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Abstract. We introduce a variant of modal logic, dubbed EXISTENTIAL COUNT-
ING MODAL LOGIC (ECML), which captures a vast majority of problems known
to be tractable in single exponential time when parameterized by treewidth. It ap-
pears that all these results can be subsumed by the theorem that model checking of
ECML admits an algorithm with such complexity. We extend ECML by adding
connectivity requirements and, using the Cut&Count technique introduced by
Cygan et al. [4], prove that problems expressible in the extension are also tractable
in single exponential time when parameterized by treewidth; however, using ran-
domization. The need for navigationality of the introducedlogic is justified by
a negative result that two expository problems involving non-acyclic conditions,
Cl-VERTEX DELETION and GIRTH > l VERTEX DELETION for l ≥ 5, do not
admit such a robust algorithm unless Exponential Time Hypothesis fails.

1 Introduction

The notion of treewidth, introduced by Robertson and Seymour in their proof of Wag-
ner’s Conjecture [20], in recent years proved to be an excellent tool for capturing char-
acteristics of certain graph classes. Of particular interest are algorithmic applications
of treewidth. Many problems, while hard in general, become robustly tractable, when
the input graph is of bounded treewidth — a usual technique bases on constructing
a dynamic programming algorithm on the tree decomposition.When combined with
the graph-theoretical properties of treewidth, the approach leads to a number of surpris-
ingly efficient algorithms, including approximation [6,8], parameterized [7,17] and ex-
act algorithms [11,22]. In most cases, the dynamic program serves as a subroutine that
solves the problem, when the treewidth turns out to be small.

The tractability of problems parameterized by treewidth can be generalized into
a meta-theorem of Courcelle [3]: there exists an algorithm that, given a MSO formula
ϕ and a graphG of treewidtht, tests whetherϕ is true inG in time f(|ϕ|, t)|G| for
some functionf . Courcelle’s Theorem can be viewed as a generalization of Thatcher
and Wright Theorem about equivalence of MSO on finite trees and tree automata; in
fact, in the proof one constructs an analogous tree automaton working on the tree de-
composition. Unfortunately, similarly to other theorems regarding MSO and automata
equivalence, the functionf , which is in fact the time needed to process automaton’s
production, can depend very badly on|ϕ| andt [12,23]. Therefore, a lot of effort has
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been invested in actual construction of the dynamic programming algorithms mim-
icking the behaviour of a minimal bottom-up automaton in order to obtain solutions
that can be considered efficient and further used as robust subroutines. One approach,
due to Arnborg et al. [2], is extending MSO by maximisation orminimisation proper-
ties, which corresponds to augmenting the automaton with additional counters. In many
cases, the length of the formula defining the problem can be reduced to constant size,
yielding af(t)|G|O(1) time algorithm. Unfortunately, careful analysis of the algorithm
shows that the obtained functionf can be still disastrous; however, for many concrete
problems the algorithm can be designed explicitly and the complexity turns out to be
satisfactory. For example, for the expository VERTEX COVER problem, the book by
Kleinberg and Tardos gives an algorithm with running time4t|G|O(1) [13], while the
book by Niedermeier contains a solution with complexity2t|G|O(1) [19].

Recently, Lokshtanov et al. [15] initiated a deeper study ofcurrently best dynamic
programming routines working in single exponential time interms of treewidth. For
a number of problems they proved them to be probably optimal:a faster solution would
yield a better algorithm for CNF-SAT than exhaustive search. One can ask whether the
phenomenon is more general: the straightforward dynamic programming solution re-
flecting the seemingly minimal automaton is optimal under believed assumptions. This
question was stated by the same set of authors in [16] for a number of problems based
on connectivity requirements, like CONNECTED VERTEX COVER or HAMILTONIAN

PATH. For these, the considered routines work in time2O(t log t)|G|O(1), and a match-
ing lower bound for one such problem, DISJOINT PATHS, was already established [16].

Surprisingly, the answer turned out to be negative. Very recently, Cygan et al. [4]
introduced a technique called Cut&Count that yields singleexponential in terms of
treewidth Monte-Carlo algorithms for a number of connectivity problems, thus breaking
the expected limit imposed by the size of the automaton. The results also include several
intriguing lower bounds: while problems that include minimization of the number of
connected components of the solution are tractable in single exponential time in terms
of treewidth, similar tractability results for maximization problems would contradict
Exponential Time Hypothesis. Recall thatExponential Time Hypothesis(ETH) states
that the infinimum of suchc that there exists acn algorithm solving 3CNF-SAT (n is
the number of variables), is greater than1.

A natural question arises: what properties make a problem tractable in single expo-
nential time in terms of treewidth? Can we obtain a logical characterization, similar to
Courcelle’s Theorem?

Our contribution. We introduce a model of logic, dubbed EXISTENTIAL COUNTING

MODAL LOGIC (ECML), which captures nearly all the problems known to admit an al-
gorithm running in single exponential time in terms of treewidth. The model consists of
a variation of modal logic, encapsulated in a framework for formulating computational
problems. We prove that model checking of ECML formulas is tractable in single ex-
ponential time, when parameterized by treewidth. In addition to solving the decision
problem, the algorithm can actually count the number of solutions. The result general-
izes a number of explicit dynamic programming routines (forexample [1,5,9,10,21]),
however yielding significantly worse constants in the basesof exponents.
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Furthermore, we extend the ECML by connectivity requirements in order to show
that the tractability result for ECML can be combined with the Cut&Count technique
of Cygan et al. Again, we are able to show similar tractability for all the problems
considered in [4], however with significantly worse constants in the bases of exponents.

Finally, we argue that the introduced logic has to be in some sense navigational
or acyclic, by showing intractability in time2o(p

2)|G|O(1) under ETH of two model
non-acyclic problem,Cl-VERTEX DELETION and GIRTH > l VERTEX DELETION for
l ≥ 5, wherep is the width of a given path decomposition.
Outline. In Section 2, we introduce the notation and recall the well-known definitions.
We try to follow the notation from [4] whenever it is possible. In Section 3, we introduce
the model of logic. Section 4 contains the main tractabilityresult, while Section 5 treats
of combining it with the Cut&Count technique. The details ofthe dynamic program de-
scribed in Section 4 can be found in Appendix B and the proof ofthe tractability result
for the connectivity extension (dubbed ECML+C) can be foundin Appendix C. In Ap-
pendix D, we present ECML+C formulas for all the connectivity problems considered
in [4]. The reader can treat this part as a good source of examples of formulas of the
introduced logic. In Section 6, we prove the intractabilityresults under ETH. Again, the
details of the presented reduction can be found in Appendix E. Section 7 is devoted to
concluding remarks and suggestions on the further study.

2 Preliminaries and notation

2.1 Notation

Let G = (V,E) be a (directed) graph. ByV (G) andE(G) we denote the sets of
vertices and edges (arcs) ofG, respectively. Let|G| = |V (G)| + |E(G)|. For a vertex
setX ⊆ V (G) byG[X ] we denote the subgraph induced byX . For an edge setX ⊆ E,
by V (X) denote the set of the endpoints of the edges fromX , and byG[X ] — the
subgraph(V (X), X). Note that for an edge setX , V (G[X ]) may differ fromV (G).

In a directed graphG by connected components we mean the connected components
of the underlying undirected graph. For a subset of verticesor edgesX ofG, we denote
by cc(X) the number of connected components ofG[X ].

A monoid is a semigroup with identity. The identity of a monoidM is denoted by
eM , while the operations in monoids are denoted by+. We treat the natural numbersN
(nonnegative integers) also as a monoid with operation+ and identity0.

2.2 Treewidth and pathwidth

Definition 1 (Tree Decomposition, [20]).A tree decompositionof a (undirected or di-
rected) graphG is a treeT in which each vertexx ∈ T has an assigned set of ver-
ticesBx ⊆ V (called abag) such that

⋃

x∈T
Bx = V with the following properties:

– for anyuv ∈ E, there exists anx ∈ T such thatu, v ∈ Bx.
– if v ∈ Bx andv ∈ By, thenv ∈ Bz for all z on the path fromx to y in T.
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The treewidthtw(T) of a tree decompositionT is the size of the largest bag ofT
minus one. The treewidth of a graphG is the minimum treewidth over all possible tree
decompositions ofG. A path decompositionis a tree decomposition that is a path. The
pathwidth of a graph is the minimum width over all path decompositions.

We use a modified version of tree decomposition from [4], callednice tree decom-
position, which is more suitable for development of dynamic programs. The idea of
adjusting the tree decomposition to algorithmic needs comes from Kloks [14].

Definition 2 (Nice Tree Decomposition, Definition 2.3 of [4]). A nice tree decompo-
sition is a tree decomposition with one special bagr called therootwithBr = ∅ and in
which each bag is one of the following types:

– Leaf bag: a leafx of T withBx = ∅.
– Introduce vertex bag: an internal vertexx of T with one child vertexy for which
Bx = By ∪ {v} for somev /∈ By. This bag is said tointroducev.

– Introduce edge bag: an internal vertexx of T labeled with an edgeuv ∈ E with
one child bagy for whichu, v ∈ Bx = By. This bag is said tointroduceuv.

– Forget bag: an internal vertexx ofT with one child bagy for whichBx = By\{v}
for somev ∈ By. This bag is said toforgetv.

– Join bag: an internal vertexx with two child verticesy andz withBx = By = Bz.

We additionally require that every edge inE is introduced exactly once.

The main differences between standard nice tree decompositions used by Kloks [14]
and this notion are: emptiness of leaf and root bags and usageof introduce edge bags.

As Cygan et al. observed in [4], given an arbitrary tree decomposition, a nice tree
decomposition of the same width can be found in polynomial time. Therefore, we can
assume that all our algorithms are given a tree decomposition that is nice.

Having fixed the rootr, we associate with each nodex of a tree decompositionT
a setVx ⊆ V , where a vertexv belongs toVx iff there is a bagy which is a descendant
of x in T with v ∈ By (we follow convention thatx is its own descendant). We also
associate with each bagx of T a subgraph ofGx defined as follows:

Gx = (Vx, Ex = {e | e is introduced in a descendant ofx }) .

As every edge is introduced exactly once, for each join bagx with childreny, z, Ex is
a disjoint sum ofEy andEz .

3 The model of logic

We begin with introducing a notion of afinitely recognizable set.

Definition 3. A setS ⊆ N is calledfinitely recognizableiff there exists a finite monoid
M , a setF ⊆M and homomorphismαS : N →M such thatS = α−1

S (F ).

The notion of finitely recognizable sets coincides with semilinear sets overN. To
better understand the intuition behind it, let us state following simple fact.
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Lemma 4. A setS ⊆ N is finitely recognizable iff it is ultimately periodic, i.e.there
exist positive integersN, k such thatn ∈ S ⇔ n+ k ∈ S for all n ≥ N .

The fact can be considered a folklore, however for the sake ofcompleteness the
proof can be found in Appendix A.

Intuitively, the main property of finitely recognizable sets that will be useful, is that
one can represent the behaviour of a nonnegative integer with respect to the operation
of addition by one of finitely many values — the elements of themonoid.

Now, we are ready to introduce the syntax and semantics of ECML. We will do this
in two steps. First, we introduce the inner, modal part of thesyntax. Then, we explain
how this part is to be put into the context of quantification over subsets of vertices
and edges, thus creating a framework for defining computational problems.

3.1 The inner logic

The inner logic will be called COUNTING MODAL LOGIC (CML). A formula ψ of
CML is evaluated in a certain vertexv of a (directed) graphG supplied by a vector of
subsets of verticesX and a vector of subsets of edgesY , of lengthp, q respectively. If
ψ is true in vertexv of graphG, we will denote it byG,X, Y , v |= ψ. We begin with
the syntax of CML for undirected graphs, defined by the following grammar:

ψ := ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ ⇒ ψ | ψ ⇔ ψ | X | Y | ♦Sψ | �Sψ

X := X1 |X2 | . . . | Xp

Y := Y1 | Y2 | . . . | Yq

The boolean operators are defined naturally. Let us firstly discuss the modal quantifiers
♦S and�S . By definition,S has to be a finitely recognizable set. We define the seman-
tics of♦S in the following manner: we say thatG,X, Y , v |= ♦Sψ iff the number of
neighboursw of vertexv satisfyingG,X, Y , w |= ψ belongs toS. The quantifier�S

is somewhat redundant, as we say thatG,X, Y , v |= �
Sψ iff G,X, Y , v |= ¬♦S¬ψ.

To shorten notation we use♦ for ♦N
+

and� for �N
+

, whereN+ is the set of positive
integers. Thus, the definitions of♦ and� coincide with the natural way of introducing
these quantifiers in other modal logics:♦ψ means thatψ has to be true in at least one
neighbour, while�ψ means thatψ has to be true in all the neighbours. Observe that
the evaluation of the formula can be viewed as a process of walking on the graph —
each time we evaluate a modal quantifier we move to a neighbourof the current vertex.
Thus, after the first modal quantification there is a well specified edge that was used to
directly access the current vertex from his neighbour.

OperatorsX can be viewed as unary predicates, checking whether the vertex, in
which the formula is evaluated, belongs to a particularXi. Formally,G,X, Y , v |= Xi

iff v ∈ Xi. OperatorsY play the same role for edges — they check, whether the edge
that was used to directly access the vertex belongs to a particularYj . Therefore, we
narrow ourselves only to such formulas that use operatorsY under some quantification.

We extend the logic to directed graphs by defining the neighbour to be a vertex that
is adjacent via an arc, with no matter which direction. We introduce two new operators
belonging toY: ↓ and↑. The↓ operator is true iff the arc that was used to directly access
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the current vertex is directed towards it, while↑ is true iff it is directed towards the
neighbour. Note that the new operators are significantly different from other operators
in Y, as they are not symmetrical from the point of view of the endpoints.

Remark 5.In order to define the semantics of CML properly, without awkwardness of
edge operators, we could bind them to the model quantifiers. In this variation of CML,
modal quantifiers are defined as♦S

βψ,�
S
βψ for β being a boolean combination of op-

erators fromY. The lower indices of quantifiers are the only place operators fromY

can occur. The semantics of diamond is now defined as following:♦S
βψ is true inv iff

the number of edgesvw satisfyingβ, such thatψ is satisfied inw, belongs toS. �S
βψ

is defined to be equivalent to¬♦S
β¬ψ. It is not hard to transform a CML formula to

an equivalent formula of this form. Having expressed all boxes by diamonds, in bottom-
up manner we transform every subformula♦Siψi to a form♦Si

∧2q

j=1(βj ⇒ γj), where
βj are conjunctions ofY operators and their negations, expressing all possible align-
ments of the edge to setsYj , while γj use onlyX operators and subformulas beginning
with quantification. Obtained formula is however equivalent to a formula

∨

(mj)2
q

j=1
:
∑

2q

j=1
mj∈Fi

2q∧

j=1

♦S
mj

i

βj
γj

for Smj

i = α−1
i (mj), whereSi = α−1

i (Fi) for αi being a homomorphism mappingN
into a finite monoidMi. The described variation is a cleaner form of CML, however it
is much less convenient for expressing actual computational problems.

3.2 The outer logic

Let an instancebe a quadruple(G,FX,FY , k): a (directed) graphG = (V,E) to-
gether with a vector of fixed subsets of verticesFX, a vector of fixed subsets of edges
FY and a vector of integer parametersk. In most cases the fixed sets are not used, how-
ever they can be useful to distinguish subsets of vertices oredges of the graph that are
given in the input, like, for example, terminals in the STEINER TREE problem. LetK
be a class of instances: a set of instances with the same lengths of vectorsFX,FY , k.
We say thatK is expressible in ECML iff belonging toK is equivalent to satisfying
a fixed formulaϕ of the following form:

ϕ = ∃X∃Y
[
φ ∧ ∀vG,FX,FY ,X, Y , v |= ψ

]
.

Here:

– X andY are vectors of quantified subsets of vertices and edges respectively;
– φ is an arbitrary quantifier-free arithmetic formula over theparameters, cardinalities

of sets of vertices and edges ofG and cardinalities of fixed and quantified sets;
– ψ is a CML formula evaluated on the graphG supplied with all the fixed and quan-

tified sets.

We say that such formulas belong to EXISTENTIAL COUNTING MODAL LOGIC (ECML).
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Example 6.The VERTEX COVER problem, given an undirected graphG and an integer
k, asks whether there exists a set of at mostk vertices such that every edge has at least
one endpoint in the set. This can be reformulated as following: if a vertex is not chosen,
then all its neighbours have to be chosen. Thus, the class of YES instances of VERTEX

COVER can be expressed in ECML using the following formula:

∃X⊆V (|X | ≤ k) ∧ ∀vG,X, v |= (¬X ⇒ �X).

Example 7.Ther-DOMINATING SET problem, given an undirected graphG and an in-
tegerk, asks whether there exists a set of at mostk vertices such that every vertex
is at distance at mostr from a vertex from the set. The class of YES instances ofr-
DOMINATING SET can be expressed in ECML using the following formula:

∃X⊆V (|X | ≤ k) ∧ ∀vG,X, v |= (X ∨ ♦(X ∨ ♦(X ∨ . . .♦(X ∨♦X) . . .)))
︸ ︷︷ ︸

r quantifications

.

4 Tractability of problems expressible inECML

We are ready to prove the main result of the paper, namely the tractability of K-
RECOGNITION problem. The algorithm will base on the technique of prediction, useful
in the construction of more involved dynamic programming routines on various types
of decompositions. For an example, see the tractability result of Demaine et al. forr-
DOMINATING SET [5] that is in fact a prototype of the constructed algorithm.

K-RECOGNITION

Input: An instanceI = (G,FX,FY , k)
Question:DoesI ∈ K?

Theorem 8. If the class of instancesK is expressible inECML, then there exists an al-
gorithm that, given an instanceI along with a tree decomposition ofG of widtht, solves
K-RECOGNITION in timect|G|O(1) for some constantc. Moreover, the algorithm can
also compute the number of vectorsX,Y satisfying the formulaϕ definingK.

Proof. As was already mentioned in Section 2, we may assume that the given tree
decomposition is a nice tree decomposition.

Let ϕ = ∃X∃Y
[
φ ∧ ∀vG,FX,FY ,X, Y , v |= ψ

]
be the formula defining the

classK of instances of form(G,FX,FY , k). Denote byp0, q0, p1, q1 lengths of vec-
torsFX, FY ,X, Y respectively. We show the algorithm for computing the number of
possible solutionsX,Y ; testing the outcome against zero solves the decision problem.

Firstly, the algorithm counts the cardinalities of fixed sets from vectorsFX,FY .
Then it introduces these constants into the arithmetic formulaφ along with the param-
eters and the numbers of vertices and edges ofG. Now, the algorithm branches into
(1+ |V |)p1(1+ |E|)q1 subroutines: in each it fixes the expected cardinalities of quanti-
fied sets from vectorsX,Y . The algorithm executes only the branches with cardinalities
satisfyingφ and at the end sums up obtained numbers of solutions. This operation yields
only a polynomial blow-up of the running time, so we may assume that the expected
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cardinalities of all the quantified sets are precisely determined. Let us denote byx, y
vectors of expected cardinalities ofX , Y respectively.

As �
S quantifier can be expressed by♦S quantifier, we may assume thatψ uses

only♦S quantifiers. Consider all subformulasψ1, ψ2, . . . , ψl ofψ beginning with a quan-
tifier, denoteψi = ♦Siψ′

i. LetSi be defined asα−1
Si

(Fi) for homomorphismαSi
: N →

Mi, finite monoidMi andFi ⊆Mi. LetH =
∏l

i=1Mi be a product monoid.
Let us denoteX = {0, 1}p1, P = {0, 1}l. Furthermore, letI = H × P × X. Intu-

itively, I is a set of possible information that can be stored about a vertex. The informa-
tion consists of:history, an element ofH; prediction, a binary vector fromP indicating,
which formulasψi are predicted to be true in a vertex; andalignment, a binary vector
fromX indicating, to which quantified setsXi a vertex belongs.

Before we proceed to the formal description of the algorithm, let us give some in-
tuition about what will be happening. The history is an element of the product monoid,
used to count already introduced neighbours satisfying certain formulasψ′

i. The addi-
tive structure onH enables us to update the history during introduce edge and join steps.
However, while determining satisfaction of subformulasψi in vertices of the graph, for
the vertices in the bag we have to know their ’type’ in the whole graph, not just the in-
fluence of already introduced part. Therefore, we introduceprediction: the information,
which subformulas are predicted to be true in a vertex in the whole graph. When do-
ing updates while introducing edges we can access the predicted values, however when
forgetting a vertex we have to ensure that its history is consistent with the prediction.

Let R be the set of solutions, i.e., pairs of vectorsX,Y for whichψ is satisfied in
every vertex and satisfying constraints imposed on cardinalities of the sets. For a nodex
of the tree decomposition lets ∈ IBx be aninformation evaluation. We denotes(v) =
(hv, πv, bv), wherev ∈ Bx. Letτ ,σ be vectors of integers of lengthsp1, q1 respectively,
satisfying0 ≤ τi ≤ xi and0 ≤ σj ≤ yj for all 1 ≤ i ≤ p1, 1 ≤ j ≤ q1. Let us define
Rx(τ , σ, s): the set of partial solutions consistent with vectorsτ , σ and information
evaluations. By this we mean the set of pairs of vectorsX,Y of subsets of vertices
and edges ofGx respectively, such that the following conditions are satisfied.

– |Xi| = τi for 1 ≤ i ≤ p1, |Yj | = σj for 1 ≤ j ≤ q1.
– Everyv ∈ Bx belongs to exactly thoseXi, for which thei-th coordinate ofbv is 1.
– In all v ∈ Gx \ Bx the formulaψ is satisfied, when evaluated inGx supplied with

quantified and fixed sets. However, when evaluating some formulaψj in a vertex
w ∈ Bx we access the corresponding coordinate in the predictionπw instead of
actually evaluating it inGx.

– For allv ∈ Bx the number of neighbours ofv inGx satisfying the formulaψ′
i maps

in αSi
to thei-th coordinate ofhv, whereψ′

i is evaluated in the neighbour as if it
was accessed directly fromv. Again, boolean values of formulasψj in the vertices
of Bx are taken from the prediction instead of truly evaluated.

Observe thatR = Rr(x,y, ∅). The number of possible vectorsτ , σ and information
evaluationss is bounded by|I|t|G|O(1), so it suffices to show a dynamic program that
computesAx(τ , σ, s) = |Rx(τ, σ, s)| for all possible arguments in a bottom-up fashion.
It is not hard to implement the performance of the routine forevery type of a bag. The
details of an algorithm running in|I|2t|G|O(1) time are described in Appendix B.
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5 Adding connectivity requirements

We extend ECML by connectivity requirements. We say that an arithmetic formula
φ(x, y) is monotoneovery iff φ(x, y) ⇒ φ(x, y′) for y ≥ y′. In ECML+C, the arith-
metic formulaφ can also depend on|cc(FXi)|, |cc(FYj)|, |cc(Xi)|, |cc(Yj)|, vectors
of numbers of connected components of fixed and quantified sets. The dependence on
the quantified part, variables|cc(Xi)| and|cc(Yj)|, is however restricted to be mono-
tone, i.e., ify is the variable ofφ that corresponds to the number of connected compo-
nents of some quantified set, thenφ has to be monotone overy. The need of monotonic-
ity can be justified by a number of lower bounds for problems involving maximization
of the number of connected components, due to Cygan et al. [4].

It appears that we can combine the Cut&Count technique with the dynamic pro-
gramming routine described in Section 4 in order to obtain similar tractability of prob-
lems defined in ECML+C. Unfortunately, application of the technique gives us the
tractability of only the decision problem. To the best of author’s knowledge, extending
the Cut&Count technique to counting problems is an open question, posted in [4].

Theorem 9. If the class of instancesK is expressible inECML+C, then there exists
a Monte-Carlo algorithm that, given the instanceI along with a tree decomposition
of G of width t, solvesK-RECOGNITION in time ct|G|O(1) for some constantc. The
algorithm cannot produce false positives and produces false negatives with probability
at most12 .

The proof is a quite straightforward translation of the proof of Theorem 8 to the
language of Cut&Count. For the sake of completeness, it can be found in Appendix C.

6 The necessity of acyclicity

We prove the intractability results for two expository non-acyclic problems.
Cl-VERTEX DELETION

Input: An undirected graphG and an integerk
Question: Is it possible to remove at mostk vertices fromG so that the remaining
vertices induce a graph without cycles of lengthl?

GIRTH > l VERTEX DELETION

Input: An undirected graphG and an integerk
Question: Is it possible to remove at mostk vertices fromG so that the remaining
vertices induce a graph without cycles of length at mostl?

Theorem 10. Assuming ETH, there is no2o(p
2)|G|O(1) time algorithm forCl-VERTEX

DELETION nor for GIRTH > l VERTEX DELETION for any l ≥ 5. The parameterp
denotes the width of a given path decomposition of the input graph.

As a path decomposition of widthp is also a tree decomposition of widthp, the re-
sult is in fact stronger than analogous for treewidth instead of pathwidth. Before we
proceed to the proof, note that both these problems admit a simple2O(t2)|G|O(1) dy-
namic programming algorithm, wheret is the width of a given tree decomposition. In
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the state, one remembers for every pair of vertices of bagBx, whether inGx they can
be connected via paths of length1, 2, . . . , l − 1 disjoint with the solution.

We present a polynomial-time reduction that given a 3CNF-SAT instance: a for-
mulaϕ in 3CNF overn variables and consisting ofm clauses, produces a graphG
along with its path decomposition of widthO(

√
n) and an integerk, such that

– if ϕ is satisfiable then(G, k) is a YES instance of GIRTH > l VERTEX DELETION;
– if (G, k) is a YES instance ofCl-VERTEX DELETION thenϕ is satisfiable.

As every YES instance of GIRTH > l VERTEX DELETION is also a YES instance
of Cl-VERTEX DELETION, the constructed instance(G, k) is equivalent to given in-
stance of 3CNF-SAT both when considered as an instance ofCl-VERTEX DELETION

and of GIRTH> l VERTEX DELETION. Thus, existence of an algorithm forCl-VERTEX

DELETION or GIRTH > l VERTEX DELETION running in2o(p
2)|G|O(1) time would

yield an algorithm for 3CNF-SAT running in2o(n)(n + m)O(1) time, contradicting
ETH. We can assume that each clause inϕ contains exactly three literals by copying
some of them if necessary.

Let us chooseα = ⌊ l−1
2 ⌋, β = ⌈ l+1

2 ⌉. Thus, following conditions are satisfied:
2 ≤ α < β, α+ β = l, 2β > l, 2α+ 4 > l.

Now we show the construction of the instance. The proof of itssoundness and the
bound on pathwidth can be found in Appendix E.
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Construction. We begin the construction by creating two sets of verticesA,B, each
consisting of

⌈√
2n

⌉
vertices. As|A × B| ≥ 2n, let us take any injective function

ψ : L → A× B, whereL is the set of literals over the variables of the formulaϕ, i.e.,
symbolsx and¬x for all variablesx.

For every variablex we construct avariable gadgetQx in the following manner.
Let ψ(x) = (u, v) andψ(¬x) = (u′, v′) (u andu′ or v andv′ may possibly coincide).
Connectu with v andu′ with v′ via paths of lengthα. Denote the inner vertices of the
paths that are closest tou andu′ by tx andt¬x respectively. Connecttx with t¬x via two
paths: one of lengthα and one of lengthβ. Note that these two paths form a cycle of
lengthl. The gadget consists of all the constructed paths along withverticesu, u′, v, v′.

Now, for every clauseS = r1 ∨ r2 ∨ r3, wherer1, r2, r3 are literals, we construct
the clause gadgetCS in the following manner. Letψ(ri) = (ui, vi) for i = 1, 2, 3
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(ui or vi may possibly coincide). Fori = 1, 2, 3 connectui with vi via a path of length
β, and denote inner vertices of these paths that are closest toui by sS,ri . Connect each
pair (sS,r1, sS,r2), (sS,r2 , sS,r3), (sS,r3 , sS,r1) via two paths: one of lengthα and one
of lengthβ. Thus, we connectsS,r1, sS,r2, sS,r3 by a triple of cycles of lengthl. The
gadget consists of all the constructed paths together with verticesui, vi.

We conclude the construction by settingk = n+ 2m.

7 Conclusions and open problems

In this paper we introduced a logical formalism based on modality, EXISTENTIAL

COUNTING MODAL LOGIC, capturing majority of problems known to be tractable
in single exponential time when parameterized by treewidth. We proved that testing,
whether a fixed ECML formula is true in a given graph, admits analgorithm with
complexityct|G|O(1), wheret is the width of given tree decomposition. We extended
ECML by connectivity requirements and obtained a similar tractability result using the
Cut&Count technique of Cygan et al. [4]. The need of modalityof the logic was justified
by a negative result under ETH that two model problems with non-acyclic requirements
are not solvable in2o(p

2)|G|O(1), wherep is the width of a given path decomposition.
One open question is to breach the gap in the presented negative result. Forl = 3,

Cl-VERTEX DELETION is solvable in single exponential time in terms of treewidth,
while for l ≥ 5 our negative result states that such a robust solution is unlikely. To the
best of author’s knowledge, forl = 4 there are no matching lower and upper bounds.

Secondly, there are problems that admit a single exponential algorithm when pa-
rameterized by treewidth, but are not expressible in ECML. One example could be
Kl-VERTEX DELETION, that, given a graphG along with an integerk, asks whether
there exists a set of at mostk vertices that hits all the subgraphsKl. A dynamic program
for this problem running in time4t|G|O(1) can be constructed basing on the observa-
tion, that for every subclique of a graph there has to be a bag fully containing it. Can
we find an elegant extension of ECML that would capture also such type of problems?

Acknowledgments The author would like to thank Mikołaj Bojańczyk for invaluable
help with the logical side of the paper, as well as Marek Cygan, Marcin Pilipczuk
and Jakub Onufry Wojtaszczyk for many helpful comments on the algorithmic part.
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A Proof of Lemma 4

Lemma 11 (Lemma 4, restated).A setS ⊆ N is finitely recognizable iff it is ultimately
periodic, i.e. there exist positive integersN, k such that for alln ≥ N the following
holds:n ∈ S ⇔ n+ k ∈ S.

Proof. Assume thatS is finitely recognizable. LetM be a finite monoid andαS : N →
M a homomorphism such thatS = α−1

S (F ) for someF ⊆ M . Recall that for every
finite monoidN there exists such a numberω, called theidempotent power, that for
everya ∈ N the elementa+ . . .+ a

︸ ︷︷ ︸

ω

is an idempotent, i.e.a+ . . .+ a
︸ ︷︷ ︸

2ω

= a+ . . .+ a
︸ ︷︷ ︸

ω

.

Let ω be the idempotent power inM . We claim that we can takeN = k = ω. Indeed,
if n ≥ ω, then

αS(n) = αS(1) + . . .+ αS(1)
︸ ︷︷ ︸

n

= αS(1) + . . .+ αS(1)
︸ ︷︷ ︸

ω

+αS(1) + . . .+ αS(1)
︸ ︷︷ ︸

n−ω

=

αS(1) + . . .+ αS(1)
︸ ︷︷ ︸

2ω

+αS(1) + . . .+ αS(1)
︸ ︷︷ ︸

n−ω

= αS(n+ ω).

Now assume that we have positive integersN, k such thatn ∈ S ⇔ n+ k ∈ S for
n ≥ N . TakeM to be a monoid over{0, 1, . . . , N + k − 1} with the operation+M

defined as follows:

a+M b =

{

a+ b if a+ b < N + k,

N + ((a+ b −N) modk) otherwise.

It is easy to verify that it is indeed a monoid. Furthermore, let us define homomorphism
αS : N → M by settingαS(0) = 0, αS(1) = 1 and extending it naturally. A straight-
forward check proves thatS = α−1

S ({0, 1, . . . , N + k − 1} ∩ S).

B Details of the dynamic program from the proof of Lemma 4

We present, how the computation of valuesAx(τ , σ, s) should be performed for every
type of a bag in a bottom-up fashion, in order to obtain a|I|2t|G|O(1) algorithm.

The lenghts binary representations of valuesAx(τ , σ, s) are bounded by a polyno-
mial in the size of input, hence arithmetic operations during the computation can be
carried out in polynomial time. We follow convention that all valuesAx with improper
arguments, for example having negative coordinates, are defined to be zeroes. For a con-
dition c, by [c] we denote1 if c is true, and0 otherwise. Moreover, for a functions by
s[v → α] we denote the functions \ {(v, s(v))} ∪ {(v, α)}. Note that this definition is
correct even whens is not defined onv.

Leaf bagx:
Ax(0, 0, ∅) = 1

0 is a vector of zeroes of appropriate length. All other valuesAx(τ , σ, ∅) are zeroes.
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Introduce vertex v bagx, with child y:

Ax(τ , σ, s[v → (h, π, b)]) = [h = eH]Ay(τ − b, σ, s)

Observe that the introduced vertex has no neighbours so far,so its history must be void,
which is indicated by checking whether the assigned historyis eH, the identity of the
product monoid. However, its prediction and alignment can be arbitrary.

Introduce edge (arc)uv bagx, with child y:

Ax(τ , σ, s) =
∑

d∈{0,1}q1

∑

s′∈S′

Ay(τ , σ − d, s′)

The first summation corresponds to all possible ways of choosing the family of setsYi
the introduced edge belongs to. In the second summation we sum over all information
evaluationss′ such thats′ differs froms only on histories of verticesu, v in the follow-
ing manner. The historyhu of u in s is the historyh′u of u in s′, but with images of
1 added on precisely these coordinatesj, which correspond to formulasψ′

j satisfied in
v, when accessed fromu. The symmetrical condition holds for the historyhv of v in s
and the historyh′v of v in s′. This condition corresponds to updating the history after
introducing the edge. Observe that given the predictions onu, v along with the informa-
tion about the sets (fixed or quantified)u, v belong to and the information about the sets
(fixed or quantified) the edge (arc)uv belongs to, we can compute which formulasψ′

j

are satisfied inu when accessed fromv and vice versa. The number of considered eval-
uationss′ is constant and they can be enumerated in constant time, so the computation
of a single value takes constant time.

Forget vertexv bagx, with child y:

Ax(τ , σ, s) =
∑

(h,π,b)∈G

Ay(τ , σ, s[v → (h, π, b)])

The summation corresponds to possible information stored in the vertex we are forget-
ting. In order to forget a vertex without violating the definition of R(τ , σ, s) we have
to ensure that the prediction is consistent with the historyand thatψ is satisfied inv.
Therefore, the summation is carried out over a setG of goodtriples(h, π, b), such that

– hi ∈ FSi
iff πi = 1, for all 1 ≤ i ≤ l;

– the alignmentb and the satisfaction of formulasψi on quantification depth0 (stored
in prediction) make the formulaψ true. Note that there are no unquantified edge
operators, sob along with knowledge of fixed setsFX suffices to compute this.

The setG can be determined in constant time, so the computation of a single value takes
constant time.

Join bagx, with children y, z:

Ax(τ , σ, s) =
∑

τ ′+τ ′′=τ+ξ(Bx)

∑

σ′+σ′′=σ

∑

s′+s′′=s

Ay(τ
′, σ′, s′)Az(τ

′′, σ′′, s′′)



15

s′ + s′′ = s denotes that for all the verticesv ∈ Bx the predictions ins(v), s′(v), s′′(v)
are equal, the alignments ins(v), s′(v), s′′(v) are equal and the histories ins′(v) ands′′(v)
sum up to the history ins(v). The first summation corresponds to splitting the expected
cardinalities of setsX in solution, however we have to take care of double counting the
elements of the bagBx by adding to the right sideξ(Bx), the sum of the alignments
in s over the bagBx. The second summation corresponds to splitting the expected car-
dinalities of setsY in the solution. As every edge is introduced exactly once, the sets
Ey andEz are disjoint and sum toEx, so there is no problem with double counting
the edges. Note that the number of summands considered so faris polynomial. The last
summation corresponds to splitting the information. In order to be able to merge two
partial solutions built under bagsy, z, the alignments has to be the same in both bags
By, Bz as well as the predictions. However, the histories are defined basing on num-
bers of neighbours satisfying appropriate conditions and therefore should be added.
As (Ey, Ez) is a partition ofEx, we avoid problems with double counting the neigh-
bours. Observe that we can compute all the needed valuesAx(τ , σ, s) in |I|2t|G|O(1) at
once. For every pair(s′, s′′) there exists at most one information evaluations such that
s′ + s′′ = s. Having computed it in polynomial time for every pair(s′, s′′), for every
s we can iterate through all the contributing pairs in order toevaluate the presented
formula onAx(τ , σ, s). Thus, having fixed splitting of the acumulators, each pair is
considered at most once.

The computation of a single value takes constant time in leaf, introduce, introduce
edge and forget steps, while the join step can be carried out in |I|2t|G|O(1). As in every
step the algorithm computes|I|t|G|O(1) values and there are polynomially many steps,
the whole algorithm runs in|I|2t|G|O(1) time.

C Proof of Theorem 9

Let us recall that the crucial probabilistic tool used in theCut&Count technique is the
Isolation Lemma.

Definition 12. A functionω : U → Z isolatesa set familyF ⊆ 2U if there is a unique
S′ ∈ F with ω(S′) = minS∈F ω(S).

ForX ⊆ U , ω(X) denotes
∑

u∈X ω(u).

Lemma 13 (Isolation Lemma, [18]).Let F ⊆ 2U be a set family over a universeU
with |F| > 0. For eachu ∈ U , choose a weightω(u) ∈ {1, 2, . . . , N} uniformly
and independently at random. Then

prob[ω isolatesF] ≥ 1− |U |
N

We will now merge the deterministic result from Theorem 8 with the Cut&Count
technique in order to prove Theorem 9. We follow notation from [4] in order to make the
proof easier to understand for the reader already familiar with the basics of Cut&Count.
The algorithm will be an extension of the algorithm given by Theorem 8, therefore we
will constantly refer to the details of its proof.



16

Theorem 14 (Theorem 9, restated).If the class of instancesK is expressible inECML+C,
then there exists a Monte-Carlo algorithm that, given the instanceI along with a tree
decomposition ofG of width t, solvesK-RECOGNITION in time ct|G|O(1) for some
constantc. The algorithm cannot produce false positives and producesfalse negatives
with probability at most12 .

Proof. As was already mentioned in Section 2, we may assume that the given tree
decomposition is a nice tree decomposition.

We will follow the same notation as in the proof of Theorem 8: the classK is de-
fined by the formulaϕ = ∃X∃Y

[
φ ∧ ∀vG,FX,FY ,X, Y , v |= ψ

]
and we are given

an instance(G,FX,FY , k) together with the tree decomposition ofG of width t.
p0, q0, p1, q1 are lengths of vectorsFX, FY ,X, Y respectively.

Firstly the algorithm computes cardinalities and numbers of connected components
of fixed setsFX,FY . These constants along with the parameters and the numbers of
vertices and edges of the graph are introduced into the arithmetic formulaφ. Then, the
algorithm branches into(1+ |V |)p1(1+ |E|)q1 · (1+ |V |)p1(1+ |V |)q1 subroutines, in
each fixing the expected cardinalities and numbers of connected components of all the
quantified sets. The algorithm executes only these branches, for which the formulaφ is
satisfied. Thus, the number of branches is polynomial. Everybranch will return a false
negative with probability at most12 . Therefore, we independently run every branch
a logarithmic number of times in order to reduce the probability of a false negative
to at most 1

2K , whereK is the number of branches executed. Using the union bound we
can bound the probability of a false negative of the whole algorithm by 1

2 .
Let us fix a branch. Letx, y be the vectors of expected cardinalities of setsX , Y

respectively, andcx, cy be the vectors of expected numbers of connected components
ofX,Y respectively. Observe that the algorithm instead of deciding whether there exist
setsXi, Yj satisfying|cc(Xi)| = cxi, |cc(Yj)| = cyj for all 1 ≤ i ≤ p1, 1 ≤ j ≤ p1,
can decide whether there exist setsXi, Yj satisfying|cc(Xi)| ≤ cxi and|cc(Yj)| ≤
cyj . Indeed, by the monotonicity of the formulaφ if the algorithm finds out that the
answer to this (easier to satisfy) question is positive, then the answer to the whole task
is positive as well. Therefore, we can relax the constraint imposed on the numbers of
connected components of quantified sets to inequalities. From now on we focus only
on the case, when all the expected cardinalities of quantified sets are fixed and the
expected number of connected components of every quantifiedset is bounded by some
fixed number.

We proceed to the description of the dynamic programming routine. By cut of
a graphG = (V,E) we mean a pair(V1, V2) such thatV1∪V2 = V andV1∩V2 = ∅. Let
us recall the notion ofconsistently cut subgraph, the main ingredient of the Cut&Count
technique.

Definition 15 (Definition 3.2 of [4]). A cut (V1, V2) of an undirected graphG =
(V,E) is consistentif u ∈ V1 and v ∈ V2 impliesuv /∈ E. A consistently cut sub-
graphofG is a pair (X, (X1, X2)) such that(X1, X2) is a consistent cut ofG[X ].

Similarly, for a directed graphD = (V,A) a cut(V1, V2) is consistent if(V1, V2) is
a consistent cut in the underlying undirected graph. A consistently cut subgraph ofD is
a pair (X, (X1, X2)) such that(X1, X2) is a consistent cut of the underlying undirected
graph ofD[X ].
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Observe that in this definitionX can be a subset of vertices as well as a subset of edges.
In both cases(X1, X2) is a cut ofV (G(X)), which can be a proper subset ofV .

The Cut part. We will use the concept of markers, used in more involved applications
of the Cut&Count technique. Let us define the family ofcandidate solutionR as the
set of quadruples(X,Y ,MX ,MY ), where lengths ofMX ,MY arep1, q1 respectively,
such that

– ψ is satisfied in every vertex ofG supplied with setsFX,FY ,X, Y ;
– setsX,Y satisfy the imposed conditions on their cardinalities (butnot necessarily

on the numbers of connected components);
– MX

i ⊆ Xi, |MX
i | ≤ cxi for every1 ≤ i ≤ p1;

– MY
j ⊆ Yj , |MY

j | ≤ cyj for every1 ≤ j ≤ q1.

SetsMX
i ,M

Y
j are calledmarker sets.

Suppose that we are given a weight functionω : (V ×{0, 1, 2}p1)∪(E×{0, 1, 2}q1) →
{1, 2, . . . , N} for N = 2|(V × {0, 1, 2}p1) ∪ (E × {0, 1, 2}q1)|. This weight function
will be fixed throughout the whole proof. Given a candidate solution (X,Y ,MX ,MY )
we can define weight of a vertex asω(v, χ), where:χi = 0 if v /∈ Xi; χi = 1 if
v ∈ Xi butv /∈ MX

i ; andχi = 2 if v ∈ MX
i . Similarly we define the weight of an edge

(arc). Let us define the weight of a candidate solution as the sum of weights over all the
vertices and edges (arcs) of the graph. LetRW be the set of candidate solutions with
weight exactlyW . Observe that the maximal value ofW isO(N(|V |+ |E|)), which is
polynomial in terms of the input size.

Now we define the family ofsolutionsS ⊆ R by requiring from a candidate solution
that

– each connected component ofG[Xi] contains at least one vertex fromMX
i ;

– each connected component ofG[Yj ] contains at least one edge (arc) fromMY
j .

As |MX
i | ≤ cxi and|MY

j | ≤ cyj , these conditions imply the constraints on the num-
bers of connected components of setsX,Y . Of course, as every pairX,Y satisfying
all the imposed conditions can be marked appropriately, thesetS is nonempty iff the
answer to the problem we are solving is true.

Our goal is to count|SW | modulo2 for all possible weightsW . In order to do this,
we define the family ofobjectsCW as the family of tuples

((X,Y ,MX ,MY ), C1, C2, . . . , Cp1
, D1, D2, . . . , Dq1),

where

– (X,Y ,MX ,MY ) ∈ RW ;
– for 1 ≤ i ≤ p1, Ci = (VXi,1, VXi,2) is such that(Xi, Ci) is a consistently cut

subgraph ofG andMX
i ⊆ VXi,1;

– for 1 ≤ j ≤ q1, Dj = (VYj ,1, VYj ,2) is such that(Yj , Dj) is a consistently cut
subgraph ofG and every edge fromMY

j has both endpoints inVYj ,1.
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Intuitively, an object is a candidate solution together with a tuple of cuts consistent with
the quantified sets, such that all the markers are on one side of the cut. Observe that in
particularVXi,1 ∪ VXi,2 = Xi for all 1 ≤ i ≤ p1 andVYj ,1 ∪ VYj ,2 = V (Yj) for all
1 ≤ j ≤ q1.

The Count part. We begin with the observation that the algorithm can count|CW |
(mod 2) instead of|SW | (mod 2).

Lemma 16. |CW | ≡ |SW | (mod 2) for all weightsW .

Proof. Let us consider a candidate solutionQ = (X,Y ,MX ,MY ). For 1 ≤ i ≤
p1 let us denote bycc(Xi,M

X
i ) the number of connected components ofG[Xi] not

containing a vertex fromMX
i (called furtherunmarked). Similarly,cc(Yj ,MY

j ) is the
number of connected components ofG[Yj ] not containing an edge (arc) fromMY

j for

1 ≤ i ≤ q1. Observe that there are exactly
∏p1

i=1 2
cc(Xi,M

X
i ) ·∏q1

j=1 2
cc(Yj ,M

Y
j ) objects

associated withQ: for every setXi we have2cc(Xi,M
X
i ) choices of including unmarked

connected components ofG[Xi] to the sides of the cutCi, and the analogous holds for
setsYj . Therefore,

|CW | =
∑

(X,Y ,MX ,MY )∈RW

p1∏

i=1

2cc(Xi,M
X
i ) ·

q1∏

j=1

2cc(Yj ,M
Y
j ).

Take both sides modulo2. Observe that the product under the sum is odd exactly for
those candidate solutions, where there are no unmarked connected components of the
quantified sets. Therefore, when considered modulo2, the summands are ones for these
candidate solutions that are in fact solutions, and zeroes otherwise. The claim follows.

We now present a dynamic programming routine that computes|CW | modulo2 for
all possible weightsW . We begin with adjusting the information stored in a vertex to
our needs. We will follow the notation from the proof of Theorem 8:ψi = ♦Siψ′

i

are the subformulas ofψ that begin with quantification, for1 ≤ i ≤ l. Furthermore,
Si = α−1

Si
(Fi) for homomorphismsαSi

: N → Mi mappingN into finite monoidsMi,
and setsFi ⊆Mi. Let

– H =
∏l

i=1Mi be the history monoid;
– P = {0, 1}l be the set of possible predictions;
– X = {0,11,12}p1 be the set of vectors indicating belonging to the setsXi, includ-

ing the side of the cut:0 means not belonging,11 means belonging toVXi,1, 12

means belonging toVXi,2;
– Y = {0,11,12}q1 be the set of vectors indicating existence of neighbouring edges

from the setsYj . 0 on j-th coordinate means that there is no incident edge fromYj
introduced so far,11 means that some incident edges have been introduced and the
vertex has been chosen to be inVXj ,1, 12 means the analogous but the vertex has
been chosen to be inVYj ,2.

Observe that in spite of syntactical similarities between setsX andY, their role is quite
opposite. While information fromX is being guessed in the introductory step of a ver-
tex, and then is constant during considering possible extensions of a partial solution,Y
acts more like history, remembering the types of so far introduced adjacent edges.
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Let us define the set of possible information stored about a vertex asI = H ×
P× X× Y. We will refer to corresponding parts as tohistory, prediction, X-alignment
andY-alignment.

Let us fix a bagBx. As in the proof of Theorem 8, we define the set of partial
objectsCx(W, τ, σ, ν, µ, s) for information evaluations ∈ IBx , as the family of tuples
((X,Y ,MX ,MY ), C1, C2, . . . , Cp1

, D1, D2, . . . , Dq1) such that following conditions
are satisfied.

– The sum of weights of edges fromEx and vertices fromVx \Bx is exactlyW .
– For all1 ≤ i ≤ p1 the following holds:

• (Xi, Ci) is a consistently cut subgraph ofGx;
• MX

i ⊆ VXi,1 \Bx ⊆ Xi ⊆ Vx;
• |Xi| = τi, |MX

i | = νi.
– For all1 ≤ j ≤ q1 the following holds:

• (Yj , Dj) is a consistently cut subgraph ofGx;
• MY

j ⊆ Yj ⊆ Ex and every edge (arc) inMY
j has both endpoints inVYj ,1;

• |Yj | = σj , |MY
j | = µj .

– TheX,Y-alignments froms(v) for v ∈ Bx are consistent with setsX,Y and cuts
C1, C2, . . . , Cp1

, D1, D2, . . . , Dq1 .
– In every vertex ofv ∈ Vx\Bx the formulaψ is true, when evaluated inGx supplied

with setsFX,FY ,X, Y . However, when trying to evaluate the boolean value of
some formulaψi in a vertex fromBx, we access the value in the prediction instead
of actually evaluating the formula.

– For everyv ∈ Bx, the number of neighbours ofv in Gx satisfying formulaψ′
i

(1 ≤ i ≤ l), when accessed directly fromv, maps inαSi
to thei-th coordinate of

the history froms(v). Again, when evaluating formulasψi in vertices fromBx, we
access the value from the prediction instead of actually determining the outcome in
Gx.

Note that according to this definition, the vertex marker sets have to be disjoint with the
bag and summation of weights is carried out over vertices that are not in the bag. The al-
gorithm will guess the alignment of a vertex to marker sets and update the weight during
its forget step. If we chose otherwise, namely to perform updates during introduction,
the problem with double counting would arise during the join.

Let us denoteAx(W, τ, σ, ν, µ, s) = |Cx(W, τ, σ, ν, µ, s)| (mod 2). From now on,
all the computations over the valuesAx will be carried out inZ2. Observe that we
need to compute

∑

ν: νi≤cxi

∑

µ: µi≤cyi
Ar(W,x,y, ν, µ, ∅) for all possibleW . Thus,

it suffices to show a dynamic programming routine that will compute all the values of
Ax for possible arguments in a bottom-up fashion. We now present the steps that have
to be carried out during computation for every type of a bag. We follow convention that
all valuesAx with improper arguments, for example having negative coordinates, are
defined to be zeroes. For a conditionc, by [c] we denote1 if c is true, and0 otherwise.
Moreover, for a functions by s[v → α] we denote the functions\{(v, s(v))}∪{(v, α)}.
Note that this definition is correct even whens is not defined onv. Also, we treat vectors
over{0,11,12} also as vectors over{0, 1} by mapping0 → 0 and11,12 → 1.
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Leaf bagx:
Ax(0, 0, 0, 0, 0, ∅) = 1

0 denotes vector of zeroes of appropriate length. All other values ofAx(W, τ, σ, ν, µ, ∅)
are zeroes.

Introduce vertex v bagx with child y:

Ax(W, τ, σ, ν, µ, s[v → (h, π, b, e)]) = [h = eH][e = 0]Ay(W, τ − b, σ, ν, µ, s)

This step is almost the same as in the algorithm from the Theorem 8. The new vertex has
no neighbours so far, therefore its history must be void, which is indicated by checkng
whether the assigned history is equal toeH, the identity ofH. For the same reason,
its side of the cut for any setYj is not decided yet, hence the second check. However,
prediction and theX-alignment can be arbitrary. Note that the new vertex does not
contribute to the weight of the partial object and does not belong to any marker sets.

Introduce edge (arc)uv bagx with child y:
Let b(u), e(u), b(v), e(v) be theX- andY-alignments ins(u), s(v) respectively.

Ax(W, τ, σ, ν, µ, s) = [∀i(b(u)i = 0 ∨ b(v)i = 0 ∨ b(u)i = b(v)i)]
∑

d∈{0,1}q1

[∀j((dj = 1) ⇒ (e(u)j = e(v)j 6= 0))]

∑

m∈{0,1}q1

[∀j((dj = 0) ⇒ (mj = 0)) ∧

((mj = 1) ⇒ (e(u)j = e(v)j = 11))]
∑

s′∈S′

Ay(W − ω(uv, d+m), τ , σ − d, ν, µ−m, s′)

Before we start any summations, we need to ensure that the newedge is consistent with
the cutsCi, otherwise the whole outcome is zero. The first two summations correspond
to all possible ways of choosing the alignment of the newly introduced edge to setsYj
and marker setsMY

j . Again, having fixed these alignments we have to ensure that they
are consistent with the cutsDj . As the edge already contributes both to the cardinalities
of marker sets and the weight of the partial object, we need toaccess the precomputed
values with updated weight and cardinalities of setsY , MY . In the third summation
we sum over all information evaluationss′ such thats′ differs froms only on histories
andY-alignments of verticesu, v. As in the proof of Theorem 8, histories ins(u), s(v)
have to be histories ins′(u), s′(v) but updated with respect to the introduced edge by
possibly adding an image of one on a coordinate, whenever a formulaψ′

i is true in
the neighbour when accessed directly from the considered vertex. This can be resolved
in constant time knowing vectord and the predictions andX–alignments inu, v. In
addition, we need to ensure that theY-alignment is properly updated: in both vertices
u, v, for every indexi, the i-th coordinate of theX-alignment has to be at least the
same ins as ins′ (it may change from0 to 11 or 12, or stay the same). Similarly as
in the proof of Theorem 8, the number of contributing information evaluationss′ is
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constant and the algorithm can enumerate them in constant time. Thus, the computation
of a single value can be performed in constant time.

Forget vertexv bagx with child y:
Let b(v) denote theX-alignment ins(v).

Ax(W, τ, σ, ν, µ, s) =
∑

m∈{0,1}p1

[∀i(mi = 1) ⇒ (b(v)i = 11)]
∑

(h,π,b,e)∈G

Ay(W − ω(v, b(v) +m), τ , σ, ν −m,µ, s[v → (h, π, b, e)])

The first summation corresponds to possible choices of vector m indicating belonging
of v to the marker setsMX . If v is to be contained inMX

i , then it has to be contained
in VXi,1, so thei-th coordinate of vectorb has to be11. For a particular vectorm al-
ready satisfying this condition, vectorb(v) + m (over{0, 1, 2}) exactly indicates the
belonging ofv toX andMX in the sense of the definition of weight functionω. Thus
ω(v, b(v)+m) is the precise weight of vertexv in this partial object and can be used to
access precomputed value with updated weight. The second summation is the same as
in the corresponding step of the algorithm from Theorem 8. Wesum over all possible
information that could be stored in the vertex we forget, i.e., having the history consis-
tent with the prediction and making the formulaψ satisfied. Similarly to the proof of
Theorem 8, the computation of a single value can be carried out in constant time.

Join bagx with children y, z:

Ax(W, τ, σ, ν, µ, s) =
∑

W ′+W ′′=W

∑

τ ′+τ ′′=τ+ξ(Bx)

∑

σ′+σ′′=σ

∑

ν′+ν′′=ν

∑

µ′+µ′′=µ

∑

s′+s′′=s

Ay(W
′, τ ′, σ′, ν′, µ′, s′)Az(W

′′, τ ′′, σ′′, ν′′, µ′′, s′′)

The step is a generalization of the corresponding from the proof of Theorem 8. Here,
s′ + s′′ = s denotes that for all the verticesv ∈ Bx:

– the predictions ins(v), s′(v), s′′(v) are the same;
– theX-alignments ins(v), s′(v), s′′(v) are the same;
– the histories ins′(v) ands′′(v) sum up to the history ins(v) (in the history monoid);
– theY-alignments ins′(v) ands′′(v) sum up toY-alignment ins(v). By this, we

mean that0+a = a for all a ∈ {0,11,12}, 11+11 = 11, 12+12 = 12, however
addition11 + 12 cannot be carried out and such a pair is forbidden to occur on any
coordinate of added vectors.

The first summation corresponds to splitting the weight among two partial solutions, the
next two correspond to splitting the cardinalities of setsX, Y , the next two correspond
to splitting the numbers of so far used markers and the last summation corresponds
to splitting the information evaluations. As the marker sets are disjoint with the bags,
weights of the partial solution are not summed over the bag and Ex is a disjoint sum
of Ey andEz, the problem with double counting can possibly occur only inthe second
sum. It can be however solved by adding to the right side of theequation the vector
ξ(Bx) — the sum over the bagBx of X-alignments ins. Similarly as in the proof



22

of Theorem 8, for every pair of information evaluations(s′, s′′) the algorithm can de-
termine the (at most one) information evaluations it contributes to. Then, for every
information evaluations we consider only contributing pairs, thus considering every
pair only once. Therefore, the computation of the whole stepcan be performed in time
|I|2t|G|O(1).

The computation of a single value in leaf, introduce, introduce edge and forget steps
takes constant time, while the whole join step can be performed in |I|2t|G|O(1) time.
As there are|I|t|G|O(1) values to be computed at each step and the number of steps is
polynomial, the whole dynamic programming routine runs in|I|2t|G|O(1) time.

The whole algorithm works as follows. Firstly, choose randomly the weight func-
tion, each value independently with uniform distribution.Then, for every possible weight
W compute|SW | modulo2 using described dynamic programming routine and Lemma
16. If at least one of the computed values is1, answer YES, otherwise answer NO.

In order to prove soundness of the described algorithm, observe that if at least one
|SW | is odd then it is a sufficient proof of existence of at least onesolution. Therefore,
the algorithm can safely answer YES without risking a false positive. On the other hand,
the Isolation Lemma assures that in case of existence of solutions, i.e. the setS being
nonempty, with probability at least12 there exists a unique solution with minimal weight
W0. As 1 is odd,|SW0

| is odd as well and the algorithm will answer YES.

D ECML+C formulas for problems considered in [4]

We present logical formulas of ECML+C for problems proven tobe tractable in single
exponential time when parameterized by treewidth by Cygan et al., when introducing
the Cut&Count technique [4]. All of them are of quantification rank at most1, which
explains why Cygan et al. did not need to use the prediction technique in their proofs.
The exact problem definitions can be found in [4].

The formulas do not use fixed sets, unless it is explicitely stated. The vectors of
parameters always consist of one parameterk.

STEINER TREE

(T , the terminals, is a fixed set of vertices)

∃X⊆V (|cc(X)| ≤ 1 ∧ |X | ≤ k + |T |) ∧ ∀vG, T,X, v |= (T ⇒ X)

FEEDBACK VERTEX SET

∃X⊆V ∃Z⊆V ∃Y ⊆E(|cc(Y )|+ |Y |+ |Z|+ |X | ≤ |V | ∧ |X | ≤ k)∧
∀vG,X,Z, Y, v |= [(Z ⇔ (¬X ∧�X)) ∧ (X ⇒ �¬Y ) ∧ (¬X ⇒ �(¬X ⇒ Y ))]

CONNECTEDVERTEX COVER

∃X⊆V (|cc(X)| ≤ 1 ∧ |X | ≤ k) ∧ ∀vG,X, v |= (¬X ⇒ �X)
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CONNECTEDDOMINATING SET

∃X⊆V (|cc(X)| ≤ 1 ∧ |X | ≤ k) ∧ ∀vG,X, v |= (¬X ⇒ ♦X)

CONNECTEDFEEDBACK VERTEX SET

∃X⊆V ∃Z⊆V ∃Y⊆E(|cc(Y )|+ |Y |+ |Z|+ |X | ≤ |V | ∧ |cc(X)| ≤ 1 ∧ |X | ≤ k)∧
∀vG,X,Z, Y, v |= [(Z ⇔ (¬X ∧�X)) ∧ (X ⇒ �¬Y ) ∧ (¬X ⇒ �(¬X ⇒ Y ))]

CONNECTEDODD CYCLE TRANSVERSAL

∃X⊆V ∃L⊆V ∃R⊆V (|cc(X)| ≤ 1 ∧ |X | ≤ k) ∧ ∀vG,X,L,R, v |=
(L ∨R ∨X) ∧ ¬(L ∧R) ∧ ¬(R ∧X) ∧ ¬(X ∧ L)∧

(L⇒ �(R ∨X)) ∧ (R ⇒ �(L ∨X))

Undirected MIN CYCLE COVER

∃Y⊆E(|cc(Y )| ≤ k) ∧ ∀vG, Y, v |= ♦{2}Y

Directed MIN CYCLE COVER

∃Y ⊆E(|cc(Y )| ≤ k) ∧ ∀vG, Y, v |=
[

(♦{1}(Y ∧ ↑)) ∧ (♦{1}(Y ∧ ↓))
]

Undirected LONGESTPATH

∃A⊆V ∃Y⊆E(|cc(Y )| ≤ 1 ∧ |A| = 2 ∧ |Y | ≥ k) ∧ ∀vG,A, Y, v |=
[

(A⇒ ♦{1}Y ) ∧ (¬A ⇒ ♦{0,2}Y )
]

Directed LONGESTPATH

∃A⊆V ∃B⊆V ∃Y ⊆E(|cc(Y )| ≤ 1 ∧ |A| = 1 ∧ |B| = 1 ∧ |Y | ≥ k) ∧ ∀vG,A,B, Y, v |=
(

A⇒
[

¬B ∧ ♦{1}Y ∧ ♦{1}(Y ∧ ↓))
])

∧
(

B ⇒
[

¬A ∧ ♦{1}Y ∧ ♦{1}(Y ∧ ↑))
])

∧
(

(¬A ∧ ¬B) ⇒
[

(¬♦Y ) ∨ ((♦{1}(Y ∧ ↓)) ∧ (♦{1}(Y ∧ ↑)))
])

Undirected LONGESTCYCLE

∃Y⊆E(|cc(Y )| ≤ 1 ∧ |Y | ≥ k) ∧ ∀vG, Y, v |= ♦{0,2}Y

Directed LONGESTCYCLE

∃Y⊆E(|cc(Y )| ≤ 1 ∧ |Y | ≥ k) ∧ ∀vG, Y, v |=
[

(¬♦Y ) ∨ ((♦{1}(Y ∧ ↓)) ∧ (♦{1}(Y ∧ ↑)))
]
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EXACT k-LEAF SPANNING TREE

∃L⊆V ∃T⊆E(|cc(T )| ≤ 1 ∧ |L| = k ∧ |T | = |V | − 1) ∧ ∀vG,L, T, v |= (♦T ) ∧ (L⇔ ♦{1}T )

EXACT k-LEAF OUTBRANCHING

(R, the singleton of the root, is a fixed set)

∃L⊆V ∃T⊆E(|cc(T )| ≤ 1 ∧ |L| = k ∧ |T | = |V | − 1 ∧ |R| = 1) ∧ ∀vG,R,L, T, v |=
[

(♦T ) ∧ (R ⇒ ¬♦(T∧ ↑)) ∧ (¬R ⇒ ♦{1}(T∧ ↑)) ∧ (L⇔ ¬♦(T∧ ↓))
]

MAXIMUM FULL DEGREESPANNING TREE

∃F⊆V ∃T⊆E(|cc(T )| ≤ 1 ∧ |F | ≥ k ∧ |T | = |V | − 1) ∧ ∀vG,F, T, v |= (♦T ) ∧ (F ⇔ �T )

GRAPH METRIC TRAVELLING SALESMAN PROBLEM

(2N denotes the set of even nonnegative integers)

∃Y ⊆E∃Y1⊆E∃Y2⊆E(|cc(Y )| ≤ 1 ∧ |Y1|+ 2|Y2| ≤ k) ∧ ∀vG, Y, Y1, Y2, v |=
[
(�(Y ⇔ (Y1 ∨ Y2))) ∧ (�(¬Y1 ∨ ¬Y2)) ∧ (♦Y ) ∧ (♦2NY1)

]

E Correctness of the reduction from the proof of Theorem 10

Soundness.LetG be the graph obtained in the construction. DenoteP = A ∪B. We
prove the soundness of the construction in two steps, as was described in Section 6. We
also follow convention introduced there.

Lemma 17. If ϕ is satisfiable, then(G, k) is a YES instance ofGIRTH > l VERTEX

DELETION.

Proof. We need to show thatG contains a setX of n + 2m vertices that hits all the
cycles of length at mostl. Let φ be an assignment satisfyingϕ. For every variable
x, take intoX the vertextx if φ(x) = TRUE, andt¬x otherwise. For every clause
S = r1 ∨ r2 ∨ r3 let ri be any literal that satisfiesS. Take intoX two verticesrj , where
j 6= i. Thus|X | = n + 2m. We now verify thatG \X contains no cycle of length at
mostl.

LetC be any cycle inG. We need to prove that eitherC contains a vertex fromX
or is of length greater thanl. Observe that the parts of gadgets not contained inP are
pairwise independent. Therefore, we can distinguish threecases:

– C is fully contained in one gadget;
– C is not contained in one gadget and passes through exactly twovertices fromP ;
– C is not contained in one gadget and passes through three or more vertices fromP .
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Regarding the first case, observe that after deletingX every gadget becomes a for-
est, so in this caseC has to contain a vertex fromX . Note that this is true also when
some of verticesu, v, u′, v′ (in case of the vertex gadget) orui, vi (in case of the clause
gadget) coincide.

Regarding the latter cases, observe that two verticesu, v fromP inG are in distance
α if (u, v) = ψ(r) for some literalr, and are in distance at leastα + 2 otherwise. IfC
passes through two vertices fromP that are in distance at leastα + 2, then its length
is at least2α + 4 > l. This immediately resolves the third case: ifC passes through
at least three vertices fromP , then there is a pair of them contained either both inA
or both inB, thus not contained in the image ofψ. As a result, in the third case the
length ofC is greater thanl.

We are left with the second case. Moreover, we can focus only on the subcase, when
the two vertices fromP thatC passes through are suchu, v that(u, v) = ψ(r) for some
literal r, equal tox or¬x. Observe that paths connectingu andv in G \X not passing
through other vertices fromP , can only be paths built while constructing gadgetsQx

orCS,r for clausesS containingr, of lengthα andβ respectively. As2β > l, C could
possibly not pass through vertices fromX and have length at mostl, if it consisted of
the path fromQx and a path fromCS,r for someS. If φ(x) is such thatr is true, then
tr ∈ X andC contains a vertex fromX . Otherwise, all the clauses containingr had to
be satisfied by some other literal, sosS,r ∈ X for everyS containingr. Thus, also in
this situationC contains a vertex fromX .

Lemma 18. If (G, k) is a YES instance ofCl-VERTEX DELETION, thenϕ is satisfiable.

Proof. LetX be the set of at mostn+ 2m vertices such thatG \X contains no cycles
of lengthl. Observe thatX has to include at least one vertex from each cycle of length
l spanned between verticestx andt¬x for every variablex, and at least two vertices
from each subgraph induced by a triple of cycles of lengthl spanned betweensS,r1,
sS,r2, sS,r3 for every clauseS = r1∨r2∨r3. All the mentioned subgraphs are pairwise
disjoint, soX has to contain exactly one vertex from each cycle spanned betweentx
and t¬x and exactly two vertices from each subgraph induced by a triple of cycles
spanned betweensS,r1 , sS,r2, sS,r3. Observe that we can assume that the solution does
not contain any inner vertex of these cycles, i.e., of degree2, because a choice of such
a vertex can always be substituted with a choice oftx, t¬x orsS,ri for somei (depending
whether we are considering a variable or a clause gadget). Therefore, for each variable
x, the setX contains exactly one vertex from the set{tx, t¬x} and for each clause
S = r1 ∨ r2 ∨ r3, X contains exactly two vertices from the set{sS,r1, sS,r2, sS,r3}.
Consider an assignmentφ such thatφ(x) = TRUE if tx ∈ X andφ(x) = FALSE if
t¬x ∈ X . We claim thatφ satisfiesϕ.

Consider a clauseS = r1 ∨ r2 ∨ r3. Let i be such an index thatsS,ri /∈ X . Consider
a cycle of lengthl formed by two paths connecting vertices fromψ(ri): one from the
gadgetCS of lengthβ and one from the gadgetQx of lengthα, wherer = x or r = ¬x.
AsX hits this cycle, thentri ∈ X , sori satisfiesS. AsS was an arbitrary clause, this
concludes the proof.
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The bound on pathwidth.

Lemma 19. pw(G) = O(
√
n) and a decomposition of such width can be computed in

polynomial time.

Proof. As was already mentioned in the proof of Lemma 17, the parts ofgadgets not
contained inP are pairwise independent. Moreover, the gadgets are of constant size.
Therefore, we can create a path decomposition of widthO(

√
n) in the following man-

ner. We constructn +m bags, one for each gadget. The bag contains the whole setP
and the whole gadget, thus having sizeO(

√
n). We arrange the bags into a path in any

order.
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