DS3I - A Dynamic Semantically Enhanced
Service Selection Infrastructure

Christoph Fritsch!, Peter Bednar?, and Giinther Pernul® *

! Department of Information Systems
University of Regensburg
93053 Regensburg, Germany
{christoph.fritsch,guenther.pernul } @wiwi.uni-regensburg.de
http://www-ifs.uni-regensburg.de
2 Centre for Information Technologies
Technical University of Kosice
04200 Kosice, Slovakia
peter.bednar@tuke.sk),
http://www.ekf.tuke.sk

Summary. Service-oriented computing (SOC), lately often in combina-
tion with business process modeling (BPM), is becoming reality in current
enterprise systems. At the same time, process models do no longer only
span different departments but more and more frequently multiple organs-
zations. Current BPM approaches focus on syntactic specification of work
flow structures and necessitate static service allocation during modeling
time. Dynamic service allocation at runtime based on the semantics of
service descriptions, however, allows for much more flexibility. This paper
presents DS®I as a concept and implementation for semantically enhanced
dynamic service selection. DS®I and its semantic middleware components
are based upon an ESB and semantic annotations of services and allows
for one-step service selection at runtime of a process.

Key words: Dynamic Service Selection, Semantic Mediation, Global
Service Infrastructures

1 Introduction and Motivation

Today’s companies are facing strong challenges in the markets. More and more
companies are realizing that they can no longer operate as fully self-contained
actors but have to advance their ways of doing business. They begin to reconsider
their business structures and aim for flexible cross company business network
structures to perform future business with anybody, anywhere, anytime [18].
Two major trends accompany this development: (1) Process Modeling, i.e. the
investigation and structured graphical presentation of business processes (2)
Service Composition, i.e. chaining and automated execution of services. Combined

* The research leading to these results received funding from the European Community’s
Seventh Framework Programme under grant agreement no. 217098.

{christoph.fritsch, guenther.pernul}@wiwi.uni-regensburg.de
http://www-ifs.uni-regensburg.de
peter.bednar@tuke.sk
http://www.ekf.tuke.sk

2 Christoph Fritsch, Peter Bednar, and Giinther Pernul

both technologies allow for automatic execution and control of business processes.
The common approach to obtain such a executable process model is to first break
down the overall process into single tasks, then assign appropriate electronic
self-contained services and finally map their inputs and outputs. The allocation
of services to tasks is static. The resulting executable process model together
with references to all external services is then deployed to a work flow engine

Consider for example an online shop that receives orders via a web application
and passes order processing over to a WFE that executes BPEL processes. Order
processing presumes communication with partner services for example for credit
card verification or payment processing. Even if this kind of service is available
from various providers, outage time or failures of the external services cause
interruption of the overall order processing due to static assignment of partner
links in the BPEL process. Thus service allocation at process modeling time brings
along undesirable limitations: (1) It is susceptible to failures due to unavailable
external services. Overall process execution fails if a single partner link is not
available. (2) Newly published services cannot be considered in the process model
without altering and redeploying it. Process modeling as the basis of controlled
execution is essential but the trend towards intra- and inter-organizational service
orientation necessitates more flexibility. Appropriate services have to be allocated
at the latest possible point in time, i.e. at runtime of the process.

In this paper we present DS?I as an approach for dynamic service selection
and mediation as it is developed as part of the SPIKE projectﬂ Using DS?®I
process models do no longer (necessarily) establish static links between tasks and
service instances but are rather built against generic service interfaces. Behind
these facades, semantically enhanced dynamic service selection and allocation is
performed. We particularly focus on non-intrusive dynamic service allocation,
on the semantic description and resolving of services and the semantic and non-
semantic mediation. DS?I strives for suitability for legacy applications as 'real
services’ are just evolving in many organizations whereas thousands of legacy
applications prove aptitude in everyday life.

The remainder of the paper is organized as follows: First we provide provides
related work in Section [2] Section [3] summarizes the conceptual model before
Sections [4] and [5] present the proposal in detail on the architectural level and
implementation details of a prototype system, respectively. Finally, Section [0]
draws conclusions and identifies current and future work.

2 Related Work

Schmidt et al. [16] noticed already back in 2005 that "SOA holds out the promise
that services can be discovered |[...| and bound together to form new and exciting,
or simply more efficient applications". They developed two generic patterns: (1)
The protocol switch pattern and (2) the service transformation pattern. Both

2 |http:/ /www.spike-project.eu

http://www.spike-project.eu

DS?I - A Dynamic Semantically Enhanced Service Selection Infrastructure 3

allow for discovering suitable target services dynamically. However, as these
patterns have not yet been broadly implemented, service discovery is still carried
out before a client is developed or the business process is modeled and deployed.
Most related and decisive approaches for dynamic service selection are presented
below and improvements by semantic annotations are presented in section [2.3

2.1 Degrees of Freedom

Both Alonso et al. [I] and Chang et al. [4] provide comprehensive classification
schemes which uncover the main challenges. In combination both approaches
cover the essential degrees of freedom for dynamic service selection approaches.
Alonso et al. [I] distinguish between four concepts: (1) Static Binding is the
concept current process modeling approaches , i.e. static allocation of services at
modeling time. (2) Dynamic Binding by Reference depends on a variable defined
in the process which contains a reference to the chosen service instance. (3)
Dynamic Binding by Lookup employs service repositories to retrieve predefined
services at runtime. Finally, (4) Dynamic Operation Selection in the authors
grasp is a rather special case that deals with selecting different operations of the
same service.

This classification focuses on service selection as part of the overall process
and does not consider unequal responsibilities for modeling and service allocation
and/or the need to modify service allocation criteria without modifying the
process. Nevertheless, they realize the necessity to separate between process mod-
eling and service allocation time. Chang et al. [4] provide a different classification
of dynamic composition. They classify along the axes "decision time", i.e. the
moment the decision is made , "target service visibility", i.e. if the set of service
candidates is fixed or time-varying, and "provision of adaption method", i.e. if
the target service can adopt to given service requests.

2.2 Dynamic Service Selection

Content-based routing (CBR) in Enterprise Service Buses (ESB) as mentioned by
[15] and others is the most mature approach. Based on a service request messages’
contents a component decides to which service instance a request is forwarded.
DRESR [2] by Bai et al. introduces the idea of abstract routing paths (ARPs),
where each service is identified by an URI and an abstract service name. An ARP
is composed of abstract service names and is therefore not bound to particular
service instances. To obtain concrete service instances, a central routing manager
component selects a service instance from the pool of candidates for the given
task. The Dynamic Wire Tap (DWT) approach by Wu et al. [20] builds upon
the well-known EAI patterns Wire Tap, Enricher, Recipient List and Aggregator
[8]. A service discovery engine retrieves a list of service candidates and forwards
the request to the DWT component which in turn routes the request forward
to one of the service candidates. CBR and DRESR, however, do not offer real
dynamic service selection as the potential target services together with routing

4 Christoph Fritsch, Peter Bednar, and Giinther Pernul

rules have to be statically defined beforehand and DW'T depicts a rather cloudy
low-level concept and demands for quite some adoptions.

Other approaches consider BPEL as a starting point: WS Binder [5] by Di
Penta et al. binds tasks to proxy objects instead of service instances. During
a pre-execution binding the proxy objects are initialized with service instances
resulting in a quasi-static service allocation. VRESCo by [14] and [12] introduces
an aspect-oriented extension for BPEL environments for monitoring and replacing
partner links. While WS Binder does not consider transformation/mediation,
VRESCo at least considers static, non-semantic transformation rules. It does,
however, neither distinguish between abstract and concrete service interfaces
nor does it harness semantic meta-data therefore potentially resulting in a big
amount of complex static transformation rules.

The concept of Dynamic Composition Handlers (DCHs) by Chang et al.[3]
builds upon an ESB and clearly separates between service interfaces specified in
the process and realized interfaces. It does, however, only consider a BPEL-engine
as service client. The ESB-based ProBus approach by Mietzner et al. [I3] is a
concept for policy-driven dynamic service selection. In contrast to other work,
this approach mainly focuses on the definition of selection criteria. Following the
ProBus idea, service requesters define their preferences in form of non-functional
properties expressed as WS-Policy statements and the services are described by
WSResourceProperties. ProBus matches the service requester’s policy against
resource properties of known services to obtain a service candidate.

2.3 Semantic Technologies

Improvements in the field of dynamic service selection gained from semantic
technologies can be divided into two blocks: (1) Semantically annotated services
and process models and (2) semantically supported mediation and resolving.

Semantically enhanced business process modeling and semantic ESB is in focus
of several research initiatives, e.g. the Object Management Group or EU-fundend
R&D projects such as STASIS or the SUPER project. Several rather mature
but only scarcely used concepts exist. The Resource Description Framework
(RDF), primarily been designed as a meta-data data model for all kinds of (web)
resources, has become a standard semantic model for data interchange. OWL-S
offers an ontology of services and aims at making semantic description, discovery
and execution of services possible. The Web Service Modeling Ontology (WSMO)
emerged as a result of several EU-funded research projects. Its main concepts
are ontologies, web services, (service) goals and mediators. Finally, Semantic
Annotations for WSDL and XML Schema (SAWSDL) forms a simple extension
layer on top of WSDL that lets components specify their semantics.

Semantic process and service annotation alone does only provide the founda-
tions for semantically enhanced dynamic service selection. As can be seen from
the previous section, a number of authors pay attention to non-semantic dynamic
service selection but only sporadically complete and comprehensive semantic
approaches are published. Karastoyanova et al. [9] proposed a reference architec-
ture for semantic business process management where they clearly distinguish

DS?I - A Dynamic Semantically Enhanced Service Selection Infrastructure 5

between a process modeling and runtime environment. The reference architecture
has later been implemented as an semantic service bus [10]. Fujii and Suda [7]
present another comprehensive framework for semantics-based dynamic service
composition. The framework does neither embrace an prototype nor does it build
upon an modeled processes and an ESB as infrastructure component. It considers
user context information for service composition and allows users to formulate a
request for an particular type of application in natural language.

3 Conceptual Model

Service
Discoverer

Repository

Mediator/ Sarvice 1
Transformer
| Service Service 4
et Listener Selector @

(a) Static Service Allocation (b) Service Selectlon and Mediation Scheme

Serwoe
Reposltory

Fig. 1. Static vs. Dynamic Service Allocation

The conceptual model of DS?I is sketched in Fig. The essential goal is
dynamic service selection in a minimum-invasive way. The switch from static to
dynamic service allocation shall not necessitate any modifications. Neither service
requester, be it a stand-alone client application or a WFE, nor individual service
instances shall be required to be modified. Instead, infrastructure components
allow for dynamic service allocations.

Consequently, the conceptual model in Fig. consists of two different
types of components: (1) The white shaded actors depict unmodified parties that
request or provide a given service. (2) The bluish shaded components depict
components that facilitate the semantically supported dynamic service selection
approach. These components are shielded by the infrastructure and are therefore
neither visible for client nor service provider.

Details on components’ functionality and implementation are illustrated in
sections [and 5] so only a short overview is presented here: The Service Listener
acts as a virtualized interface for a given type of service. We assume that service
request messages are dispatched to these virtual services instead of concrete ones.
Based on the request message and further selection criteria and non-functio-
nal properties, the Service Selector picks an appropriate service instance from
the Service Repository. The Service Repository is charged with information and
descriptions of available services via the Service Discoverer which in turn provides

6 Christoph Fritsch, Peter Bednar, and Giinther Pernul

means for service providers to announce their services. As different services that
provide the same functionality may vary in their interfaces and message format,
the Mediator/Transformer mediates between clients’ request messages and the
request messages expected by the selected service instance. It retrieves applicable
transformation rules from the Transformation Rules Repository and transforms
messages accordingly. We intentionally designed a comprehensive infrastructure.
This way service selection can be delegated completely to the infrastructure,
ensuring clear separation between different roles such as process modelers, service
providers or service users. Applying the conceptual service selection model to

Message Types (XSD) sawsdl:liftingSchemaMapping
awsdl:lowerir

Data Type Definition

Schema Mapping
(XSLT)

A| Element Declaration

Process Layer | |Interface (WSDL) sawsdl:modelReference

\ || Operation
Ontology Model
P Messages Ny (WSML)

/ Faults \

e fT R T
\ Binding (WSDL)
\ \

Endpoint (WSDL)
Service Implementation Layer

(a) 3-layered Operating Mode (b) Semantic Annotation of Services

Fig. 2. Operation Mode and Semantic Annotations

current service binding concepts results in a 3-layered operating mode illustrated
in Fig. The three layers are organized as follows:

— The Process Layer focuses on modeling the business process and its stepwise
refinement. Furthermore, process deployment to a WFE as well as execution
monitoring is conducted at this layer. Different tasks of executable processes
are linked to virtual service interfaces provided by DS®I.

— The Mediation Layer forms the core of DS3I. It provides generic interfaces
(IF1 through IF4 in Fig. against which the process is linked and holds
links (BC1 through BC4 in Fig. to all available service instances that
form the pool of service candidates. As a result, the mediation layer mediates
between virtualized service interfaces and concrete service instances.

— Actors on the Service Implementation Layer implement inquired functionality
in form of services. Each service instance realizes an interface which is described
and registered with DS?I.

— A Management Layer is orthogonal to the other layers and therefore not
displayed in Fig. At this layer the service instances are announced to the
mediation layer and the criteria and non-functional properties that determine
the service selection procedure are defined.

DS?I - A Dynamic Semantically Enhanced Service Selection Infrastructure 7

4 Architecture

The overall architecture resulting from this conceptual model is depicted in Fig.
It consists of a service requester, several interchangeable service candidates
and an extended enterprise service bus as a semantically supported dynamic
service selection infrastructure.

4 Semantic Service Bus

5 XOR

Service ean_f/lidialion / dﬁ/

Resolver Transformation |I-»- RoNoig ‘;
I, '\ '(4) (5

Service Requester Semantic Manager

A

=

{Provider B~ =

6

Semantic
Service
Repository

Semantic Modeling

]
o
=3

=
=

S

s
1<
=

<

T
c
@

Semantic Middleware

Fig. 3. DS®I Architecture Overview

4.1 ESB - a Means to an End

DS?I builds upon standards ESB capabilities. An ESB acts as an intermedi-
ary between service requesters and service instances and shall provide diverse
messaging, routing and mediation capabilities [11], [I5] as defined in the Java
Business Integration (JBI) standard [I7]. A JBI compliant ESB consists of three
components DS?I is built upon:

— Binding components (BCs) allow connecting external services via various
communication protocols and transforming data to a normalized form. Using
existing BCs we employ the JBI-standard to interlink DS®I not only with web
services but with diverse kinds of legacy applications which were only seldom
designed to be linked together.

— Normalized Message Router (NMR) forms the central messaging and routing
backbone of the ESB, and therefore the backbone where service selection
components are hooked in.

— Service Engines (SEs) provide business logic for integration of services (i.e.
orchestration, data transformation, etc.). All semantic-enabled components are
implemented as JBI SEs.

4.2 Components and Capabilities

DS?I can be broken down into basically five different technical building blocks.
The semantic middleware, in turn, is composed of several more modules as
depicted in the black-bordered box in Fig.

8

Christoph Fritsch, Peter Bednar, and Giinther Pernul

— The Service Requester (1) can be any stand-alone client or WFE that invokes

services. For the time being we assume service requesters to communicate via
SOAP with DS?I. There is no need for the service requester to be changed in
terms of additional functionality before it can benefit from the dynamic service
selection infrastructure.

DS%I acts as the communication and messaging infrastructure. It provides
both message sinks and sources for service requesters and service providers
which is why JBI BCs reside at both ends: On the client side one for each
exposed virtualized service interface (2), on the service candidate side one for
each connected service candidate (6). Furthermore, it serves as the runtime
engine for the semantic middle components.

The Semantic Middleware (4) consists of run-time components for ontologies
storage, maintenance, semantic mediation, validation and querying/reasoning
over semantically described data on services and messages. In combination,
these components provide all capabilities depicted in Fig. It consists
of service resolving components, which actually select an appropriate service
instances for a given virtualized interface based on semantic annotations of
services and their interfaces. In a subsequent step, mediation components
transform request and response messages into an adequate format for the
selected service instance, again based on semantic interface descriptions. Both
components employ the semantic manager, which shields all semantic mediation
and reasoning related capabilities. The semantic manger in turn resorts to the
semantic repository where all required information is stored.

Functionality and interfaces of Service Candidates need to be semantically
annotated. This is supported by Semantic Modeling and Annotation Tools for
knowledge engineers and annotators at service provider side. Design tools are
available as a set of Eclipse plug-ins and allow for visual modeling of ontology
elements together with semantic annotations of WSDL files.

Individual service candidates are realized by any kind of service implementation
which is supported by a JBI BC. Hence, DS?I is not restricted to SOAP-based
webservices but can interlink with a broader set of service implementations.
Merely, the provided functionality and their inputs and outputs have to be
annotated semantically via previously mentioned tools.

The architecture involves two more auxiliary components: The Message Inter-
ceptor (3) allows for easily enabling or disabling the semantic middleware. Here
a client-sided BC can easily be configured and statically be bound to a fixed
service instance to circumvent the semantic middleware in case of need. The
Monitoring Component (5) aims at collecting non-functional properties for each
interaction with a service instance. Resulting data may provide a basis for both
service evaluation and monitoring as well as for future service selection decisions.

5 Implementation

To evaluate the conceptual model and the DS?I architecture we implemented
and tested the individual components prototypically within the SPIKE project.

DS?I - A Dynamic Semantically Enhanced Service Selection Infrastructure 9
5.1 Implementation Considerations

As semantic framework we chose WSMO-Lite for handling ontologies and seman-
tically enriched data. In particular, the implementation is based on the following
components and frameworks:

— The SPIKE API for in-memory representation of the ontology elements (ontolo-
gies, concepts, instances, relations and axioms) is based on the wsmo4j library.
Besides the ontology API, wsmod4j provides facilities for ontology validation
and parsing/serialization from and to various formats.

— The main functionality of the Framework for RDF persistence is the mapping
of top ontology elements into the RDF model. SPIKE RDF persistence is based
on the ORDI framework, which allows integrating various data sources and
provides a common RDF API for accessing underlying data.

— RDF storage. SPIKE ontologies are physically stored as RDF data using
the Sesame repository. The current SPIKE configuration uses SwiftOWLIM
extended by the TRREE inference engine as physical storage.

— For infrastructure components (external service interfaces, runtime environment
for service selection and mediation components) the JBI-compliant ESB Apache
ServiceMix and its various BCs and SEs are employed. For the implementation
of virtualized service interfaces as well as for the links to external services the
Apache CXF BC is used. As runtime environment, for the sementic middleware
the ServiceMix Bean SE is used which allows deploying Java classes into the
ESB. Semantic (and non-semantic) dynamic service selection components are
thus implemented as plain Java beans.

— Semantic Annotation of Services is implemented using the SAWSDL specifica-
tion as shown in Fig. SAWSDL extensions take two forms:

1. Model references (sawsdl:modelReference attribute) which point to seman-
tic concepts by URIs. Model references can be applied to WSDL elements
(i.e. interface or operation) to specify the function of the service or XML
scheme elements and describe the meaning of the input/output data.

2. Schema mappings (sawsdl:1liftingSchemaMapping and sawsdl:lowering
SchemaMapping attributes) specify data transformations (usually defined
with XSLT) between messages in normalized XML format (as used by the
ESB) and the associated semantic model. The schema mappings are used
for semantic data mediation. An automated semantic mediator can first lift
data in one XML format to instances in the shared ontology and then again
lower it to another XML format using the lifting annotation from the first
format’s schema and the lowering annotation from the second schema.

5.2 Semantic Resolving and Mediation

Preconditions Semantic annotations of services are used to overcome the
ambiguities during service discovery related to the description of services at the
syntactic level only. For service composition, we adopt a semi-automatic approach
where the business processes are modeled manually as BPEL processes. BPEL

10 Christoph Fritsch, Peter Bednar, and Giinther Pernul

processes refer to abstract partner links, the virtualized service interfaces. The
abstract partner links have to be resolved to concrete service instances during
process execution. The process of resolving can be automatic and is based on
semantic matching of descriptions of abstract partner links and service candidates
provided by potentially several service providers.

In order to overcome data heterogeneity (i.e. when data expected by the
abstract partner link has a different format than data defined for the selected
service instance), DS®I supports semantic data mediation. Matching of service
candidates is based on two types of semantic annotations assigned to the abstract
partner link using the modelReference SAWSDL attribute: (1) SKOS ontology
[19] for specification of classification schemes of categories. (2) Domain specific
semantic types of input/output messages specified for the requested operation.

During matching both types can be combined arbitrarily and the hierarchical
organization of categories and subclass/superclass relations of input/output
types can be recursively expanded during reasoning. For semantic mediation,
we adopt two approaches. The first approach is based on standard XSLT where
ontologies are used as the common data vocabulary. This approach requires
XSLT transformations for lifting and lowering of instances and is well supported
by existing SEs. In the second approach incoming XML data is transformed to
instances using a generic lifting scheme. Input instances are then transformed
using semantic mappings into output instances which in turn are transformed to
XML data again using the generic lowering scheme.

Operation Sequence The whole procedure for business process execution in
DS?I consists of the following steps:

1. A business process definition is deployed to the BPEL SE. BPEL process
invokes of abstract partner links are sent to the service resolving component.

2. The Service Resolver calls the Semantic Manager for discovery of services
capable to provide outputs as specified for the abstract partner link. If
there are more service candidates, a target service is selected for invocation
according to predefined properties.

3. In case of unequal data formats specified for the abstract partner link and
the target service, the message is forwarded to the Mediator, otherwise it is
forwarded directly through the JBI BC to the selected service instance.

During mediation, the message is processed as follows: (1) Input data from
the message exchange is transformed using the lifting schema specified for the
abstract partner link. The result is a set of semantic instances. (2) Since the
domain ontology specified for the partner link can be different to the ontology
specified for the resolved service, instances are optionally transformed from the
source ontology to the target ontology using semantic axioms and transformation
rules (instance-to-instance transformation). (3) Instances are transformed back to
normalized messages using the lowering schema specified for the resolved service.

In summary, data is first transformed using the lifting schema of the resolved
service and then transformed back to normalized messages using the lowering
schema specified for the partner link.

DS?I - A Dynamic Semantically Enhanced Service Selection Infrastructure 11
6 Conclusions and Future Work

In this paper we have introduced DS?I for semantically enhanced dynamic service
selection and mediation. DS?I allows for one-step service selection without any
negotiation phase between clients and service providers. DS?I and its semantic
middleware components are based upon an ESB and employ semantic annotations
of services. Semantic descriptions are furthermore applied to find appropriate
service candidates and mediate between unequal interfaces and data formats.
Except for more detailed service descriptions, DS?I does not necessitate any
changes at client or service side.

Employing DS?I, appropriate service candidates can be discovered and as-
signed at run-time. This way process modelers and developers are no longer
required to statically allocate service instances already at modeling time of
a business process or implementation time of a stand-alone client application
and service instances published at a later date can still be considered. Process
modeling gains much more flexibility and a clear separation between process
modelers or client application developers and business operation personnel can
be accomplished. The former ones can focus on functional and business-process
requirements while issues of service selection and mediation are delegated to
business operation personnel and infrastructure components. We presented a
detailed problem breakdown together with related work in this area. The core
area of this work, however, is the DS3I conceptual model, the overall architecture
of the semantically enhanced dynamic service selection infrastructure and details
on the prototypical implementation.

While our work yielded a suitable prototype for semantically supported
dynamic service selection and mediation, future work is divided into two areas of
research. (1) Requirements definition for the service selection phase along with
performance penalties due to the gained flexibility have to be investigated in
detail. (2) Dynamic service selection presupposes dynamic security enforcement
and despite dynamic allocation of services, access control and accountability have
to be ensured. We already developed a proposal [6] which is being elaborated and
tested. Finally, as service selection criteria may vary depending on the sender
of the initial message, both previously mentioned fields of research need to be
reintegrated to allow for extracting service selection criteria from predefined
configurations and user profiles.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web S: Concepts, Architectures
and Applications. Springer, Berlin, 2004.

2. X. Bai, J. Xje, B. Chen, and S. Xiao. DRESR: Dynamic Routing in Enterprise Service
Bus. In Proc. of the IEEE International Conference on e-Business Engineering
(ICEBE ’07), pages 528-531, 2007.

3. S. H. Chang, J. S. Bae, W. Y. Jeon, H. La Jung, and S. D. Kim. A Practical
Framework for Dynamic Composition on Enterprise Service Bus. IEEFE International
Conference on Services Computing, pages 713-714, 2007.

12

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Christoph Fritsch, Peter Bednar, and Giinther Pernul

S. H. Chang, H. J. La, J. S. Bae, W. Y. Jeon, and S. D. Kim. Design of a Dynamic
Composition Handler for ESB-based Services. In Proc. of the IEEE International
Conference on e-Business Engineering (ICEBE ’07), pages 287-294, 2007.

. M. Di Penta, R. Esposito, M. L. Villani, R. Codato, M. Colombo, and E. Di Nitto.

WS Binder: A Framework to Enable Dynamic Binding of Composite Web Services. In
Proc. of the 2006 International Workshop on Service-oriented Software Engineering
(SOSE ’06), pages 74-80, 2006.

. C. Fritsch and G. Pernul. Security for Dynamic Service-Oriented eCollaboration -

Architectural Alternatives and Proposed Solution. In Proc. of the 7th International
Conference on Trust, Privacy & Security in Digital Business (TrustBus 2010), pages
214-226, 2010.

. K. Fujii and T. Suda. Semantics-based context-aware dynamic Service Composition.

ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):1-31, 2009.

. G. Hohpe, B. Woolf, and K. Brown. Enterprise integration patterns: Designing,

building, and deploying messaging solutions. Addison-Wesley, Boston, 2008.

. D. Karastoyanova, T. van Lessenand Frank Leymann, Z. Ma, J. Nitzsche, B. Wet-

zstein, S. Bhiri, M. Hauswirth, and M. Zaremba. A Reference Architecture for
Semantic Business Process Management Systems. In Multikonferenz Wirtschaftsin-
formatik, 2008.

D. Karastoyanova, B. Wetzstein, T. van Lessen, D. Wutke, J. Nitzsche, and F. Ley-
mann. Semantic Service Bus: Architecture and Implementation of a Next Generation
Middleware. In Proc. of the 2nd International ICDE Workshop on Service Engi-
neering (SEIW 2007), pages 347-354, 2007.

F. Leymann. The (Service) Bus: Services Penetrate Everyday Life. In Proc. of the
3rd International Conference on Service-Oriented Computing (ICSOC 2005), pages
12-20, 2005.

A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar. End-to-End Support
for QoS-Aware Service Selection, Binding, and Mediation in VRESCo. I[IFEE
Transactions on Services Computing, 3/2010:193-205, 2010.

R. Mietzner, T. van Lessen, A. Wiese, M. Wieland, D. Karastoyanova, and F. Ley-
mann. Virtualizing Services and Resources with ProBus: The WS-Policy-Aware
Service and Resource Bus. In Proc. of the 7th International Conference on Web
Services (ICWS) 2009, pages 617-624, 2009.

O. Moser, F. Rosenberg, and S. Dustdar. Non-intrusive monitoring and service
adaptation for ws-bpel. In Proc. of the 17th int. conference on World Wide Web,
WWW °08, pages 815-824, New York, NY, USA, 2008. ACM.

M. P. Papazoglou and W.-J. van den Heuvel. Service oriented Architectures:
Approaches, Technologies and Research Issues. The VLDB Journal, 16(3):389-415,
July 2007.

M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen. The Enterprise Service
Bus: Making Service-oriented Architecture Real. IBM Systems Journal, 44(4):781~
797, 2005.

R. Ten-Hove and P. Walker. Java Business Integration (JBI) 1.0. Java Specification
Request 208, 2005.

E. van Heck and P. Vervest. Smart Business Networks: How the Network Wins.
Communications of the ACM, 50(6):28-37, 2007.

W3C. SKOS Simple Knowledge Organization System Reference. W3C' Recommen-
dation, 2009.

B. Wu, S. Liu, and L. Wu. Dynamic Reliable Service Routing in Enterprise Service
Bus. In Proc. of the 2008 IEEE Asia-Pacific Services Computing Conference
(APSCC 08), pages 349-354, 2008.

	DS3I - A Dynamic Semantically Enhanced Service Selection Infrastructure
	Christoph Fritsch, Peter Bednar, Günther Pernul
	1 Introduction and Motivation
	2 Related Work
	2.1 Degrees of Freedom
	2.2 Dynamic Service Selection
	2.3 Semantic Technologies

	3 Conceptual Model
	4 Architecture
	4.1 ESB - a Means to an End
	4.2 Components and Capabilities

	5 Implementation
	5.1 Implementation Considerations
	5.2 Semantic Resolving and Mediation
	Preconditions
	Operation Sequence

	6 Conclusions and Future Work
	References

