS. If ¢(z) is such that is true, then
t, € X andC contains a vertex fronX'. Otherwise, all the clauses containingad to
be satisfied by some other literal, 89, € X for everyS containingr. Thus, also in
this situationC' contains a vertex fronx .

Lemma 18. If (G, k) is a YES instance @f;-VERTEX DELETION, theny is satisfiable.

Proof. Let X be the set of at most + 2m vertices such tha¥ \ X contains no cycles
of length/. Observe thaX has to include at least one vertex from each cycle of length
[spanned between vertices andt—, for every variabler, and at least two vertices
from each subgraph induced by a triple of cycles of lerigéhanned betweesy ..,
58.ryy S8,r, TOr €very clauses = ry Vry Vrs. All the mentioned subgraphs are pairwise
disjoint, soX has to contain exactly one vertex from each cycle spanneuceet .,
andt-, and exactly two vertices from each subgraph induced by &tdp cycles
spanned betweety .., ss.r,, Ss,r,. Observe that we can assume that the solution does
not contain any inner vertex of these cycles, i.e., of degréecause a choice of such
a vertex can always be substituted with a choicg of . or ss ., for somei (depending
whether we are considering a variable or a clause gadgedjeldre, for each variable
x, the setX contains exactly one vertex from the et.,¢-.} and for each clause
S = r; Vry Vrs, X contains exactly two vertices from the Sets -, Ss.ry, S5.r4 }-
Consider an assignmegtsuch thatp(z) = TRUFE if t, € X and¢(xz) = FALSE if
t- € X.We claim thatp satisfiesp.

Consider a clausé = r Vre Vrs. Leti be such an index thag ., ¢ X. Consider
a cycle of length formed by two paths connecting vertices fram;): one from the
gadgeUC; of lengths and one from the gadgék, of lengtha, wherer = x orr = —x.
As X hits this cycle, then,, € X, sor; satisfiesS. As .S was an arbitrary clause, this
concludes the proof.

26

The bound on pathwidth.

Lemma 19. pw(G) = O(y/n) and a decomposition of such width can be computed in
polynomial time.

Proof. As was already mentioned in the proof of Lemma 17, the pargadfjets not
contained inP are pairwise independent. Moreover, the gadgets are otaunsize.
Therefore, we can create a path decomposition of widtyn) in the following man-
ner. We construct + m bags, one for each gadget. The bag contains the whole set
and the whole gadget, thus having si2é,/n). We arrange the bags into a path in any
order.

	Problems parameterized by treewidth tractable in single exponential time: a logical approach
	 Michał Pilipczuk

