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Abstract. Reconciliation is the commonly used method for inferring the evolutionary sce-
nario for a gene family. It consists in “embedding” an inferred gene tree into a known species
tree, revealing the evolution of the gene family by duplications and losses. The main com-
plaint about reconciliation is that the inferred evolutionary scenario is strongly dependant on
the considered gene tree, as few misplaced leaves may lead to a completely different history,
with significantly more duplications and losses. As using different phylogenetic methods with
different parameters may lead to different gene trees, it is essential to have criteria to choose,
among those, the appropriate one for reconciliation. In this paper, following the conclusion
of a previous paper, we flag certain duplication vertices of a gene tree, the “non-apparent
duplication” (NAD) vertices, as resulting from the misplacement of leaves, and consider the
optimization problem of removing the minimum number of leaves leading to a tree without
any NAD vertex. We develop a polynomial-time algorithm that is exact for two special classes
of gene trees, and show a good performance on simulated data sets in the general case.

1 Introduction

Almost all genomes which have been studied contain genes that are present in two or more copies. As
an example, duplicated genes account for about 15% of the proteins genes in the human genome [19].
In operational practise, homologous gene copies, e.g. copies in one genome or amongst different
genomes that are descended from the same ancestral gene, are identified through sequence similarity.
For example, using a BLAST-like method, all gene copies with a similarity score above a certain
threshold would be grouped into the same gene family. Using a classical phylogenetic method, a
gene tree, representing the evolution of the gene family by local mutations, can then be constructed
based on the similarity scores.

From a functional point of view, grouping genes by sequence similarity is not sufficient to infer
a common function for genes. Indeed, it is important to distinguish between two kinds of homologs:
orthologs which are copies in different species related through speciation, and thus likely to have
similar functions, and paralogs , which are copies that have evolved by duplication, and more likely to
have acquired new functions. Duplication is, indeed, a major source of gene innovation and creation
of new functions [21]. In addition, gene losses, arising through the pseudogenization of previously
functional genes, also play a key role in the evolution of gene families [2, 8, 11, 17, 21]. Understanding
the evolution of gene families through speciation, duplication and loss is thus a fundamental question
in functional genomics, evolutionary biology and phylogenomics [25, 28].

The most commonly used methods to infer evolutionary scenarios for gene families are based on
the reconciliation approach that compares the species tree S (describing the relationships among
taxa) to the gene tree T . Assuming no sequencing errors and a “correct” gene tree, the incongruence
between the two trees can be seen as a footprint of the evolution of the gene family through processes
other than speciation, such as duplication and loss. The concept of reconciling a gene tree to a species
tree under the duplication-loss model was pioneered by Goodman [13] and then widely accepted,
utilized and also generalized to models of other processes such as horizontal gene transfer [18, 9, 27].
Several definitions of reconciliation exist in the literature, one of them expressed in term of “tree
extension” [5]. More precisely, a reconciliation R between T and S is an extension of T (obtained



by grafting new subtrees onto existing branches of T ) consistent with the species tree, i.e. reflecting
the same phylogeny. A duplication and loss history for the gene family is then directly deduced
from R. As many reconciliations exist, a natural approach is to select the one that optimizes a given
criterion. Natural combinatorial criteria are the number of duplications (duplication cost), losses
(loss cost) or both combined (mutation cost) [6, 20]. The so called Lowest Common Ancestor (LCA)
mapping between a gene tree and a species tree, formulated in [15, 24] and widely used [3, 10, 14, 20,
22–24], defines a reconciliation that minimizes both the duplication and mutation costs.

The main complaint about reconciliation methods is that the inferred duplication and loss history
for a gene family is strongly dependant on the gene tree considered for this family. Indeed, a few
misplaced leaves in the gene tree can lead to a completely different history, possibly with significantly
more duplications and losses [16]. Reconciliation can therefore inspire confidence only in the case of
a well-supported gene tree. Typically bootstrapping values are used as a measure of confidence in
each edge of a phylogeny. How should the weak edges of a gene tree be handled? A strategy adopted
in [6] is to explore the space of gene trees obtained from the original gene tree T by performing
Nearest Neighbour Interchanges (NNI’s) around weakly-supported edges. The problem is then to
select, from this space, the tree giving rise to the minimum reconciliation cost.

In this paper, we explore a different strategy for correcting, or choosing an appropriate gene
tree among a set of possible trees, that consists in identifying a number of “misplaced” gene copies
in a given gene tree. Criteria for identifying potentially misplaced leaves were given in a previous
paper [5], where “non-apparent duplication vertices”, were flagged as potentially resulting from the
misplacement of leaves in the gene tree. The reason is that each one of these vertices reflects a
phylogenetic contradiction with the species tree that is not due to the presence of duplicated gene
copies. We develop algorithmic methods for removing the minimum number of leaves resulting in a
gene tree T without any non-apparent duplication vertex.

In the next section, we begin by formally introducing our concepts. We then motivate and state
our problem in Section 3. Section 4 is dedicated to the algorithmic developments. We first describe
two special classes of gene trees which lead to an exact polynomial-time algorithm. We then present
a heuristic algorithm for the general case. In Section 5, we test the optimality of our algorithm, and
the ability of the presented approach to identify misplaced genes. We finally conclude in Section 6.

2 Definitions

2.1 Trees

In this paper, we only consider rooted trees. Let G = {1, 2, · · · , g} be a set of integers representing
g different species (genomes). A species tree on G is a rooted binary tree with exactly g leaves,
where each i ∈ G is the label of a single leaf (Figure 1(a)). A gene tree on G is a rooted binary
tree where each leaf is labelled by an integer from G, with possibly repeated leaves (Figure 1(b)).
A gene tree represents a gene family, where each leaf labelled i represents a gene copy located on
genome i. In the case of a species tree or a uniquely leaf-labelled gene tree, i.e. no leaf-label occurs
more than once, we will make no difference between a leaf and its label.

Given a tree U , the size of U , denoted |U |, is the number of leaves of U , and the genome set

of U , denoted by L(U), is the subset of G defined by the labels of the leaves of U . Given a vertex x
of U , Ux is the subtree of U rooted at x, and the genome set of x, denoted by L(x), is the subset
of G defined by the labels of the leaves of Ux (for example, in the tree of Figure 1(a), L(B) = {1, 2}).
If x is not a leaf, we denote by xl and xr the two children of x. Finally, if x is not the root, any
vertex y on a path from x to the root is an ancestor of x.

Given a tree U , a leaf removal consists in removing a given leaf i from U , and suppress the
resulting degree two vertex. A tree U ′ obtained from U through a sequence of leaf removals is said
to be included in U .



Finally, a subtree Ux of U , for a given vertex x, is said to be a maximum subtree of U verifying
a given property P iff Ux verifies property P and, for any vertex y that is an ancestor of x, Uy does
not verify property P.

2.2 Reconciliation

Applying a classical phylogenetic method to the gene sequences of a given gene family leads to a
gene tree T that is different from the species tree, mainly due to the presence of multiple gene copies
in T , and that may reflect a divergence history different from S. The reconciliation approach consists
in “embedding” the gene tree into the species tree, revealing the evolution of the gene family by
duplications and losses.

There are several definitions of reconciliation between a gene tree and a species tree [3, 10, 14, 15,
20, 22, 24]. Here we define reconciliation in terms of subtree insertions, following the notation used
in [4, 14]. We begin by introducing some definitions:

– A subtree insertion in a tree T consists in grafting a new subtree onto an existing branch of T .
– A tree T ′ is said to be an extension of T if it can be obtained from T by subtree insertions on

the branches of T .
– The gene tree T is said to be DS-consistent with S (DS standing for Duplication/Speciation) if

T reflects a history with no loss, i.e. if for every vertex t of T such that |L(t)| ≥ 2, there exists
a vertex s of S such that L(t) = L(s) and one of the two following conditions holds:

(D) either L(tr) = L(tℓ) (indicating a Duplication),
(S) or L(tr) = L(sr) and L(tℓ) = L(sℓ) (indicating a Speciation).

Definition 1. A reconciliation between a gene tree T and a species tree S on G is an extension
R(T, S) of T that is DS-consistent with S.

For example, the tree of Figure 1(c) is a reconciliation between the gene tree T of Figure 1(b)
and the species tree of Figure 1(a). Such a reconciliation between T and S implies an unambigu-
ous evolution scenario for the gene family, where a vertex of R(T, S) that satisfies property (D)
represents a duplication (duplication vertex), a vertex that satisfies property (S) represents a speci-
ation (speciation vertex), and an inserted subtree represents a gene loss. The number of duplication
vertices of R(T, S) is called the duplication cost of R(T, S).

2.3 LCA Mapping

The LCA mapping between T and S, denoted by M , maps every vertex t of T towards the Lowest
Common Ancestor (LCA) of L(t) in S. A vertex t of T is called a duplication vertex of T with
respect to S if and only if M(tℓ) = M(t) and/or M(tr) = M(t) (see Figure 1(b)). We denote by
d(T,S) the number of duplication vertices of T with respect to S.

This mapping induces a reconciliation M(T, S) between T and S, where an internal vertex t of T
leads to a duplication vertex in M(T, S) iff t is a duplication vertex of T with respect to S. In other
words, the duplication cost of M(T, S) is d(T, S) (see for example [3, 20, 22] for more details on the
construction of a reconciliation based on the LCA mapping). Moreover, M(T, S) is a reconciliation
that minimizes all of the duplication, loss and mutation costs [5, 14]. In particular, d(T, S) is the
minimum duplication cost of any reconciliation between T and S.

2.4 Duplication Vertices and MD-trees.

Let T be a gene tree. It is immediate to see that any vertex t of T such that L(tℓ) ∩ L(tr) 6= ∅
(i.e. the left and right subtrees rooted at t contain a gene copy in the same genome) will be a
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Fig. 1. (a) A species tree S for G = {1, 2, 3, 4}. The three internal vertices of S are named A, B and C;
(b) A gene tree T . A leaf label x indicates a gene copy in genome x. Internal vertices’ labels are attributed
according to the LCA mapping between T and S. Flagged vertices are duplication vertices of T with respect
to S (Section 2.3); (c) A reconciliation R(T, S) of T and S. Dotted lines represent subtree insertions. The
correspondence between vertices of R(T, S) and S is indicated by vertices’ labels. Flagged vertices are
duplication vertices. All other internal vertices of R(T, S) are speciation vertices. This reconciliation reflects
a history of the gene family with two gene duplications preceding the first speciation event, and 4 losses.

duplication vertex in any reconciliation between T and any species tree S, in particular in M(T, S).
Such a vertex is called an apparent duplication vertex (AD vertex for short) of T . In the tree of
Figure 1(b), the root is an AD vertex as its left and right subtree both contain a gene copy in genome
1. Following our notations in [5], given a species tree S, we say that T is a Minimum-Duplication
tree consistent with S, or equivalently a tree that is MD-consistent with S, iff the duplication
cost d(T, S) is equal to the number of apparent duplications of T . In other words, all duplication
vertices of T with respect to S are AD vertices.

However, this is not always true, in other words, a duplication vertex of T with respect to S is
not necessarily an AD vertex. We call such a duplication vertex that is not an AD vertex a non-

apparent duplication vertex, or simply a NAD vertex . For example, the tree of Figure 1(b)
contains one NAD vertex, indicated by a square, and thus T is not MD-consistent with S.

3 Motivation and Problem Statement

Non-apparent duplication vertices point to disagreements between a gene tree and a species tree
that are not due to the presence of repeated leaf labels, i.e. multiple copies in the same genome.
More precisely, we say that a vertex x of T splits three species {a, b, c} into {a, b; c} if the genome
set of one of its children contains a and b but not c, and the genome set of its other child contains
c but neither a nor b. Then for any NAD x of T , there is a triplet of species {a, b, c} that are split
differently by x and by the LCA mapping of x in S. For example, in Figure 1, {1, 2, 3} is split into
{1, 3; 2} by the NAD vertex of T , and into {1, 2; 3} by the vertex A in S. It has therefore been
suggested that NAD vertices may point at gene copies that are erroneously placed in the gene tree.

Different observations made in [5] tend to support this hypothesis. In particular, using simulated
data-sets based on the species tree of 12 Drosophila species given in [17] and a birth-and-death
process, starting from a single ancestral gene, and with different gene gain/loss rates, it has been
found that 95% of gene duplications lead to an AD vertex.

Notice however that a misplaced gene in a gene tree T , in other words, a gene randomly placed
in T , does not necessarily lead to a NAD vertex. In other words, NAD vertices can only point
to a subset of misplaced leaves. However, in the context of reconciliation, the additional damage
caused by a misplaced leaf leading to a NAD vertex is the fact that it significantly increases the real
mutation-cost of the tree, as shown in Figure 2.

Following the later observations, we exploit the properties of NAD vertices for gene tree correc-
tion. If T is not MD-consistent with S, then an MD-consistent tree can always be obtained from T
by performing a certain number of leaf removals. Indeed, a gene tree with only two leaves is always
MD-consistent with any species tree. The optimization problem considered in this paper is therefore:
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Fig. 2. Let S = ((1, 2), 3) (the tree in (a)) be the phylogenetic tree for the three species {1, 2, 3}. Let
T = (1, 2) be a gene tree. (a), (b) and (c) are the three possibilities for T after a random insertion of a leaf
labelled 3. (a) is the only case leading to a tree without any NAD vertex. It reflects a history of the three
gene copies without any duplication or loss; (b) and (c) each contains a NAD vertex, and can be explained
by a duplication-loss history of minimum mutation cost of 4: 1 duplication and 3 losses.

Minimum Leaf Removal Problem:
Input: A gene tree T on G and a species tree S for G;
Output: A tree T MAX included in T and MD-consistent with S of maximum size (i.e. obtained
form T by a minimum number of leaf removals).

4 Method

In the rest of this section, we assume that the set of genomes G and the species tree S for G are fixed.
Let T be a gene tree for a gene family on G. We suppose that T is not an MD-tree consistent with
S, i.e. there is at least one duplication vertex of T that is a NAD vertex. We begin by describing
special classes of gene trees for which exact polynomial-time algorithms have been developed.

4.1 Uniquely leaf-labelled gene trees

When the considered gene family contains at most a unique gene copy per genome, the gene tree
T is uniquely leaf-labelled. In this case, minimizing the number of leaves that should be removed
from T to obtain an MD-tree consistent with S is equivalent to finding the maximum number of
genes that lead to the same phylogeny in T and S. In other words, it is immediate to see that the
Minimum Leaf Removal Problem reduces, in this case, to the Maximum Agreement Subtree
Problem given below.

Maximum Agreement Subtree (MAST) Problem:
Input: A uniquely leaf-labelled gene tree T on G and a species tree S for G;
Output: A tree T MAX included in T and MD-consistent with S of maximum size.

A more general definition is given in the literature, where the MAST problem is defined on a set
of uniquely leaf-labelled trees as the largest tree included in each tree of the set. This definition is
equivalent to ours in the case of a gene tree T and a species tree S.

The MAST problem arises naturally in biology and linguistics as a measure of consistency
between two evolutionary trees over species or languages, respectively [7]. In the evolutionary study
of genomes, different methods and different gene families are used to infer a phylogenetic tree for a
set of species, usually yielding different trees. In such a context, one has to find a consensus of the
various obtained trees. Considering the MAST problem, introduced by Finden and Gordon [12], is
one way to obtain such a consensus. Amir et al. [1] showed that computing a MAST of three trees
with unbounded degree is NP-hard. However, in the case of two binary trees T and S (which is
the case of interest in this paper), the problem is polynomial. The first polynomial-time algorithm
for this problem was given by Steel and Warnow [26]. It is a dynamic programming algorithm



considering the solution for all pairs of subtrees of T and S; it has a running time of O(n2), where
n is the size of the trees. Later, Cole et al. [7] developed an O(n log n) time algorithm, which, as far
as we know, is the most efficient algorithm for solving the MAST problem on two binary trees.

4.2 No AD above NAD

In this section, we consider a tree T containing no AD vertex above a NAD vertex (Figure 3(a)).
More precisely, T satisfies Constraint C below:

Constraint C: For each NAD vertex x of T , if y is an ancestor of x that is a duplication vertex,
then y is a NAD vertex.
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Fig. 3. Solving the Minimum Leaf Removal Problem for a tree satisfying Constraint C; (a) A gene tree
T on G = {1, 2, 3, 4, 5, 6, 7, 8}; (b) A species tree S for G. Internal vertices of S are identified with different
characters. Labels of internal vertices of T are attributed according to the LCA mapping between T and
S. T contains 5 duplication vertices with respect to S: two AD vertices (surrounded by a circle) and three
NAD vertices (surrounded by a square); (c) The tree T I obtained by replacing the two subtrees of T rooted
at each of the two AD vertices by their weighted induced trees. Leaves’ weights are given in brackets; (d)
The weighted agreement subtree W MAX of T I and S of maximum value. v(W MAX) = 7; (e) The subtree
T MAX of T induced by W MAX . T MAX is an MD-tree consistent with S.

We show, in what follows, that the Minimum Leaf Removal Problem reduces, in this case,
to a “generalization” of the Maximum Agreement Subtree Problem to weighted trees, where
a weighted tree is a uniquely leaf-labelled tree with weighted leaves.

Definition 2. Let U be a tree on G. The weighted tree U I induced by (U, S) is the tree included in
S obtained from S by removing all leaves that are not in L(U), with a weight attributed to each leaf
s, representing the number of occurrences of s in U (i.e. the number of leaves of U labelled s).

Let T1, T2, · · ·Tm be the maximum subtrees of T rooted at an AD vertex (i.e. subtrees of T
rooted at the highest AD vertices). Then, the tree T I obtained by replacing each Ti, for 1 ≤ i ≤ m,
by the weighted tree T I

i induced by (Ti, S), is a weighted uniquely leaf-labelled tree. An example is



given in Figure 3(a), (b) and (c). Let ρs be the operation of removing the weighted leaf s from T I .
Then the corresponding removals in T consist in removing from T all leaves labelled s.

Finally, we formulate the generalization of the MAST problem to weighted trees as follows, where
the value of a weighted tree W is the sum of its leaves’ weights.

Weighted Maximum Agreement Subtree (WMAST) Problem:
Input: A weighted tree W on G and a species tree S for G;
Output: A weighted tree WMAX included in W and MD-consistent with S of maximum value.

We are now ready for the main theorem.

Theorem 1. Let T be a gene tree satisfying Constraint C. Let WMAX be a solution of the
WMAST problem on T I and S, and T MAX be the subtree of T induced by WMAX . Then T MAX is
a solution of the Minimum Leaf Removal Problem on T and S.

In other words, Theorem 1 states that solving the Minimum Leaf Removal Problem on T is
equivalent to solving the WMAST problem on T I . We have developed an algorithm (not shown) for
solving the WMAST problem, that is a direct generalization of the dynamic programming algorithm
of Steel and Warnow [26] to weighted trees, and has the same quadratic running time complexity.

A complete example of the algorithmic methodology used for solving the Minimum Leaf Re-
moval Problem on T and S following Theorem 1 is given in Figure 3. The algorithm will be
detailed in the next section.

We now provide a proof of Theorem 1, subdivided into the two following lemmas.

Lemma 1. The tree T MAX is MD-consistent with S.

Proof. We show, by contradiction, that T MAX does not contain any NAD vertex. Suppose that
T MAX contains a NAD vertex x. Then x maps to the same vertex s of S than one of its child, let
say the left child. Then there exist two leaves of T MAX

xl
, labelled a and b, and one leaf of T MAX

xr

labelled c such that the triplet (a, b, c) exhibits a wrong phylogeny. As a non-duplication vertex in
T can not become a duplication vertex after leaf removals, we have only two possibilities for x in T :

1. x is a NAD vertex in T . Then the genome sets of Txl
and Txr

are disjoint. Moreover, the genome
set of WMAX

xl
(respec. WMAX

xr
) is a subset of the genome set of Txl

(respec. Txr
). On the other

hand, as x is not a duplication vertex in WMAX , one of the three genes a, b and c should be absent
in WMAX

x . And thus, {a, b, c} can not be a subset of the genome set of T MAX
x : contradiction.

2. x is an AD vertex in T . Then the subtree Tx of T rooted at x contains at least two leaves labelled
with the same label d (different from a, b and c), one in Txl

and one in Txr
. Moreover the leaf

labelled d in S should belong to the subtree of S rooted at s, and thus to the subtree Si rooted at
the left or right child of s. Such subtree Si contains at least one leaf labelled a or b or c.

On the other hand, let y be the parent of x in T I . As an optimal solution of the WMAST
problem on T I removes leaves from the subtree T I

x , such an operation should result in removing the
duplication vertex y. In other words, x and y should map to the same vertex s in S. Moreover the
result of the leaf removal from T I

x should result in a different LCA mapping for x and y. Indeed,
otherwise removing leaves from the corresponding subtree in T I does not contribute to eliminate any
NAD from T I . It follows that S should exhibit the phylogeny ((a, b, c), d), which is a contradiction
with the result of the last paragraph 2

Lemma 2. Let T ′ be a tree included in T that is MD-consistent with S. Then |T ′| ≤ |T MAX |.

Proof. We will show that, for any s ∈ G, if a leaf i labelled s is removed from T (i.e. i is not a leaf
in T ′), then all leaves of T labelled s are removed from T .



Suppose this is not the case. Let y be the vertex of T representing the least common ancestor
of all leaves labelled s in T . Then y is an AD node. As a leaf i labelled s is removed from T , such
removal should contribute in resolving a NAD vertex x of T . From Constraint C, such vertex
should be outside the subtree of T rooted at y. Moreover, it should clearly be an ancestor of y
(otherwise removing i will have no effect on x).

As x is a NAD vertex, it maps to the same vertex s of S as one of its children, say the left child.
Then, there exist two leaves of Txl

labelled a and b, and one leaf of Txr
labelled c such that the

triplet (a, b, c) exhibits a wrong phylogeny. Moreover, as removing leaf i labelled s contributes in
solving x, we can assume that a = s. However, from our assumption, it remains, in T ′, a leaf labelled
s. Thus: (1) either it remains, in T ′, at least one leaf labelled b and one leaf labelled c, or (2) all
leaves labelled b, or all leaves labelled c are removed. In case (1), the wrong phylogeny exhibited by
the triplet (a, b, c) is still present, preventing vertex x from being a non-duplication vertex. In case
(2), as all copies of b (or equivalently c) are removed, there is no need of removing leaf i labelled s
for correcting the wrong phylogeny exhibited by the triple (a, b, c).

Therefore, the weighted tree W ′ induced by T ′ is obtained from T I through a sequence of leaf
removals. Now, as WMAX is the solution of the WMAST problem on T I , then v(WMAX) ≥ v(W ′),
and thus |T MAX | ≥ |T ′| 2

4.3 An Algorithm for the General Case

In this section, we present a general algorithm, that is exact in the case of a uniquely leaf-labelled
gene tree (Section 4.1) or a gene tree satisfying Constraint C (Section 4.2), and a heuristic in
the general case. We first introduce preliminary definitions. For a given tree U (weighted or not),
consider the two following properties on U :

Property ONLY-NAD: U has no AD vertices;
Property ONLY-AD: U is rooted at an AD vertex and contains no NAD vertex.

We define the NAD-border of U as the set of roots of the maximum subtrees of U verifying
Property ONLY-NAD, and the AD-border of U as the set of roots of the maximum subtrees of U
verifying Property ONLY-AD.

Algorithm Correct-Tree (Figure 4) is a recursive algorithm that takes as input a gene tree
T and a species tree S, and outputs a number of leaf removals transforming T into a tree that is
MD-consistent with S. It proceeds as follows:

• Stop condition - Lines 2 to 4: If T is MD-consistent with S, then no leaf removal is performed, and
the algorithm terminates.

• Recurrence Loop - Lines 6 to 13: Resolve all maximum subtrees of T verifying Constraint C as
described in Section 4.2, that is:

1. Construct the weighted tree T I (Lines 6-8);
2. For each root x of a maximum subtree T I

x of T I satisfying Constraint C (Line 9), solve
the WMAST problem on T I

x , which leads to the weighted tree WMAX
x (Line 10), compute the

induced tree Tx (Line 11) and store the number of performed leaf removals (Line 12).

If T is a uniquely leaf-labelled tree then T I = T , NAD-border(T I) is reduced to the root of the
tree, and thus loop 9- 13 is just executed once. Moreover, as T I is unweighted (all labels are equal
to 1), WMAST is reduced to MAST. The whole algorithm thus reduces to one resolution of the
MAST problem.



Algorithm Correct-Tree (T , S)
1. LeafRemoval=0;
2. IF T is a tree MD-consistent with S THEN
3. RETURN(LeafRemoval)
4. END IF
5. T I = T ;
6. FOR ALL x ∈ AD-border(T ) DO
7. Replace T I

x by its induced weighted tree;
8. END FOR
9. FOR ALL x ∈ NAD-border(T I) DO
10. W MAX

x = WMAST (T I
x );

11. Replace Tx by the subtree induced by W MAX
x ;

12. LeafRemoval = LeafRemoval + (v(T I
x ) − v(W MAX

x ));
13. END FOR
14. RETURN(LeafRemoval+Correct-Tree(T , S))

Fig. 4. An algorithm that takes as input a gene tree T and a species tree S, and outputs the number of leaf
removals “LeafRemoval” performed to transform T into a tree that is MD-consistent with S. Here, WMAST
points out to an algorithm for solving the WMAST problem.

If T satisfies Constraint C, then NAD-border(T I) is also reduced to the root of the whole
tree, and thus loop 9- 13 is just executed once. In this case, the methodology is the one following
Theorem 1, and illustrated in Example 3.

In the general case, NAD-border(T I) is not restricted to a single vertex, and loop 9- 13 can
be executed many times. Moreover, at the end of loop 9- 13, the resulting tree is not guaranteed
to be MD-consistent with S, as NAD vertices higher than those in NAD-border(T I) may exist.
Algorithm Correct-Tree may therefore be applied many times.

Complexity: Let n be the size of T . Loop 2- 4 requires to perform the LCA mapping between T and
S, and identify AD and NAD vertices. As the LCA mapping can be computed in linear time [29,
5], testing whether a tree T is MD-consistent with S can be tested in time O(n). Clearly, Loop 6-8
can be executed in time O(n). As for Loop 9- 13, it has the time complexity of WMAST. As stated
in the later section, the O(n2) algorithm of Steel and Warnow [26] naturally generalizes to the case
of weighted trees, and leads to the same running time complexity O(n2). Therefore, the complexity
for one execution of the recursive Algorithm Correct-Tree is O(n2). As in the worst case, the
algorithm can be executed n times, the total worst case running time complexity is O(n3).

Notice that a more efficient algorithm running in O(n log(n)) time exists for the MAST prob-
lem [7]. If, as we conjecture, this algorithm can be generalized to the WMAST problem, then it
will lead to a time complexity in O(n2 log n) for Algorithm Correct-Tree. This is a short-term
perspective for improvement.

5 Results

We only test the optimality of Algorithm Correct-Tree in the case of a gene tree satisfying Property

AD-above-NAD, i.e. containing at least one AD vertex above a NAD vertex. Indeed, the algorithm
is guaranteed to give the optimal solution otherwise (i.e. for trees satisfying the constraints of
Section 4.1 or Section 4.2). We compared the number NbObtained of leaf-removal obtained by
Algorithm Correct-Tree with the number NbOptimal obtained by an exact naive algorithm that tries
all possible leaf-subset removals. More precisely, if the minimum number of leaf-removal output by



Algorithm Correct-Tree is r, then, we try all subsets of r − 1, r − 2 · · · r − i leaf removals, and stop
as soon as a tree that is MD-consistent with S is obtained. As the naive algorithm has clearly an
exponential-time complexity, tests are performed on trees of limited size.

We considered a genome set of fixed size 5, and gene trees with 6 to 24 leaves. For each size
s (from 6 to 24, with steps of 2), we generated 500 random gene trees of s leaves, and kept only
those satisfying Property AD-above-NAD. The left diagram of Figure 5 shows that Algorithm Correct-

Tree gives an exact solution for more than 65% of the trees (among all of those satisfying Property

AD-above-NAD). Moreover, when NbOptimal differs from NbOptimal, in mot cases the difference
is 1. The right diagram of Figure 5 is obtained by averaging, for each size s, the results obtained
for all the gene trees of that size. We can see that the error-rate, computed as (NbObtained −
NbOptimal)/NbObtained, is independent from the size of the tree, and did not exceed 0.15, based
on our simulation settings. After testing other dependency factors (non-shown results), it appears
that the error-rate only depends on the number of times the loop 9- 13 of Algorithm Correct-Tree is
executed, which is not directly related to the number of NADs or ADs in the tree.
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Fig. 5. Comparison of the number NbObtained of leaf-removal obtained by Algorithm Correct-Tree with the
optimal number NbOptimal obtained by an exact algorithm. Left: Percentage of trees leading to a given
number NbObtained −NbOptimal of errors (see text for more details on the used parameters). Right: The
error rate, computed as (NbObtained − NbOptimal)/NbObtained, depending on the size of the gene tree
(number of leaves).

Finally, we tested the ability of the presented approach to identify misplaced genes. To do so, we
considered a genome set of fixed size 10, and gene trees of size s varying from 10 to 100 (with a step
of 10). For a random species tree S and a random tree T of size s that is MD-consistent with S,
we incorporate randomly NbAdded = s/10 leaves with randomly chosen labels. We then test how
many “misplaced” leaves our method is able to detect. For each size s, results are averaged over 100
trees. Figure 6 shows the detection percentage of Algorithm Correct-Tree, which is computed
as (NbObtained/NbAdded) × 100. This detection percentage decreases with increasing size of the
gene tree. This is mainly due to the fact that as an MD-consistent tree needs no leaf removal, its
detection percentage is always 100%, and that the more leaves we add (1 for a gene tree of size 10,
but 10 for a gene tree of size 100) the less chance we have to end up with an MD-consistent tree.
Removing the cases of MD-consistent trees lead to a detection percentage around 40%.

6 Conclusion

Based on observations pointing to NAD vertices of a gene tree as indications of potentially misplaced
genes, we developed a polynomial-time algorithm for inferring the minimum number of leaf-removals



 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

%
 o

f d
et

ec
tio

n

size of tree

Algorithm performance for 10% misplaced gene insertions

Fig. 6. Percentage of misplaced leaf detection, computed as (NbObtained/NbAdded)×100, where NbAdded
is the number of randomly added leaves, and NbObtained is the number of leaf removals obtained by
Algorithm Correct-Tree (see text for more details).

required to transform a gene tree into an MD-tree, i.e. a tree with no NAD vertices. The algorithm
is exact in the case of a uniquely leaf-labelled gene tree, or in the case of a gene tree that does not
contain any AD vertex above a NAD vertex. In the general case, our algorithm exhibited results
very close to optimality under our simulation settings. Unfortunately, NAD vertices can only reveal
a subset of misplaced genes, as a randomly placed gene does not necessarily lead to a NAD vertex.
Our experiments show that, on average, we are able to infer 40% of misplaced genes. However, the
additional damage caused by a misplaced leaf leading to a NAD is an excessive increase of the real
mutation-cost of the tree. Therefore, removing NADs can be seen as a preprocessing of the gene tree
preceding a reconciliation approach, in order to obtain a better view of the duplication-loss history
of the gene family.

Another use of our method would be to choose, among a set of equally supported gene trees
output by a given phylogenetic method, the one that can be transformed to an MD-consistent tree
by a minimum number of leaf removals.

A limitation of our approach is that a NAD resulting from a wrong bipartition {a, b; c} can be,
a priori, solved by removing any gene from this bipartition. Our present approach is able to detect
a number of misplaced genes but, in general, it is insufficient to detect precisely the genes that
have been erroneously added in the tree. An extension would be to infer all optimal subsets of leaf
removals, and to use bootstrapping values on the edges of the tree for a judicious choice of the genes
to be removed.
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